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ABSTRACT: Recently, Kapustin, Willett and Yaakov have found, by using localization techniques,
that vacuum expectation values of Wilson loops in ABJM theory can be calculated with a matrix
model. We show that this matrix model is closely related to Chern—Simons theory on a lens
space with a gauge supergroup. This theory has a topological string large N dual, and this
makes possible to solve the matrix model exactly in the large N expansion. In particular, we find
the exact expression for the vacuum expectation value of a 1/6 BPS Wilson loop in the ABJM
theory, as a function of the 't Hooft parameters, and in the planar limit. This expression gives an
exact interpolating function between the weak and the strong coupling regimes. The behavior at
strong coupling is in precise agreement with the prediction of the AdS string dual. We also give
explicit results for the 1/2 BPS Wilson loop recently constructed by Drukker and Trancanelli.
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1. Introduction

Localization techniques in supersymmetric gauge theories have produced in recent years explicit
expressions for a variety of correlation functions. In [1], they were used to prove the longstanding
conjecture [2, 3] that the vev of a 1/2 BPS Wilson loop in N/ = 4 super Yang-Mills theory can
be computed by a correlator in a Gaussian matrix integral. This gives the celebrated formula

2
Wo) = =01 (V) (L1)
for the planar limit of the Wilson loop in the fundamental representation. In this formula, 7 is
a modified Bessel function and A = ¢g2N is the 't Hooft coupling. (1.1) gives an exact expression
in A that interpolates between strong and weak coupling (see [4] for a review).

More recently, Kapustin, Willett and Yaakov [5] have applied localization techniques to
ABJM theories [6, 7]. These are superconformal field theories in three dimensions based on a
U(N1) x U(N2) Chern-Simons theory coupled to matter, and they have large N AdS, duals.
In [5], it was shown that the calculation of vevs of 1/6 BPS Wilson loops in these theories
can be reduced to a calculation in a matrix model, and they verified that the Wilson loop vev
reproduces the calculations of [8, 9, 10]. However, the matrix model they obtained is highly
nontrivial, and the comparison with the gauge theory calculation was done by performing a
perturbative expansion up to two loops. Some partial results on the planar limit of the matrix
model have been obtained in [11].

In this note we point out that the matrix model of [5] can be solved by relating it to the
Chern—Simons matrix models introduced in [12], and in particular to the lens space matrix model
studied in detail in [13, 14]. In [13] it was shown that the lens space Chern—Simons matrix model
is the large IV dual of topological string theory on a certain class of local Calabi—Yau geometries,
providing in this way a nontrivial generalization of the Gopakumar—Vafa duality [15]. This means
in particular that the large N limit of the model can be studied by using standard techniques



in mirror symmetry. It turns out that the matrix model of [5] can be regarded as a supergroup
version of the lens space matrix model studied in [12, 13, 14]. Since large N duals describe matrix
models as well as their supergroup extensions, we can use topological string theory on a local
Calabi—Yau geometry to obtain exact results in ABJM theory.

In this paper we use the solution of [13, 14] to obtain an ezact expression for the planar limit
of the vev of the 1/6 BPS Wilson loop constructed in [8, 10, 9], as a function of the two 't Hooft
parameters of the theory. This analytic expression is relatively complicated but it can be written
down explicitly in terms of elliptic functions, see for example (4.40), (4.43) for the case in which
the two gauge groups have the same rank. It interpolates smoothly between weak and strong
coupling, and at strong coupling it agrees precisely with the AdS theory prediction obtained in
[8].

The 1/6 BPS Wilson loop operator that we study in the planar limit involves only one of
the gauge connections in the U(N;y) x U(N2) quiver, and it is not the most natural operator
from the point of view of topological string theory. It has been recently shown in [16] that it
is possible to construct a 1/2 BPS Wilson loop operator in the ABJM theory which localizes
precisely to the natural Wilson loop operator for Chern—Simons theory on L(2,1) (extended
to a supergroup). The vev of such an operator can be calculated to all orders in 1/N, as an
exact function of the 't Hooft parameters, by combining the solution of [13, 14] with the matrix
model-inspired techniques of [17, 18]. In the topological string dual, the vevs of these 1/2 BPS
operators correspond to open topological string amplitudes.

Our exact formulae for the vevs of Wilson loops in ABJM theory have the flavour of mirror
symmetry. There are two sets of coordinates for the parameter space: the “bare” coordinates
and the flat coordinates. The flat coordinates are identified with the 't Hooft parameters. They
are computed by period integrals and they can be related to the bare coordinates through the
mirror map. The vev of the Wilson loop is naturally expressed in terms of bare coordinates, and
one has to invert the mirror map in order to re-express it in terms of 't Hooft parameters. In
retrospect, one could say that the result of [3, 2, 1] for the 1/4 BPS Wilson loop in N = 4 super
Yang—Mills theory is comparatively easier since in their case the relevant matrix model is the
Gaussian one, with a simpler moduli space, and where the 't Hooft parameter is simply equal to
the bare coordinate.

The organization of this paper is as follows. In section 2 we review very briefly the matrix
model obtained in [5]. In section 3 we present the solution of the lens space matrix model building
on [13, 14]. In section 4 we explain the relation between the two matrix models, we derive the
exact results for the 1/6 BPS Wilson loop in the planar limit, and we study its behavior both at
strong and at weak coupling. Finally, some conclusions are presented in section 5.

2. Matrix model for the ABJM Wilson loop

The ABJM theory is a quiver Chern—Simons—matter theory in three dimensions with gauge
group U(N)i x U(N)_g and N/ = 6 supersymmetry. The Chern—Simons actions have couplings
k and —k, respectively, and the theory contains four bosonic fields C7, I = 1,--- ,4, in the
bifundamental representation of the gauge group. One can consider an extension [7] with a
more general gauge group U(Ni)i X U(Na)_g. A family of Wilson loops in this theory has been
constructed in [8, 9, 10], with the structure

1 4, 2T A
Wg = mT‘rRP exp/ (1A“x“ + k|$|M§C}C‘]> ds (2.1)



where A, is the gauge connection in the U(Ny), gauge group, dr(N1) is the dimension of the
represenation R of U(Ny), z#(s) is the parametrization of the loop, and M is a matrix deter-
mined by supersymmetry. It can be chosen so that, if the geometry of the loop is a line or a
circle, four real supercharges are preserved. Therefore, we will call (2.1) the 1/6 BPS Wilson
loop. A similar construction exists for a loop based on the other gauge group,

— 1 S 2m A

Wg = mTrRP exp/ <1A“x“ + k!m\M}CICJ) ds (2.2)
where A, is the U(N2)_j, gauge connection. The planar limit of the vev of (2.1) was computed in
[8, 9, 10], for Ny = Na = N, in the fundamental representation R = o, and in the weak coupling
regime A\ < 1, where

N
A= — 2.3
) (23)
is the 't Hooft parameter. The result is
572 9 3
<WD):1+?/\ + 0 (X\). (2.4)

On the other hand, in the strong coupling regime A > 1, the Wilson loop vev can be calculated
by using the large N string dual, i.e. type ITA theory on AdS, x P? [8, 9, 10]. This gives the
prediction!

(W) ~ ™22, (2.5)

As in the case of the 1/2 BPS Wilson loop in N/ = 4 Yang-Mills theory, the exact answer for
the planar limit of this vev should interpolate between the weak coupling behavior (2.4) and the
strong coupling prediction of the large N string dual, (2.5).

A crucial step in finding such an exact answer was taken in the paper [5]. It was shown
there, through a beautiful application of the localization techniques used in [1], that the vev of
(2.1) can be computed as a correlation function in a matrix model. This matrix model is defined
by the partition function

Ny N ILi<; sinh? (M) sinh? (M)
J 2 2 -1 2= 2
ZABJM(NI,NQ,QS):/Hdﬂinyj — o7 (Tani=3, 7).
i=1  j=1 H” cosh (%)

(2.6)

where the coupling g; is related to the Chern—Simons coupling k of the ABJM theory as

27i
s = —. 2.7
9s = (2.7)
One of the main results of [5] is that
(Wr) =~ (Trg () (28)
R dr(Ny) R ABJM > :

!To be precise, the dual calculation is made by considering a fundamental string in AdS4, which is a 1/2 BPS
object. In [8, 10] it was argued that the the strong coupling behavior obtained in this way should apply to the
symmetric Wilson loop Wéym defined in (2.12) below. It should also apply to the 1/2 BPS Wilson loop constructed
in [16]. However, as we will show in this paper, the leading exponential behavior is common to all these Wilson
loops.



i.e. the vev of the 1/6 BPS Wilson loop (2.1) can be obtained by calculating the vev of the
matrix e” in the matrix model (2.6). This was explicitly checked in [5] by computing the vev
in the r.h.s. of (2.8) in the matrix model, for the fundamental representation. Notice that the
Wilson loop for the other gauge group,

—

(Wr) = dR(lNg) (Trr (7)) ABgM (2.9)

is obtained from (2.8) simply by exchanging N; <+ Ny and changing the sign of the coupling
constant g —+ —g.

The Wilson loop (2.1) breaks the symmetry betwen the two gauge groups. Recently, a class
of 1/2 BPS Wilson loops has been constructed in the ABJM theory [16] which treats the two
gauge groups in a more symmetric way. These loops have a natural supergroup structure in
which the quiver gauge group U(N;) x U(N3) is promoted to U(N1|N2), and they can be defined
in any super-representation R. In [16] it has been argued that this 1/2 BPS loop, which we will
denote by SWpg, localizes to the matrix model correlator

(SW) = — <St <em 0 >> (2.10)
= — r A .

s Lo e ABIM

in the ABJM matrix model. Here,

10
SR = StI‘R (O _1) . (2.11)
When R = o, we have the simple relationship
1 —
=— [NV N- . 2.12
(SWa) = 5 (Vi (Wa) + No(Wa)) (2.12)

In general, as it is clear from (2.10), the vev of the 1/2 BPS Wilson loop can be obtained if we
know the vevs of the 1/6 BPS Wilson loop, but we expect it to be simpler.

The work of [5] reduced the computation of vevs of Wilson loops in ABJM theory to the
computation of matrix model correlators in the matrix model (2.6). Perturbative calculations
are now straightforward. However, in order to obtain exact interpolation functions, we have to
resum all double-line diagrams at fixed genus in the matrix model. This is straightforward in
the Gaussian matrix model which computes the vev of the 1/2 BPS Wilson loop in N' =4 SYM
[3, 2, 1], but it is not for the model (2.6). As we will see in this paper, the most efficient way to
solve this matrix model in the 1/N expansion is to relate it to the lens space matrix model of
[12] and to its large N string dual [13].

3. The lens space matrix model and its large N dual

The lens space matrix model was introduced in [12, 13] in order to compute the partition function
of Chern-Simons theory on lens spaces of the form L(p,1) = S*/Z,. In this paper we will be
particularly interested in the case p = 2. In this case, the matrix model has the structure

Ny No
; i — Hj . Vi —Vj
ZL(2,1)(N1,N2795) = / | | dp; | | dv; I | sinh? (N2N3> sinh? <2J>
i=1 j=1

1<j

x H cosh? <M;VJ> o355 (i Hi+Y; )

i,J



and it describes the expansion of the Chern—Simons partition function around a generic non-
trivial flat connection, corresponding to the symmetry breaking pattern

U(N) — U(Ny) x U(N). (3.2)

The model has a large N expansion of the form

oo
F=logZ="> Fyt1,ts)g2? > (3.3)
g=0
where
ti = gsNZ- (3.4)

are the partial 't Hooft parameters.The genus zero free energy has the structure
Fo(tl,tg) = F()(;(tl) + Fg(tg) + Fé)(tl,tz). (35)

where FOG (t) is the Gaussian matrix model genus zero amplitude,

FS(t) = %tQ (log t— Z) (3.6)

and FJ(t1,t2) is the contribution from fatgraphs of genus zero. The first nontrivial terms are

1
EP(t1,t0) = @(t‘f + 65ty 4 181313 + 61113 + t3)

(3.7)
1
~ 205600 (419 + 45t7ty + 225t1t3 + 1500135 4+ 225t 35 + 45t 115 + 4t5) + - --
Higher genus free energies can be computed analogously.
A zZ
Z = eZ A
mi— B mi+ B
S S——— < >

Figure 1: The cuts for the CS lens space matrix model in the z plane and in the Z = e* plane.

The matrix model (3.1) can be studied from the point of view of the 1/N expansion. This was
done in detail in [13], where this expansion was identified with the genus expansion of topological



string theory on a local Calabai—Yau manifold. Many results of [13] were rederived in the paper
[14, 19] by using standard matrix model techniques, which we now review.

At large N, the two sets of eigenvalues, u;, vj, condense around two cuts centered around
z =0, z = mi, respectively. We will write them as

C1=(—AA), Co = (mi— B,mi+ B), (3.8)
in terms of the endpoints A, B. It is also useful to use the exponentiated variable
Z =€, (3.9)
In the Z plane the cuts (3.8) get mapped to
(1/a,a), (—=1/b, =), (3.10)
which are centered around Z =1, Z = —1, respectively, and
a=el, b=eb, (3.11)

see Fig. 1. We will use the same notation C; » for the cuts in the Z plane. An important quantity
introduced in [14] is the total resolvent of the matrix model, w(z). It is defined as

w(z) = gs <izllcoth (Z _2’“>> + 9s <§tanh (Z ;”j>> : (3.12)

In terms of the Z variable, it is given by

N1 N2
dz dz dz
w(z)dz = —(t1 + t2)7 + 295 < E 7 o > + 2¢s < 7+ o > (3.13)
i=1 =1

J]=

and it has the following expansion as Z — oo

29 N1 No

298 Hi Vj

wz) =t +t+ = <Z}e Z‘Iea>+ (3.14)
1= Jj=

From the total resolvent it is possible to obtain the density of eigenvalues at the cuts. In the
planar approximation, we have that

wo(z) = —(t1 + t2) + 21 / p1(w)

Z
dp + 2752/ p2(v) ——dv, (3.15)
Cy Z — ek Ca

Z +ev

where p1(p), p2(v) are the densities of eigenvalues on the cuts Cy, Ca, respectively, normalized as

/Cl p1(pw)dp = / p2(v)dv = 1. (3.16)

Co
The standard discontinuity argument tells us that

1 dX ) .
p(X)dX = e (wo(X +i€) — wo(X —1i€)), X e,

1 dY
= 4Wit27(w0(Y—|—ie)—wO(Y—iG)), Y € Co.

(3.17)
p2(Y)dY




The planar resolvent (3.15) was found in explicit form in [14]. It reads,

o t/2

wolz) = 210g< W(z F0)(Z+1/0) —/(Z —a)(Z - 1/a)]>, (3.18)

where
t=1t1 +1t2 (3.19)

is the total 't Hooft parameter. It is useful to introduce the variables

1 1
— — =b4+ =, 3.20
a=at -, B=0b+ 2 (3.20)
as well as 5 L8
a— a
= = . 21
(=L =2 (3:21)
The expansion (3.14) implies then
¢ = 2e'. (3.22)

As it is standard in matrix models, the ’t Hooft parameters turn out to be period integrals with
a nontrivial relation to a, b:
b woe)ds, =g we)d (323)
=— ¢ wp(z)dz =— ¢ wp(z)dz. .
Y g fo, OV 27 ami fo, 0
The derivatives of these periods can be calculated in closed form by adapting a trick from [20].
If we write

ot
a(z) = oz |5 (12) - VT@P - €7) (324)
with
[(2)=2*-¢Z+1, (3.25)
it follows that
Oty 2 1 dz Vab

% K(k), (3.26)

imi fo, VTGE—ez2 | n(l+ab)

where K (k) is the complete elliptic integral of the first kind, and its modulus is given by

(a® —1)(b* — 1)
(1+ ab)?

k2 = (3.27)

The above relationships determine in principle the planar content of the theory. However,
this matrix model solution is further clarified by considering its large N dual, which was in
fact discovered before [13]. This dual is given by topological string theory on the anti-canonical
bundle of the Hirzebruch surface Fy = P' x P!. The mirror geometry is encoded in a family of
elliptic curves X, which can be written as

)= nrt+z+1-4/(1 ; T+ z122)% — 422:52. (3.28)

Here, 21,29 parametrize the moduli space of complex structures, which is the mirror to the
enlarged Kéhler moduli space of local Fy. This moduli space has a very rich structure discussed
in [13, 21].



The mirror geometry (3.28) is nothing but the spectral curve of the lens space matrix model,
and it is closely related to the resolvent wy(Z). Indeed, one finds that wo(Z) ~ log y(x) provided
we identify the variables as

w =722 3.29
1

_ 1 _9 /22
¢= ﬁa §= 2\/2- (3.30)

In order to make further contact with the matrix model, one has to look at the moduli space
of (3.28) near the orbifold point discovered in [13]. This is defined as the point 1 = 9 = 0 in
terms of the variables:

and

Z1 1
rp=1-—, Ty =

» va(1-2)
Using mirror symmetry, we can calculate the periods of wy(z) along the cycles of the spectral
curve as solutions to a Picard-Fuchs equation. In terms of the coordinates x1 2, the Picard-Fuchs

(3.31)

system is given by the two operators

1 1
L = 1 (8 —8x1 + x%) 220y, + 1 (—4 + (=24 1) Ql‘%) 0%2

+ (=14 21) 220,, — 21 (2 — 321 + :):%) 290z, 0y + (=1 4+ 21) 2:1:%8%1,

(3.32)
Lo=(2— 1) 2205 + (-14+ (1 —z1) x%) 8%2 — 220,
+2 (=14 21) 212204, Oz, + (1 — 71) 53%351-
A basis of periods near the orbifold point was found in [13]. It reads,
o1 =—log(l—xz1) = Zcm,oxﬂn,
m
0= Cmat'3, (3.33)
m,n ’
Fo, = o2log(z1) + Z A n'Ty
m,n
where the coefficients ¢, , and d,,, are determined by the following recursions relations
(n+2 —2m)?
Cm,;n =Cm—1,n )
4m —n)(m —1)
1
man =gy (emn-2(n = = D0 —m = 2) = ey a0 —m = 1)°),
dm—1n2(n+2—=2m)%> +4(n+1—=2m)cmn +42m —n — 2)cm_1n (3.34)
dm,n = )
4(m —n)(m —1)
1
dm.n :m(dmm_g(n —m—1)(n—m—2) —dp_1,2(n—m—1)>

+(2n—2—-2m)em—1n—2+ (2m+3 = 2n)cmpn—2).



The 't Hooft parameters of the matrix model are related to the periods above as

t1 = %(01 + 0'2), to = %(0'1 — 0'2). (3.35)
The remaining period in (3.33) might be used to compute the genus zero free energy of the matrix
model. Notice that x; 2 (or equivalently (,¢ as defined in (3.21)) are “bare” coordinates, while
01,2 (and therefore ¢; ) are flat coordinates, annihilated by the Picard-Fuchs operators.
It is now a matter of (computer) routine to calculate the different quantities, like the end-
points of the cuts, as an expansion in the 't Hooft parameters. One obtains, for example,

1
a:1+2\/E+2t1+§\/E(3t1+t2)+t1(t1+t2)+--- (3.36)

The expansion for b is obtained from this one simply by exchanging t1 < ts.

4. Exact results for the ABJM model

4.1 General results

We will now use our knowledge of the solution of the lens space matrix model to solve the ABJM
model, at least at the planar level. It is clear that the matrix model (2.6) is closely related to
(3.1), but there are some obvious differences: in (2.6) the interaction between the p and the
v eigenvalues is in the denominator, and the Gaussian action for the vs has the opposite sign.
These ingredients are precisely the ones needed to make (2.6) a supergroup extension of (3.1). We
will now quickly review some results on supermatrix models, following [22, 23, 24]. A Hermitian

supermatrix has the form
AU
o- (42 "

where A (C) are N1 x N1 (N2 x N3) Hermitian, Grassmann even matrices, and ¥ is a complex,
Grassmann odd matrix. The supermatrix model is defined by the partition function

Zs(N1|Ny) = / Do e 55V (®) (4.2)

where we consider a polynomial potential V(®), and Str is the supertrace
Str® =TrA—TrC. (4.3)

There are two types of supermatrix models with supergroup symmetry U(Nj|N3): the ordinary
supermatrix model, and the physical supermatrix model [23]. The ordinary supermatrix model is
obtained by requiring A, C' to be real Hermitian matrices, while the physical model is obtained by
requiring that, after diagonalizing ® by a superunitary transformation, the resulting eigenvalues
are real. Here we will be interested in the physical supermatrix model. Its partition function
reads, in terms of eigenvalues [23, 24|

M T (=) (i — ) 1 . .
ZS(N1|N2):/Hd,uinyj <JH ({ - 1 o (S V) =5 V) (4.4)
i=1 i=1 i i — vj)



When the two groups of eigenvalues y;, v; are expanded around two different critical points, the
partition function (4.4) is well-defined as an asymptotic expansion in gs. It is easy to show that
(4.4) is related to the partition function of the corresponding bosonic, two-cut matrix model

N Ny
A Vi R
Zy(N1, N2) = /Hdﬂi TT v T (i = 19)* i = w)* T ] (i = ) e (E:V+E; V)
i=1 j=1 i<j i
(4.5)
after changing No — — No:
Zy(N1|N3) = Zy(Ny, —Ny). (4.6)

Such a flip of sign is trivially performed if one knows the exact solution of the model in the
1/N expansion. The relation (4.6) can be proved diagramatically by introducing Faddeev—Popov
ghosts as in [24, 25].

We now see that the relationship between the ABJM matrix model and the lens space matrix
model is identical to the one we have between supergroup matrix models and multi-cut bosonic
matrix models, with the only difference that the interaction between the eigenvalues has been
promoted to the sinh interaction typical of Chern—Simons matrix models. Indeed, the lens space
matrix model is a two-cut matrix model where the u, v eigenvalues are expanded around two
different saddle points, z = 0 and z = wi. The ABJM matrix model is just its supergroup version.
We then conclude that

Zapim(N1, No, g) = Zp2,1)(N1, —N2, g). (4.7)
Notice that the change No — —Ns is equivalent to setting
tl = 27‘(’1)\1, t2 == —271'1)\2, (48)
where .
\i = ? i=1,2, (4.9)

are the 't Hooft parameters of the ABJM model.

The appearance of a hidden supergroup structure in the matrix model of [5] is not surprising,
since N' = 4 Chern—Simons—matter theories are classified by supergroups [26]. In fact, the ABJM
theory can be constructed as an N/ = 4 theory with supergroup U(Ni|N2) and containing both
hypermultiplets and twisted hypermultiplets [27]. This hidden supergroup structure in the ABJM
theory is explicitly used in the construction of half-BPS Wilson loops in [16].

Let us now discuss Wilson loops. The most natural correlator in the standard lens space

matrix model is
et (
Trg 0 —ovi , (4.10)

where R is a representation of U(Nj 4+ N3). In Chern—Simons gauge theory on L(2,1), this
computes the vev of a trivial knot, expanded around a generic, fixed flat connection. In the
topological string large N dual, it corresponds to an open string amplitude for a toric D-brane
(see for example [18] for more details). These vevs can be computed for any R and to all orders
in the 1/N expansion [17, 18].

In order to consider its supergroup extension, notice that a representation of U(N; + Na)
induces a super-representation of U(Ni|Nz), defined by the same Young tableau R (see for
example [28]). Therefore, the supergroup generalization of (4.10) is simply

i
<StrR <e0 O,,j>> . (4.11)
—¢ (N1|N2)

~10 -



This can be also written as [28]

- ko
i () xr (k) et 0\
StI"R < 0 _el/]_> = E B |€| Str 0 —evi

k Eﬂ (4.12)
_ N xr(R) ol _ ()T (ot
SO (o) - (o)

In this equation, which is the supergroup generalization of Frobenius formula, k= (k¢) is a vector
of non-negative, integer entries, which can be regarded as a conjugacy class of the symmetric

-

group, xR (k) is the character of this conjugacy class in the representation R, and

ap =[] Fke! (4.13)
l

elu'i 0 e,u'i O
StrR( ,,>> = <T1"72< V.)>(N17—N2,9) (4.14)
< 0 —e¥ (N1|N2) 0 —ei

which extends (4.7) to correlation functions. In view of (2.10), we conclude that the vevs of the
1/2 BPS Wilson loops constructed in [16] can be computed to all orders in the 1/N expansion
by calculating the correlator (4.10) in the lens space matrix model and changing Ny — —Nj

We then have

e = - (e (50, ) ) (0~ Navo) (4.15)

SR (&

Let us give an example of how to calculate the vev (4.15) when R = 0. In the planar limit
we have, for the lens space matrix model correlator (4.10), the exact answer

1 et () 1 ¢
T = 2 4.16
Nl—N2< rD(o —e”f>> t— 122’ (4.16)

where ( is defined in (3.21). After setting (4.8) we obtain the weak coupling expansion

1 1
(SWa) = 1—|—i7r()\1—)\2)—§7r2 (202 — 5\ + 2A§)—§m3 (AF — 4o +4N3N — A3)+- -+ (4.17)

This is of course (up to normalizations) the first term in equation (6.54) of [18]. Higher genus
corrections can be extracted from the higher genus resolvents wy(z). These in turn can be
computed by using standard matrix model techniques applied to the spectral curve (3.28), as in
[17, 18].

4.2 The 1/6 BPS Wilson loop

If the densities of eigenvalues p1 () and pa(v) given in (3.17) are known, it is possible to calculate
the exact planar limit of the correlator

%(Tre’ﬂ = /Cl p1(p)etdy = /61 p1(X)XdX, (4.18)
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as well as of multiple-winding correlators

e = [ peran (£19)

We then conclude, in view of (2.8), that the planar limit of the vev of a 1/6 BPS Wilson loop is
given by

(W) = /c pr(p)erdy (4.20)

after changing variables as in (4.8).
The densities p;(p) and p2(v) can be explicitly calculated from (3.17) and (3.18). We find,

1 lax —1-x2] dx

X)dX = — tan ) | /&2 A1 G2
(4.21)

1 BY +1+Y2| dy

Y)Y = — — tan~! | /22! .

p2(Y)d — aY —1-v2| Y

In terms of the variable z = log X we have

1 1
— t
pi(z) = 0 an

o —2coshz
- 4.22
\/ ﬁ—}—QCOth] ’ (4.22)

and a similar expression for ps(y). Notice that, if to = 0, one has 8 = 2, a = 4e! — 2, and p;(z)
becomes the density of eigenvalues for the matrix model of Chern-Simons theory on S? [29]

et — cosh? (%)

Tt B cosh (%)

(4.23)

Remark 4.1. We can write the density of eigenvalues (4.22) as

pr(a) = f(a)V/ A% — 2, (4.24)
a—2coshz | = 2%k
1/B+2COSM] _kzzoﬁkx : (4.25)
1 _ a—2
Bo = At ! [, /M] : (4.26)

It is easy to check that p;(z) agrees, in the special case t; = —ty = ¢, with the perturbative expan-
sion obtained in [11] up to order 10 in ¢. Our expression (4.22) gives then the full resummation
of the expression obtained in [11], and extends it to any ¢y, ta.

where

f(z) = _ tan !

We find for example

The integral (4.20) is then given by
1 e aX —1—- X2
Wo)=—5L, L= tan~! e
(Wo) mt /w [\/ BX +1+ X2

- 12 —

dx. (4.27)




This integral is not easy to calculate in closed form, but its derivatives w.r.t. ¢ and & can be
expressed in terms of elliptic integrals. We find

on 1 | Xdx R R )
34_2/\/(aX—1—X2)(ﬁX+1+X2)_ \/%(Hab)( K(k) = (a+ ) Tnlk)).

1/a

a

oL 1/((,6’X+1+X2)—(aX—1—X2)) dX  Vab

o6 2

Noeobesrs ol T G

1/a
(4.28)
where II(n|k) is the complete elliptic integral of the third kind, K(k), E(k) are elliptic integrals
of the first and second kind, respectively, the modulus is given by (3.27), and finally
ba? -1

—— . 4.2
" al+ab (4.29)

This determines the planar limit of the 1/6 BPS Wilson loop exactly. As we mentioned in the
introduction, the Wilson loop is naturally expressed in terms of the “bare” coordinates (, &, and
we have to use the mirror map (3.33) in order to write it in terms of the 't Hooft parameters.

As an application of these formulae, we will present the first few terms of the weak coupling
expansion in t1,ts. To do this, we simply calculate

or, oL ac ol ,
B ST
o, ocot, “oeS

(4.30)

we use the expressions (4.28), and we integrate w.r.t. t1, to. This produces the expansion
1
%(St‘f + 3563t + 306313 + 10¢1£3) + - - -
(4.31)
The result for the Wilson loop in the ABJ theory is obtained by simply changing variables to
(4.8). The result agrees at the first few orders with a perturbative matrix model calculation of
[16]. Finally, the vev of the other Wilson loop (2.9) is obtained by exchanging ¢; <> t2, or, in the
ABJ theory, by exchanging \; <+ A2 and complex conjugating the result.
Interestingly, the strong coupling limit of the above expressions depends on the direction in
which one goes to infinity. We will discuss one such direction in detail in the next subsection,

where we consider the restriction to the original ABJM model N1 = Nos.

1
— (2t} + 617t +4t15) +

Hoo1,
=1+ —4+—(2t t1t
(W) +2+12( 1+312)+48

4.3 The ABJM slice

In the original ABJM theory with Ny = Ny = N (the case N; # Ny was considered in [7]) we

should look at the slice W

t) = —to =27iA, A= "’ (4.32)
in the moduli space of the dual topological string. From the point of view of the periods o1, o9
in (3.33) this means that we should set

o1 =0, (4.33)

therefore 1 = 0. In order to have a nontrivial o9, we must consider the double-scaling limit

r1 — 0, r122 = ¢ fixed. (4.34)
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The one-dimensional subspace (4.32) corresponds, in terms of the variables ¢, ¢, to £ = 2. As in
[30], we can find simplified expressions for the periods in this subspace. It is easy to see from the
structure of oy that, in the limit (4.34), one has

o0
_ 2m+1 _
o9 = E amC™ T, am = Comt1,2m1, (4.35)
m=0

and from the recursion relation (3.34) we find

2-4mT (1 4 1)?
o = (m +3) . (4.36)
7(2m + I (m + 1)

d0'2 - 2 C
e K <4> : (4.37)

which is in fact a particular case of (3.26), as it can be easily seen by using the transformation
properties of the elliptic integral K (k). The period ¢; itself can be written as a generalized
hypergeometric function:

We then obtain

111 3¢
t1(¢) = % 3F (2; 39 L 5 iG) . (4.38)

In the physical ABJM theory, ¢; is purely imaginary. This means that ¢ is purely imaginary as
well, so we set

(=1 (4.39)
and we finally obtain
K 111 3 &
AMr)=—13F | =, =, =;1,=;—— ] . 4.4
(H’) 87T3 2(252727 727 16> ( 0)

Let us now calculate the planar limit of the vev of the 1/6 BPS Wilson loop in the ABJM
slice N7 = N,. Since
o =2+Iik, B8 =2—Iix, (4.41)

the endpoints of the cuts are given by

a(m)z%@—&—im—i—@),

1
2

(4.42)

b(k) <2 — ik +/—k (4 + /@)) .

The planar vev of the Wilson loop is then determined, as a function of the 't Hooft coupling A,
by the single equation

) 1
I AR (W) = " 272/ab (1 + ab)

(@K (k) — (a+b)I(n|k)), (4.43)

together with the explicit relation between A and k in (4.40) —yet another example of mirror
map.
As a check, we can perform a weak coupling expansion. The weakly coupled region corre-
sponds to
k<1, AL, (4.44)
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0.5 10 15 20 25 3.0

Figure 2: Plot of (4.52) as a function of A, displaying clearly an interpolation between a quadratic
behavior near the origin and a square-root growth as A\ becomes large.

and in this region the variables are related as

L LSPGO N 17370AT 37927780
8m 3 60 1260 181440

+0 (A1), (4.45)

which is obtained from the inversion of (4.40). By expanding (4.43) in power series around k = 0,
and using the mirror map (4.45), we obtain

, 5m2N2 1 2974t 1 1517506 1 8744978 )\8
%1% — TiA 1 = 3/\3_ T 5)\5 e s 7A7_7
(W) =e ( T T 20 T27N T 08 10 362880
2603im9\? N 3447391710A10 1166161 it AL 52393723197 12712 Lo
15120 7983360 3628800 6227020800 ’

(4.46)
where we have extracted a framing factor to facilitate comparison with existing results like (2.4).
The first few terms agree with the calculations in [8, 9, 5, 11].
Of course, the main advantage of having analytic expressions is that one can perform a
weak-strong coupling interpolation easily. The strong coupling region is

k>1, A1 (4.47)

and (4.40) leads to the asymptotic expansion

1
k) = — — 4.4
() 272 +24+O(/£2>’ (4.48)
which is immediately inverted to

K = e™V2A (1 +0 (\15\, ezm/ﬁ)) . (4.49)

On the other hand, it is easy to check from (4.43) that

dl 1 im 1 1 1 im 1
S il “ ) =nL=—>xl ) - 4.
In 2ogm+4+0</€2> =1 5 f og/i—|—<2+4>/<a+(’)<ﬁ> (4.50)

~15 —



It follows that )
! V2X
Wg) ~ ———e™V*, A> 1. 4.51
< D> 27_‘_@ ( )
The leading exponential is in perfect agreement with the AdS prediction (2.5), and the exact
answer interpolates between the weak and the strong coupling behaviors. This is illustrated in
Fig. 2, which represents the function

f(A) =log [(Wr)l. (4.52)
This function interpolates between
2)\2
A <,
fA) = (4.53)
TV2A, A> 1.

Let us now consider the vev of the 1/2 BPS Wilson loop of [16] in the fundamental repre-
sentation, which is given by (2.12). The expression for this vev follows from the specialization of

(4.16),

8TA(K)

(SWp) = (4.54)
Since, in the ABJM slice, (2.8) and (2.9) are related by complex conjugation, this vev is manifestly
real. Notice also that, when adding the contributions of the two gauge groups as in (2.12), all
terms in the series expansion at small x of the r.h.s. of (4.43) cancel except for the first constant
term. This confirms that the 1/2 BPS Wilson loop is much simpler than the 1/6 BPS Wilson
loop. At strong coupling we have,

1
SWo) ~ —e™2 A1 4.55
< D> ST )\e ’ > 1, ( )
which displays the same leading exponential behavior predicted by the large N dual.
The computations at strong coupling can be easily extended to the case N1 # N, but they
depend on the direction in which we take the limit in the space of 't Hooft parameters. For &
fixed and ( large (therefore A; ~ A2), we find the same exponential behavior

(Wg) ~ ™M MV AitA2, (4.56)

5. Conclusions

In this paper we have related the matrix integral of [5], computing Wilson loop vevs in ABJM
theory, to a supergroup extension of the lens space matrix model introduced in [12] and solved in
[13, 14]. This has made possible to obtain exact expressions for the planar vev of 1/6 BPS Wilson
loops, and we have verified the strong coupling behavior predicted by the AdS dual [8, 10, 9].

There are various avenues for further research. It is clearly gratifying to see that the tech-
niques of mirror symmetry are relevant to the strong-weak interpolation problem in the AdS/CFT
correspondence, but it would be nice to have an a priori understanding of the relationship be-
tween topological string theory and the ABJM theories, maybe along the lines of [31]. This would
lead to further fruitful interactions between the two topics.
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We should also mention that the strong coupling analysis of Wilson loops in the context
of the gauge theory is different from what one does in topological string theory. There, the
interpolation from weak to strong coupling involves a different choice of flat coordinates and
a different choice of duality frame (see for example [32] and specially the analysis of Wilson
loop amplitudes in [18]). This means, in particular, that in topological string theory, analytic
continuation of the amplitudes is not enough. In the gauge theory analysis, in contrast, one
uses the same flat coordinates (the 't Hooft parameters) and the same duality frame in the full
moduli space, and the weak and the strong coupling regions are simply related by an analytic
continuation.

One obvious problem is to find expressions for the Wilson loop vevs beyond the planar
approximation. As we have explained in this paper, this can be trivially done for the 1/2 BPS
Wilson loops constructed in [16], by simply applying the techniques of [17, 18]. For the 1/6 BPS
Wilson loop the calculation of 1/N corrections is more difficult, but in principle it can be done.
Finally, it would be interesting to compare the matrix model results with an AdS calculation
using D-branes, as it was done in [33] for the 1/2 BPS Wilson loop of N' = 4 Yang-Mills theory.

Acknowledgments

We would like to thank Anton Kapustin for discussions. We are specially grateful to Nadav
Drukker for many conversations which helped us very much, and we want to thank him, as well
as Diego Trancanelli, for sharing their unpublished results with us. This work is supported in
part by the Fonds National Suisse.

References

[1] V. Pestun, “Localization of gauge theory on a four-sphere and supersymmetric Wilson loops,”
arXiv:0712.2824 [hep-th].

[2] N. Drukker and D. J. Gross, “An exact prediction of N = 4 SUSYM theory for string theory,” J.
Math. Phys. 42, 2896 (2001) [arXiv:hep-th/0010274].

[3] J. K. Erickson, G. W. Semenoff and K. Zarembo, “Wilson loops in N = 4 supersymmetric
Yang-Mills theory,” Nucl. Phys. B 582, 155 (2000) [arXiv:hep-th/0003055].

[4] G. W. Semenoff and K. Zarembo, “Wilson loops in SYM theory: From weak to strong coupling,”
Nucl. Phys. Proc. Suppl. 108, 106 (2002) [arXiv:hep-th/0202156].

[5] A. Kapustin, B. Willett and I. Yaakov, “Exact Results for Wilson Loops in Superconformal
Chern-Simons Theories with Matter,” arXiv:0909.4559 [hep-th].

[6] O. Aharony, O. Bergman, D. L. Jafferis and J. Maldacena, “N=6 superconformal
Chern-Simons-matter theories, M2-branes and their gravity duals,” JHEP 0810, 091 (2008)
[arXiv:0806.1218 [hep-th]].

[7] O. Aharony, O. Bergman and D. L. Jafferis, “Fractional M2-branes,” JHEP 0811, 043 (2008)
[arXiv:0807.4924 [hep-th]].

[8] N. Drukker, J. Plefka and D. Young, “Wilson loops in 3-dimensional N=6 supersymmetric
Chern-Simons Theory and their string theory duals,” JHEP 0811, 019 (2008) [arXiv:0809.2787
[hep-th]].

[9] B. Chen and J. B. Wu, “Supersymmetric Wilson Loops in N=6 Super Chern-Simons-matter
theory,” Nucl. Phys. B 825, 38 (2010) [arXiv:0809.2863 [hep-th]].

17 -



[10]

S. J. Rey, T. Suyama and S. Yamaguchi, “Wilson Loops in Superconformal Chern-Simons Theory
and Fundamental Strings in Anti-de Sitter Supergravity Dual,” JHEP 0903, 127 (2009)
[arXiv:0809.3786 [hep-th]].

T. Suyama, “On Large N Solution of ABJM Theory,” arXiv:0912.1084 [hep-th].

M. Marino, “Chern-Simons theory, matrix integrals, and perturbative three-manifold invariants,”
Commun. Math. Phys. 253, 25 (2004) [arXiv:hep-th/0207096].

M. Aganagic, A. Klemm, M. Marifio and C. Vafa, “Matrix model as a mirror of Chern-Simons
theory,” JHEP 0402, 010 (2004) [arXiv:hep-th/0211098].

N. Halmagyi and V. Yasnov, “The spectral curve of the lens space matrix model,” JHEP 0911, 104
(2009) [arXiv:hep-th/0311117].

R. Gopakumar and C. Vafa, “On the gauge theory/geometry correspondence,” Adv. Theor. Math.
Phys. 3, 1415 (1999) [arXiv:hep-th/9811131].

N. Drukker and D. Trancanelli, “A supermatrix model for N' = 6 super Chern—Simons-matter
theory,” arXiv:0912.3006 [hep-th].

M. Marino, “Open string amplitudes and large order behavior in topological string theory,” JHEP
0803, 060 (2008) [arXiv:hep-th/0612127].

V. Bouchard, A. Klemm, M. Marino and S. Pasquetti, “Remodeling the B-model,” Commun. Math.
Phys. 287, 117 (2009) [arXiv:0709.1453 [hep-th]].

N. Halmagyi, T. Okuda and V. Yasnov, “Large N duality, lens spaces and the Chern-Simons matrix
model,” JHEP 0404, 014 (2004) [arXiv:hep-th/0312145].

A. Brini and A. Tanzini, “Exact results for topological strings on resolved Y(p,q) singularities,”
Commun. Math. Phys. 289, 205 (2009) [arXiv:0804.2598 [hep-th]].

B. Haghighat, A. Klemm and M. Rauch, “Integrability of the holomorphic anomaly equations,”
JHEP 0810, 097 (2008) [arXiv:0809.1674 [hep-th]].

L. Alvarez-Gaumé and J. L. Maiies, “Supermatrix models,” Mod. Phys. Lett. A 6, 2039 (1991).
S. A. Yost, “Supermatrix models,” Int. J. Mod. Phys. A 7, 6105 (1992) [arXiv:hep-th/9111033].

R. Dijkgraaf and C. Vafa, “N = 1 supersymmetry, deconstruction, and bosonic gauge theories,”
arXiv:hep-th/0302011.

R. Dijkgraaf, S. Gukov, V. A. Kazakov and C. Vafa, “Perturbative analysis of gauged matrix
models,” Phys. Rev. D 68, 045007 (2003) [arXiv:hep-th/0210238].

D. Gaiotto and E. Witten, “Janus Configurations, Chern-Simons Couplings, And The Theta-Angle
in N=4 Super Yang-Mills Theory,” arXiv:0804.2907 [hep-th].

K. Hosomichi, K. M. Lee, S. Lee, S. Lee and J. Park, “N=5,6 Superconformal Chern-Simons
Theories and M2-branes on Orbifolds,” JHEP 0809, 002 (2008) [arXiv:0806.4977 [hep-th]].

I. Bars, “Supergroups And Their Representations,” Lectures Appl. Math. 21, 17 (1983).
M. Marifio, “Les Houches lectures on matrix models and topological strings,” arXiv:hep-th/0410165.

M. Marino, S. Pasquetti and P. Putrov, “Large N duality beyond the genus expansion,”
arXiv:0911.4692 [hep-th].

G. Bonelli and H. Safaai, “On gauge/string correspondence and mirror symmetry,” JHEP 0806,
050 (2008) [arXiv:0804.2629 [hep-th]].

M. Aganagic, V. Bouchard and A. Klemm, “Topological Strings and (Almost) Modular Forms,”
Commun. Math. Phys. 277, 771 (2008) [arXiv:hep-th/0607100].

N. Drukker and B. Fiol, “All-genus calculation of Wilson loops using D-branes,” JHEP 0502, 010
(2005) [arXiv:hep-th/0501109].

~ 18 —



