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Abstract. We determine completely the Riemann solutions to the shallow water

equations with a bottom step, including the dry bed problem. The nonstrict hyperbolicity

of this first-order system of partial differential equations leads to resonant waves and

nonunique solutions. To address these difficulties we construct the L–M and R–M curves

in the state space. For the bottom step elevated from left to right, we classify the L–M

curve into five different cases and the R–M curve into two different cases based on the

subcritical and supercritical Froude number of the Riemann initial data as well as the

jump of the bottom step. The behaviors of all basic cases of the L–M and R–M curves

are fully analyzed. We observe that the non–uniqueness of the Riemann solutions is due

to bifurcations on the L–M or R–M curves. The possible solutions including classical

waves and resonant waves as well as dry bed state are solved in a uniform framework for

any given Riemann initial data.

1. Introduction. In this paper we are concerned with the shallow water system of

hyperbolic equations, which can be written in the form

∂W

∂t
+

∂F(W)

∂x
= −H(W)zx, (1.1)

where

W =

⎡
⎣ z

h

hu

⎤
⎦ , F(W) =

⎡
⎣ 0

hu

hu2 + gh2/2

⎤
⎦ , H(W) =

⎡
⎣ 0

0

gh

⎤
⎦ ; (1.2)
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408 EE HAN AND GERALD WARNECKE

see, e.g., Stoker [2]. The independent variables z, h and u denote, respectively, the bottom

topography, the water height and the water velocity, while g is the gravity constant.

Usually the bottom topography z is assumed to be given a priori.

The shallow water equations (1.1) model incompressible flows on a bottom bed under

the assumption that the depth of the fluid is much smaller than the wave length of the

disturbances considered. It has wide applications in fluid dynamics; for example, tidal

flows in an estuary, hydraulic jumps, river beds and channels, tsunamis, etc. The system

has also been studied from a mathematical point of view. A particular feature of the

system (1.1) is the presence of the bottom topography z(x). This geometric variable is

independent of time and leads to a stationary source and a nonconservative term.

We only reference a few publications. LeFloch [18] complemented a related nonconser-

vative system with an additional trivial equation zt = 0. It introduces a linear degenerate

field with a 0–speed eigenvalue. As a result the system (1.1) becomes a nonstrictly hy-

perbolic system. Due to the coincidence of eigenvectors the system becomes degenerate

at sonic states; see, e.g., Alcrudo and Benkhaldoun [5]. Bernettia et al. [7] studied an

enlarged system and used the energy to rule out solutions that are physically inadmis-

sible. Andrianov [3] proposed an example which has two solutions for one set of initial

data to show that different numerical schemes may approach different exact solutions. Li

and Chen [10] studied the generalized Riemann problem for the current system. LeFloch

and Thanh in [19, 20] investigated the exact Riemann solutions. They obtained most of

the possible solutions for given initial data. However, they omitted one possible type

of solution, which is denoted as the wave configuration E in this work. Moreover, they

did not give complete proofs for the existence and uniqueness of the solutions, especially

for the conjecture in [20, Remark 6, p. 7646]. Besides the papers we just mentioned,

considerable work has been devoted to the topic of the shallow water equations; see, e.g.,

[1, 2, 12, 14] and the references therein.

In this work we propose a uniform framework to solve the system (1.1) with the

following Riemann initial data

W(x, 0) =

{
WL, x < x0,

WR, x > x0,
(1.3)

where Wq with q = L or R are constant. There are three wave curves for the system

(1.1). The first and second wave curves are given by the physically relevant parts of

the rarefaction and shock curves. The third wave curve, denoted as the stationary wave

curve, is due to the variation of the bottom step. Since the governing system is nonstrictly

hyperbolic, the mutual positions of the stationary wave curve with respect to the rest of

the two elementary waves cannot be determined a priori. To address this difficulty, we

introduce the L–M and R–M curves in the state plane for the construction of solutions

to Riemann problems. The idea is motivated by Marchesin and Paes-Leme [21] as well

as our previous work for the exact Riemann solutions to Euler equations in ducts with

discontinuous cross–section in [9].

During this work we always assume without loss of generality that zL < zR. The

opposite case can be treated as the mirror–image problem by reflecting the Riemann

initial data in terms of x = x0 and setting the velocities in the opposite direction. We
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EXACT RIEMANN SOLUTIONS TO SHALLOW WATER EQUATIONS 409

take into account the stationary wave curves by deriving a velocity function. Owing

to this function, the L–M and R–M curves with zL < zR can be, respectively, classified

into five and two different cases by the subcritical or supercritical Froude number of the

Riemann initial data as well as the jump of the bottom step. This new classification is

very helpful for a systematic consideration of solutions. It is given for the L–M curves

at the beginning of Section 4.2 and for the R–M curves in Section 4.3. Note that each

of these curves leads to more than one wave configuration, depending on the Riemann

initial data. We obtain the 7 wave configurations, denoted as A, B, C, D, E, F , G,

that do not have a dry bed state and 6 that do have a dry bed state in the solution.

The dry bed states are like vacuum states in gas dynamics and therefore we index the

corresponding wave configurations with subscript letter v.

We find that the water can always spread across a lowered bottom step. But the water

can go across an elevated bottom step if and only if a critical step size zmax is larger than

the actual jump height of the bottom step. The critical step size zmax is determined by

the height and Froude number of the inflow state.

We carefully study the monotonicity and smoothness properties of the L–M and R–

M curves in each case. Note that the introduction of these curves and the use of the

velocity function make our approach to the solution of the Riemann problem different

from the previous work. We feel that this makes the solution procedure clearer and

simpler. Observe that a bifurcation occurs for certain cases. This bifurcation introduces

nonunique solutions and validates the conjecture in [20, Remark 6, p. 7646]. Specifically,

we solve the dry bed problem of the solution in this framework. Here the dry bed problem

refers two subcases. One is for the water propagating to a dry bed; see Toro [11]. The

other one is for the dry bed state emerging due to the motion of the flow.

The organization of the paper is as follows. We briefly review the fundamental concepts

and notions for the governing system in Section 2. In Section 3 we discuss the stationary

wave curves. Our main focus is in Section 4, which contains the definition of the L–M

and R–M curves and the complete analysis of their structures. All the possible wave

configurations are illustrated in this section. The algorithm for determining the exact

solutions is explained in Section 5. Finally we make some conclusions in Section 6.

2. The shallow water system. We now derive the quasilinear form of the system

(1.1). Set V = (z, h, u)
T ; then

Vt + A(V)Vx = 0, (2.1)

where the Jacobian matrix A(V) is in the form

A(V) =

⎛
⎝ 0 0 0

0 u h

g g u

⎞
⎠ .

The eigenvalues of A(V) are

λ0 = 0, λ1 = u − c, λ2 = u + c, (2.2)

where c =
√

gh is the sound speed. The eigenvalues are referred to as the characteristic

speeds. The system (1.1) is not strictly hyperbolic as a result of the fact that λ0 can
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410 EE HAN AND GERALD WARNECKE

coincide with any of the two other eigenvalues. The corresponding right eigenvectors are

R0 =

⎛
⎜⎝

c2−u2

c2

1

−u
h

⎞
⎟⎠ , R1 =

⎛
⎝ 0

1

− c
h

⎞
⎠ , R3 =

⎛
⎝ 0

1
c
h

⎞
⎠ . (2.3)

One can easily show that

R0 → Rk as λk → 0 for k = 1, 2. (2.4)

Consequently the system (1.1) is degenerate for the states at which the eigenvalues λ1

or λ2 coincide with λ0. Specifically, this state is the sonic state at which u = ±c.

We use the terminology k-waves, k = 0, 1, 2, to denote the waves associated to the

k–characteristic fields when the eigenvalues are distinct from each other. Here the 1–

and 2–waves are shocks (hydraulic jumps) or rarefactions. Traditionally the 0–wave is

named the stationary wave due to the jump of the bottom step. Note that a 0–speed

shock or a transonic rarefaction wave will coincide with the stationary wave. In such a

case these elementary waves will be involved in the stationary wave [15]. We name these

combined waves as the resonant waves. They will be studied in detail later; see also Han

et al. [9].

We define the shock and rarefaction curves. Let Uq = (hq, uq)
T be any state in the

state space. The shock speed σk and the velocity u can be expressed as follows:

σk(h;Uq) = uq ± h

√
g

2

(
1

h
+

1

hq

)
, (2.5)

u = uq ± (h − hq)

√
g

2

(
1

h
+

1

hq

)
, (2.6)

where h > hq and the subscript k = 1, 2 represents the number of the wave family. The

sign − is taken when k = 1 while the sign + is taken when k = 2. The detailed derivation

can be found in Francisco and Benkhaldoun [5]. The admissible shock curves Sk(Uq),

k = 1, 2 denote the states which are connected to the state Uq by an admissible 1–shock

or 2–shock respectively. Set

Sk(Uq) =

{
(h, u) | u = uq ± (h − hq)

√
g
2

(
1
h + 1

hq

)
with h > hq

}
, k = 1, 2. (2.7)

Generally the shock curve Sk(Uq) contains three components, namely,

S±
k (Uq) = { (h, u) | (h, u) ∈ Sk(Uq) and σk(h;Uq) ≷ 0} , (2.8)

S0
k(Uq) = { (h, u) | (h, u) ∈ Sk(Uq) and σk(h;Uq) = 0} .

We study the state set S0
k(Uq). Note that we have the shock speed

σk(h;Uq) = uq ± h

√
g

2

(
1

h
+

1

hq

)
= 0 with h > hq. (2.9)
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Therefore, introducing the Froude number Fq :=
uq

cq
=

uq√
ghq

, we obtain

(
h

hq

)2

+
h

hq
− 2F 2

q = 0. (2.10)

There are two solutions to (2.10) which are

h1 =
−1+

√
1+8F 2

q

2 hq, h2 =
−1−

√
1+8F 2

q

2 hq. (2.11)

Note that h1 > hq and h2 < 0 < hq, so h1 is the physically relevant solution to (2.9).

Hence the set S0
k(Uq) contains only one state. Hereafter we use Ûq = S0

k(Uq) to denote

it; then we have

ĥq =
−1+

√
1+8F 2

q

2 hq. (2.12)

Since ĥqûq = hquq, we get ûq =
hquq

ĥq
. Direct calculation yields

ûq =
1+

√
1+8F 2

q

4F 2
q

uq. (2.13)

For the rarefaction curves, similarly, we use Rk(Uq) to denote the states U which can

be connected to Uq by a k–rarefaction wave, i. e.

Rk(Uq) = {(h, u) | u = uq ± 2(c − cq) with h ≤ hq} , k = 1, 2. (2.14)

2.1. The 1–wave and 2–wave curves. Generally the k–wave curves Tk(Uq), k = 1, 2,

are defined as the sets of states which can be connected to the initial state Uq by admis-

sible waves. That is to say we have

T1(UL) = R1(UL) ∪ S1(UL), T2(UR) = R2(UR) ∪ S2(UR). (2.15)

Obviously T1(UL) and T2(UR) are the admissible wave curves associated to the charac-

teristic field with λ1 and λ2 in the state space respectively.

For simplicity we define the following function

f(h; hq) :=

⎧⎨
⎩

2(
√

gh − cq), if h ≤ hq,

(h − hq)

√
g
2

(
1
h + 1

hq

)
, if h > hq.

(2.16)

We will consider f(h; hq) as a function of h for given parameter hq. Therefore the k–wave

curve Tk(Uq), k = 1, 2 can be rewritten as

T1(Uq) = {U|u = uq − f(h; hq), h ≥ 0} ,

T2(Uq) = {U|u = uq + f(h; hq), h ≥ 0} .
(2.17)

Lemma 2.1. The function f(h; hq) is continuously differentiable, strictly increasing and

concave.

Proof. The function f(h; hq) is twice continuous due to lim
h→hq−

f(h; hq) =

lim
h→hq+

f(h; hq) = 0. The derivative of the function f(h;Qq) is

f ′(h; hq) :=

⎧⎨
⎩

√
g
h , if h ≤ hq,√
g
2

1
h+ 2

hq
+

hq

h2

2
√

1
h+ 1

hq

if h > hq.
(2.18)
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Therefore we have

f ′(h; hq) > 0 (2.19)

and lim
h→hq

f ′(h; hq) =
√

g
hq

. To see the convexity of the function, we need to consider the

second derivative of the function f(h; hq). Actually we have

f ′′(h; hq) :=

⎧⎪⎨
⎪⎩

− 1
2

√
gh− 3

2 , if h ≤ hq,

−
√
g

4
√
2

5
h3 +

3hq

h4(
1
h+ 1

hq

) 3
2
, if h > hq.

(2.20)

It follows that f ′′(h; hq) < 0. Moreover, we have lim
h→hq

f ′′(h; hq) = − 1
2

√
gh

− 3
2

q . This is

enough to confirm the lemma. �
Lemma 2.1 reveals that the 1–wave curve T1(UL) is a strictly decreasing concave

curve, while the 2–wave curve T2(UR) is a strictly increasing convex curve in the (u, h)

state plane. Therefore these two curves have at most one intersection point. To find

whether the intersection point exists, we need to consider the state with h = 0, which

corresponds to the dry bed of the water; see Toro [11]. For the 1–wave curve T1(UL) and

the 2–wave curve T2(UR) we take h = 0 in (2.17) and (2.16). We obtain two velocities

u0L = uL + 2cL (2.21)

and

u0R = uR − 2cR. (2.22)

These are the velocities of the water covering or uncovering a dry state h = 0. The two

curves T1(UL) and T2(UR) will interact if u0L ≥ u0R , i.e.

uR − uL ≤ 2 (cL + cR) . (2.23)

In this case the intersection point of T1(UL) and T2(UR) uniquely exists. Otherwise, if

u0L < u0R, there is no intersection point. The solution involves a dry bed intermediate

state.

Next we turn to study two specific dry bed problems. Both of them concern the water

receding from the jump of the dry bed. The first problem has the Riemann initial data

(h, u)(x, 0) =

{
(hL, uL), x < 0,

(0, 0), x > 0,
(2.24)

with the restriction that u0L < 0. In such a case the 2–wave of the solution is missing

while the 1–wave is a rarefaction wave on the left side. The corresponding solution is

given as

(h, u)(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

(hL, uL), x
t ≤ uL − cL,(

(uL+2cL− x
t )

2

9g ,
uL+2cL+2 x

t

3

)
, uL − cL < x

t < u0L,

(0, 0), x
t > u0L.

(2.25)

The other problem has the Riemann initial data

(h, u)(x, 0) =

{
(0, 0), x < 0,

(hR, uR), x > 0,
(2.26)
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with u0R > 0. Similarly, the 1–wave of the solution is missing and the 2–wave is a

rarefaction wave on the right side. The exact solution of this case is shown in the

following:

(h, u)(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

(hR, uR), x
t ≥ uR + cR,(

(uR−2cR− x
t )

2

9g ,
uR−2cR+2 x

t

3

)
, uR + cR > x

t ≥ u0R,

(0, 0), x
t < u0R.

(2.27)

The jump of the bottom step does not affect the solution in these two examples.

However for the Riemann problem (1.1), (2.24) or (2.26) but with u0L > 0 or u0R > 0

respectively, the jump of the bottom step induces an additional wave. The motion of the

flow becomes more complicated, not to mention the general Riemann problem of (1.1)

and (1.3) with hL > 0 and hR > 0. There the jump of the bottom step greatly affects

the motion of the flow. So, in the next section, we study the stationary wave due to the

jump of the bottom step.

3. The stationary wave curve. The stationary wave curve for the system (1.1) is

defined by the ODE system

∂F(U)

∂x
= −H(U)zx. (3.1)

Motivated by Alcrudo and Benkhaldoun [5] and references cited therein, we have the

following Lemma.

Lemma 3.1. For the smooth bottom topography the sonic state can only appear when

the bottom function reaches a maximum.

Proof. The ODE system (3.1) asserts the following equations

∂hu
∂x = 0,

u∂u
∂x + g ∂h+z

∂x = 0.
(3.2)

Therefore we have (
1 − u2

c2

)
h

u
ux = zx. (3.3)

The relation (3.3) shows that for smooth lowered bottom topography, i.e. zx < 0, the

velocity of the water decreases when u2 < c2 and vice versa. Similarly for smooth elevated

bottom topography, i.e. zx > 0, the velocity increases when u2 < c2 and vice versa. So

we can conclude that the quantity z as a function of x has a maximum at the sonic state

u2 = c2. �
In this work we regard the stationary wave as a transition layer located at x = 0 with

0 width. In this approach the discontinuous variation of the bottom step is viewed as

the limiting case of locally monotonic bottom slope going to infinity. This idea has been

used by Alcrudo and Benkhaldoun [5], LeFloch and Thanh [19,20], Toro [11] etc. for the

shallow water systems. Han et. al. [9] also adopted it to solve the Riemann problem for

duct flows.
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3.1. The stationary wave. In this section we use the subscript i to signify the inflow

variables and o to signify the outflow variables. Assume that the piecewise constant

bottom topography has the values zi and zo, while the upstream flow state is (hi, ui)

(which is known) and the downstream flow state is (h, u). Here zi will be zL if u > 0,

while it is zR if u < 0. With the analogous consideration zo will be determined.

Let us assume that hi, h > 0. One can easily derive the following relations from the

system (3.1)

hu = hiui, (3.4)

u2

2
+ g(h + zo) =

u2
i

2
+ g(hi + zi). (3.5)

The formula (3.4) implies the following conditions:

(1) ui and u have the same sign,

(2) ui = 0 ⇐⇒ u = 0.

Our aim is to calculate the downstream state (h, u). Specifically if ui = 0 and hi+zi−zo >

0, we have u = 0 and h = hi + zi − zo. Otherwise if ui = 0 and hi + zi − zo < 0, we have

u = 0 and h = 0. In the following analysis we always assume that ui 
= 0. For simplicity

we can use the notation U = J(zo;Ui, zi) to represent the explicit solution U := (h, u)

implicitly given by (3.4) and (3.5). Our aim is to calculate the downstream state (h, u)

of the flow for the known upstream flow (hi, ui). A velocity function is derived from (3.4)

and (3.5) to be

Ψ(u;Ui, zi, zo) :=
u2

2
+

c2iui

u
− u2

i

2
− ghi + g(zo − zi). (3.6)

The behavior of the velocity function is analyzed in the following lemma.

Lemma 3.2. Consider

u∗ =
(
uic

2
i

) 1
3 . (3.7)

Then the velocity function Ψ(u;Ui, zi, zo) has the following properties:

(1) Ψ(u;Ui, zi, zo) decreases if u < u∗;

(2) Ψ(u;Ui, zi, zo) increases if u > u∗;

(3) Ψ(u;Ui, zi, zo) has the minimum value at u = u∗. Moreover, we have (u∗)2 =

(c∗)2.

Proof. The velocity function Ψ(u;Ui, zo) is smooth since if ui > 0 the existence region

for u is u > 0,. Otherwise if ui < 0 the existence region for u is u < 0. Therefore the

derivative of Ψ(u;Ui, zi, zo) is

∂Ψ(u;Ui, zi, zo)

∂u
= u − uic

2
i

u2
. (3.8)

Consequently we get

∂Ψ(u;Ui, zi, zo)

∂u

⎧⎨
⎩

< 0, if u < u∗,

= 0, if u = u∗,

> 0, if u > u∗.

(3.9)

It follows that the velocity function Ψ(u;Ui, zi, zo) is decreasing when u < u∗, increasing

when u > u∗ and has the minimum value at u = u∗.
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Since

c2 = gh =
ghiui

u
, (3.10)

we get the formula

u
∂Ψ

∂u
(u;Ui, zi, zo) = u2 − gu−h−

u
= u2 − c2. (3.11)

From ∂Ψ(u∗;Ui,zi,zo)
∂u = 0 we obtain (u∗)2 = (c∗)2. �

Remark 3.3. Lemma 3.2 shows that the equation Ψ(u;Ui, zi, zo) = 0 may have two,

one or no solutions. Further discussions are as follows.

(1) If the minimum value Ψ(u∗;Ui, zi, zo) < 0, the equation Ψ(u;Ui, zi, zo) = 0

has two roots. Assume that the root closer to 0 is ul and the other one is ur,

with cl and cr being the corresponding sound speeds. Then according to (3.11),

u2
l − c2l < 0 and u2

r − c2r > 0. It is well known that the transition from subcritical

to supercritical channel flow can only occur at points of maximum of the bottom

function [5]. So physically we can take the one which satisfies

sign(u2
q − c2q) = sign(u2

i − c2i ) (3.12)

where q = l or r. However, one special case is that if the inflow state Ui is a

sonic state, i.e. u2
i = c2i , then (3.12) no longer holds. There are two possible

solutions ul and ur to the corresponding velocity function (3.6); which one is to

be chosen depends on the requirement of the specific problem. The details will

be given later.

(2) If Ψ(u∗;Ui, zi, zo) = 0, the equation Ψ(u;Ui, zi, zo) = 0 has exactly one solution

which is the sonic state, i.e. u = u∗.

(3) If Ψ(u∗;Ui, zi, zo) > 0, the equation Ψ(u;Ui, zi, zo) = 0 has no solution.

The procedure for calculating the outflow state U = J(zo;Ui, zi) is summarized in

Algorithm 1. However it is necessary to analyze the existence region for U = J(zo;Ui, zi)

to determine it a priori.

3.2. Existence of the stationary wave. Remark 3.3 reveals that the velocity function

may have no solutions. To be more precise, we now consider the existence conditions for

the outflow state (h, u) of the stationary wave introduced above. According to Lemma

3.2, it is equivalent to evaluate the minimum value of the velocity function Ψ(u;Ui, zi, zo)

being not larger than 0, i.e.

Ψ(u∗;Ui, zi, zo) =
3

2

(
uic

2
i

) 2
3 − c2i −

u2
i

2
+ g(zo − zi) ≤ 0. (3.13)

We introduce the Froude number Fi := ui

ci
; then we have

hi

(
3

2
(Fi)

2
3 − F 2

i

2
− 1

)
+ zo − zi ≤ 0. (3.14)

Therefore we obtain

zo − zi ≤ hi

(
F 2
i

2
− 3

2
F

2
3

i + 1

)
. (3.15)

We know that
F 2
i

2
− 3

2
F

2
3

i + 1 ≥ 0. (3.16)
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Algorithm 1 Algorithm for solving U = J(zo;Ui, zi)

Require: flag, zi, zo and (hi, ui)

1: if zi = zo then

2: return (hi, ui)

3: else if ui = 0 then

4: if hi + zi < zo then

5: return (0, 0)

6: else

7: return (hi + zi − zo, 0)

8: end if

9: else

10: Ψmin ← Ψ(u∗;Ui, zi, zo)

11: if Ψmin < 0 then

12: Solve Ψ(u;Ui, zi, zo) = 0 by the iteration method to obtain ul and ur

13: c2l ← g hiui

ul
, c2r ← g hiui

ur

14: if sign(u2
l − c2l ) = sign(v2i − c2i ) ∨

(
flag = 0 ∧ v2i = c2i

)
then

15: return (hiui

ul
, ul)

16: else if sign(u2
l − c2l ) = sign(v2i − c2i ) ∨

(
flag = 1 ∧ v2i = c2i

)
then

17: return (hiui

ur
, ur)

18: end if

19: else if Ψmin = 0 then

20: return (hiui

u∗ , u∗)

21: else if Ψmin > 0 then

22: print No Solution.

23: end if

24: end if

It reaches 0 if and only if Fi = 1. Hence, the above computation motivates the following

theorem.

Theorem 3.4. The existence of the solution to the velocity function.

(1) If zo < zi, Ψ(u;Ui, zi, zo) always has solutions.

(2) Otherwise if zo > zi, Ψ(u;Ui, zi, zo) has a solution if and only if

zo − zi ≤ hi

(
F 2
i

2
− 3

2
F

2
3
i + 1

)
. (3.17)

Theorem 3.4 indicates that on one hand the water can always spread across the lowered

jump of the bottom step; on the other hand, the water can overflow the elevated jump

of the bottom step if and only if the bottom step is not too high. Specifically it should

be less than a critical value which is determined by the height and the Froude number

of the inflow.

Remark 3.5. For the fixed inflow state Ui and two outflow bottom steps z1o < z2o ,

if J(z2o ;Ui, zi) exists, then J(z1o ;Ui, zi) also exists. Since we regard the discontinuous
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Fig. 2. A
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bottom step as the limiting case of monotonic bottom step, it make sense to assume that

the solution inside this transition layer is also continuous if there is no resonant wave.

4. L–M and R–M wave curves. In this work we always assume without loss of

generality that

zL < zR. (4.1)

According to Lemma 3.1, the sonic state can only be located on the side z = zR of the

stationary wave. The opposite case zL > zR can be treated as the mirror–image problem

by reversing the Riemann initial data and setting the velocity in the opposite direction.

Here we study the general Riemann solution which contains a stationary wave. The

sufficient condition for this requirement is that u0L > 0 or u0R < 0, where u0L and

u0R were defined in (2.21) and (2.22). Otherwise if u0L < 0 and u0R > 0 the dry bed

appears around the initial discontinuity point x = x0. Specifically the solution has the

wave configuration Av; see Figure 1. Hereafter the symbols k–r, k = 1, 2 denote the

k–rarefactions. An example of this case can be found in Figure 5. We can see that

the jump of the bottom does not affect the motion of the flow. Therefore there is no

stationary wave.

The general exact Riemann solution for the system (1.1) with (1.3) with u0L > 0 or

u0R < 0 consists of a stationary wave which is located at x = 0 as well as a sequence of

1– and 2–shocks or rarefactions. Alcrudo and Benkhaldoun in [5] presented more than

20 different solution patterns. Indeed, the solution patterns without the dry bed under

the condition (4.1) can be classified into 10 different wave configurations. We show them

in Figures 2, 6, 8, 10, 12, 9, 14, 16, 17, and 18. In all of the wave configurations, the

1– and 2–wave represent a shock or a rarefaction. The dashed right arrow indicates that
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Fig. 5. Left: The water free surface h + z at t = 0.05; Right:
The velocity. The Riemann initial data are (zL, hL, uL) =
(0.0, 0.5674,−6.0) when x < 0.5 and (zR, hR, uR) = (0.8, 0.558, 6.0)
when x > 0.

the velocity across the bottom jump is positive, while the dashed left arrow indicates

that the velocity across the bottom jump is negative. Note that the wave configuration

E has been omitted by LeFloch and Thanh in [20].

The wave configurations AT , CT and DT , in some sense, can be viewed as the image–

reflection of the wave configurations A, C and D in terms of x = 0 respectively. Moreover,

the wave configurations B and G contain a resonant wave due to the coincidence of the

stationary wave with a 1– and 2–rarefaction wave respectively. The wave configurations

C and CT result from the coincidence of a stationary wave with a 0–speed 1– and 2–

shock wave respectively, while the wave configurations E and F are the combination

of a transonic rarefaction, a stationary wave and a 0–speed shock. We point out that

analogous resonant waves to these mentioned here for other systems can be found in

Goatin and LeFloch [15], Rochette and Clain [17], Han et al. [9] etc.

The solution patterns with a dry bed consist of the wave configurations Av, H1 and

H2; see Figures 1, 3, and 4 respectively. Also the wave configuration Bv, see Figure 7,

belongs to this category. Note that the wave configuration Bv originated from the wave

configuration B. But Bv contains a dry bed intermediate state (0, 0), and the 2–wave is

a rarefaction wave. Here we should keep in mind that a 2–rarefaction wave will totally

disappear if hR = 0. This is analogous to the wave configurations Dv and Ev; see Figures

11 and 13, which comes from the wave configurations D and E respectively. The wave

configuration Gv, see Figure 15, originated from the wave configuration G. Be advised

that Gv contains a dry bed state (0, 0) and a 1–rarefaction if hL > 0, or no 1–wave if

hL = 0. The situation for the wave configuration DT
v , see Figure 19, is similar.

For one given set of initial data we cannot determine the wave configuration of the

solution from the initial data in advance due to many possibilities of the mutual position

between the stationary wave and shocks or rarefactions. This is the nature of a nonstrictly

hyperbolic system. Analogous to the Euler equations in a duct, see Han et al. [9], we

again introduce the L–M and R–M curves to solve this problem. We merge the stationary

wave curve into the 1–wave curve T1(UL) or the 2–wave curve T2(UR). Here we also

name them L–M and R–M curves. These two curves can be regarded as extensions of
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the T1(UL) and T2(UR) curves respectively. They will serve as building blocks for the

calculation of the Riemann solutions to the shallow water equation in a uniform way.
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There is precisely one stationary wave in a full wave curve from UL to UR located

either on the L–M curve or the R–M curve. Due to the fact that the velocity does not

change sign across the stationary wave, the location of the stationary wave is determined

by this rule: If u > 0 the stationary wave is on the L–M curve; if u < 0 the stationary

wave is on the R–M curve.

Hence if u0L > 0 the L–M curve always contains the segment

P l
1(UL) = {U|U ∈ T1(UL) with u ≤ 0} ; (4.2)

otherwise if u0L ≤ 0 the L–M will be

P l
1(UL) = {U|U ∈ T1(UL) with u ≤ u0L} . (4.3)

Similarly if u0R < 0 the R–M curve always contains the segment

P r
1 (UR) = {U|U ∈ T2(UR) with u ≥ 0} ; (4.4)
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otherwise if u0R ≥ 0 the R–M curve will be

P r
1 (UR) = {U|U ∈ T2(UR) with u ≥ u0R} . (4.5)

It is necessary to construct the remaining segments of L–M curves with u0L > 0 and

u > 0, as well as for the R–M curves with u0R < 0 and u < 0. Since zL < zR, Theorem 3.4

implies that the stationary wave always exists if the fluid flows from zR to zL. However

the stationary wave equations (3.4) and (3.5) may not have solutions if the fluid flows

from zL to zR. Before constructing the L–M and R–M curves, we need to consider the

preliminaries for L–M and R–M curves first.

4.1. Preliminaries for L–M curves with u > 0. We now investigate the existence of the

state J(zR;U−, zL), where U− ∈ T1(UL) and is connected to UL by a negative-speed

1–wave. Theorem 3.4 suggests the study of the following function

ω(h−) := h−

(
1

2
F (h−)2 − 3

2
F (h−)

2
3 + 1

)
− (zR − zL), (4.6)

where the Froude number F (h−) := U(h−)√
gh−

and U(h−) = uL − f(h−; hL). Theorem 3.4

implies that if ω(h−) ≥ 0 the state J(zR;U−, zL) exists and vice versa. So we need to

study the behavior of ω(h−).

Lemma 4.1. The function ω(h−) is strictly increasing if 0 < F (h−) < 1.

Proof. The function ω(h−) is continuous and differentiable. The derivative of ω(h−)

is

ω′(h−) =
1

2
F (h−)2 − 3

2
F (h−)

2
3 + 1 + h−F (h−)−

1
3

[
F (h−)

4
3 − 1

]
F ′(h−), (4.7)

where by (2.19) and U(h−) > 0, we have

F ′(h−) = −f ′(h−; hL)√
gh−

−
U(h−)

√
g

2
h
− 3

2
− < 0.

As we have mentioned in (3.16), 1
2F (h−)2 − 3

2F (h−)
2
3 + 1 ≥ 0. It takes the value 0 if

and only if F (h−) = 1. So we obtain that ω′(h−) > 0 if 0 < F (h−) < 1 and ω′(h−) = 0

if F (h−) = 1. �
Denote the minimum value of h− as hmin

L and the maximum as hmax
L . The curve

T1(UL) is strictly decreasing in the (u, h) state space. Also, U− ∈ T1(UL) is connected

to UL by a negative-speed 1–wave. Hence if uL ≤ cL, hmin
L is the height corresponding

to the sonic state on the curve T1(UL); while if uL > cL, hmin
L is ĥL which is defined in

(2.12). That is to say we have

hmin
L =

{
(uL+2cL)2

9g , if uL ≤ cL,

ĥL, if uL > cL.
(4.8)

Now we pay attention to hmax
L . It should satisfy

0 = uL − f(hmax
− ;UL). (4.9)

If uL ≤ 0, we have hmax
L < hL which is the solution to the equation

uL − 2(
√

gh − cL) = 0.
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This leads to hmax
L = (uL+2cL)2

4g . Otherwise if uL > 0, we have hmax
L > hL. Hence from

(2.16) it is the solution of the equation

uL − (h − hL)

√
g

2

(
1

h
+

1

hL

)
= 0. (4.10)

After a short calculation we have(
h

hL

)3

−
(

h

hL

)2

− (1 + 2F 2
L)

h

hL
+ 1 = 0. (4.11)

Setting x = h
hL

> 1, (4.11) becomes

f(x) = x3 − x2 − (1 + 2F 2
L)x + 1. (4.12)

Direct calculation yields the following facts. The function f(x) defined in (4.12) reaches

the maximum at xl := 1
3−

2
3

√
1 + 3

2F 2
L < 0 and the minimum at xr := 1

3 + 2
3

√
1 + 3

2F 2
L >

1. When x < xl, f(x) increases from −∞ to the maximum value at x = xl. When

x ∈]xl, xr[, it decreases from the maximum value to the minimum value at x = xr.

When x > xr, it increases from the minimum value to ∞. Furthermore, be advised that

xl < 1 < xr and f(1) = −2F 2
L < 0, so f(xr) < f(1) < 0. Thus there is exactly one real

solution to the cubic equation f(x) = 0 when x > xr > 1. We denote this solution as xu0
l

which can be directly calculated by the method for the exact solution to cubic equations;

see Nickalls [8]. Finally we have

hmax
L =

{
(uL+2cL)2

4g , if uL ≤ 0,

hLxu0
l
, if uL > 0.

(4.13)

Thus the reasonable region for ω(h−) is ]hmin
L , hmax

L [. Moreover, we have the following

lemma.

Lemma 4.2. Set

zmax := zL + hmax
L . (4.14)

The stationary state U = J(zR;U−, zL) with 0 < u− ≤ c− cannot exist if zmax < zR.

Proof. Note that ω(hmax
L ) = hmax

L − (zR − zL) = zmax − zR. So if zmax < zR,

ω(hmax
L ) < 0. The function ω(h−) is increasing in terms of h− ∈]hmin

L , hmax
L [. Hence

ω(hmin
L ) < ω(h−) ≤ ω(hmax

L ) < 0 if zmax < zR. Theorem 3.4 implies that if ω(h−) < 0,

the stationary wave U = J(zR;U−, zL) cannot exist. �

Lemma 4.3. Suppose that zR < zmax and uL < cL. There exists a state Ũc ∈ T1(UL)

which satisfies Uc = J(zR; Ũc, zL).

Proof. Due to zR < zmax, we have ω(hmax
L ) = zmax − zL > 0 and hmin

L = (uL+2cL)2

9g .

A short calculation yields that ω(hmin
L ) = zL−zR < 0. The function ω(h−) is continuous

and increasing. By the intermediate value theorem there is a unique solution to ω(h−) =

0. Denote the solution to ω(h−) = 0 as h̃c. Then the corresponding velocity ũc can be

calculated by

ũc = uL − f(h̃c;UL). (4.15)
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The velocity function of J(zR; Ũc, zL) is

Ψ(u; Ũc, zL, zR) :=
u2

2
+

c̃2c ũc

u
− ũ2

c

2
− gh̃c + g(zR − zL).

The minimum of this velocity function is

Ψ(u∗; Ũc, zL, zR) = gω(h̃c) = 0.

Hence Remark 3.3 implies that the outflow state of stationary wave is a sonic state, i.e.

Uc = J(zR; Ũc, zL). �
Remark 4.4. Lemma 4.3 is totally consistent with Lemma 3.1.

Note that Lemma 4.2 states that in this case the flow coming from the left cannot

spill over the obstacle caused by the jump in the bed height at x = 0, whereas in the

case of Lemma 4.3, overspill occurs if the velocity is large enough, leading to ω(h−) > 0.

In the case when zR < zmax and uL > cL, we have hmin
L = ĥL. We define two critical

bottom steps

zS = zL + ĥL

(
1

2
F̂ 2
L − 3

2
F̂

2
3

L + 1

)
, (4.16)

and

zT = zL + hL

(
1

2
F 2
L − 3

2
F

2
3

L + 1

)
, (4.17)

where ĥL and ûL were defined in (2.12) and (2.13) respectively. The Froude number

F̂L =
ûL

ĉL
. (4.18)

Since ĉL =

√
gĥL, taking (2.12) and (2.13) into (4.18), we obtain

F̂L =
1

8
F−2
L

[
1 +

√
1 + 8F 2

L

] 3
2

. (4.19)

We invoke the existence condition for resonant waves due to the coincidence of a

0–speed shock and the stationary wave.

Lemma 4.5. Suppose zL < zR < zmax and uL > cL. We have the following facts.

(1) The state U = J(zR; S0
1(UL), zL) exists if zR ≤ zS ; otherwise it fails to exist.

(2) The state U = J(zR;UL, zL) exists if zR ≤ zT ; otherwise it fails to exist.

(3) One always has zT > zS .

Proof. From Theorem 3.4 the existence condition for the state U = J(zR; S0
1(UL), zL)

is that

zR < zL + ĥL

(
1

2

(
F̂L

)2

− 3

2

(
F̂L

) 2
3

+ 1

)
= zS . (4.20)

Analogously we can prove the second statement. Now we investigate the relationship

between zS and zT . From (2.12) and (4.19), we have

zS = zL + hL

[
1

32F 2
L

(
1 +

√
1 + 8F 2

L

)2

+
−1+

√
1+8F 2

L

2 − 3
2F

2
3

L

]
. (4.21)
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By (4.16) and (4.21), we have

zT − zS = hL

[
1

2
F 2
L − 3

2
F

2
3

L + 1 − 1

32F 2
L

(
1 +

√
1 + 8F 2

L

)2

− −1 +
√

1 + 8F 2
L

2
+

3

2
F

2
3

L

]
,

=
hL

F 2
L

[
1

2
F 4
L + F 2

L − 1

16

(
1 + 4F 2

L +
√

1 + 8F 2
L

)
− −1 +

√
1 + 8F 2

L

2
F 2
L

]
,

=
hL

F 2
L

⎡
⎣1

2
F 4
L +

5

4
F 2
L − 1

16
−

(
1 + 8F 2

L

) 3
2

16

⎤
⎦ ,

=
hL

128F 2
L

[
−3 +

√
1 + 8F 2

L

]3 [
1 +

√
1 + 8F 2

L

]
.

> 0

when F 2
L > 1. �

Assume that zL < zR and uL > cL. We now consider resonant waves due to the

coincidence of the 0–speed 1–shock with stationary waves. The 0–speed 1–shock splits

the stationary wave into a supersonic part and a subsonic part. The corresponding wave

curve is defined as follows.{
U|U = J(zR;U+, z);U+ = S0

1(U−);U− = J(z;UL, zL)
}

, (4.22)

where z ∈]zL, zR[. We denote the Froude numbers for the states U± in (4.22) as F± =
u±√
gh±

. By using (3.4) we have

h+u+ = h−u− = hLuL. (4.23)

Therefore we obtain the functions F± in terms of h± respectively:

F (h±) := F± =
u2
Lh2

L
√

gh
3
2
±

. (4.24)

By (4.23), the derivatives of the functions F (h±) are

dF (h±)

dh±
= −3

2

F±
h±

. (4.25)

Similar to (4.19), we obtain the further relations for F− and F+

F+ =
1

8
F−2
−

(
1 +

√
1 + 8F 2

−

) 3
2

. (4.26)

The resonant wave curve in (4.22) is viewed as a function of z. Actually the variable h−
is more convenient to analyze the existence of the wave curve in (4.22). Specifically, the

following lemma holds.

Lemma 4.6. For the supersonic state U− = J(z;UL, zL) in (4.22) with zL ≤ z ≤ zR, we

have

hL ≤ h− ≤ h̄L, (4.27)

where ŪL = J(zR;UL, zL).
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Proof. Considering (3.4) and (3.5) for U− = J(z;UL, zL), we study the following

equation:
h2
Lu2

L

2gh2
−

+ h− + z − u2
L

2g
− hL − zL = 0. (4.28)

Taking z as a function of h−, we obtain

z(h−) := −h2
Lu2

L

2gh2
−

− h− +
u2
L

2g
+ hL + zL. (4.29)

Using (4.23), we have
dz(h−)

dh−
= F 2

− − 1 > 0. (4.30)

Note that h− = hL when z = zL, while h− = h̄L when z = zR. Thus (4.30) implies that

hL ≤ h− ≤ h̄L. �
To prove the existence of the wave curve defined in (4.22), we have to study the exis-

tence of the supersonic state U− = J(z;UL, zL) and the subsonic state U = J(zR;U+, z)

with zL ≤ z ≤ zR. We present the details in the following lemmas.

Lemma 4.7. The region of z for the existence of the subsonic state U = J(zR;U+, z)

defined in (4.22) is as follows:

(1) z ∈]zL, zR[ if zS ≥ zR;

(2) z ∈]zc, zR[ if zS < zR where zc is defined in (4.43).

Proof. Theorem 3.4 implies that U = J(zR;U+, z) exists if

zR − z ≤ h+

(
1

2
F 2
+ − 3

2
F

2
3
+ + 1

)
. (4.31)

In addition, by (2.12) and (2.13), we have

h+ =
h−
2

(
−1 +

√
1 + 8F 2

−

)
. (4.32)

That is to say, h+ can be treated as a function of h−. This suggests to consider the

function

Θ(h−) := h+

(
1

2
F (h+)2 − 3

2
F (h+)

2
3 + 1

)
+ z − zR. (4.33)

For simplicity we introduce the function

A(h+) := h+

(
1

2
F (h+)2 − 3

2
F (h+)

2
3 + 1

)
.

Therefore Θ(h−) in (4.33) can be rewritten as

Θ(h−) = A(h+(h−)) + z(h−) − zR. (4.34)

By the chain rule we have

Θ′(h−) =
dA(h+)

dh+

dh+

dh−
+

dz(h−)

dh−
. (4.35)

Using (4.25) we obtain
dh+

dh−
= −1

2
+

1 − 4F 2
−

2
√

1 + 8F 2
−

. (4.36)
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Besides, by (4.25) and (4.26), we have

dA(h+)

dh+
=

1

2
F (h+)2 − 3

2
F (h+)

2
3 + 1 + h+

(
F (h+) − F (h+)−

1
3

) dF (h+)

dh+

=
1

2
F (h+)2 − 3

2
F (h+)

2
3 + 1 − 3

2
F (h+)

(
F (h+) − F (h+)−

1
3

)
= 1 − F (h+)

= 1 − 1

8
F−2
−

(
1 +

√
1 + 8F 2

−

) 3
2

. (4.37)

By (4.30), (4.36) as well as (4.37), we have

Θ′(h−) =

(
1 − 1

8
F−2
−

(
1 +

√
1 + 8F 2

−

) 3
2

)⎛
⎝−1

2
+

1 − 4F 2
−

2
√

1 + 8F 2
−

⎞
⎠ + F 2

− − 1

=

(
3 +

√
1 + 8F 2

−

)[(
− 5

2 +
√

1 + 8F 2
−

)2

+ 2
(
1 +

√
1 + 8F 2

−

) 1
2

− 17
4

]

8
√

1 + 8F 2
−

.

> 0, (4.38)

when F 2
− > 1. By Lemma 4.27, we have hL ≤ h− ≤ h̄L. Thus, due to (4.38), we have

Θ(hL) ≤ Θ(h−) ≤ Θ(h̄L). (4.39)

From (4.31), the state J(zR;U+, z) exists if Θ(h−) ≥ 0. Remember that we denote
ˆ̄UL = S0

k(ŪL). We have

Θ(h̄L) = ˆ̄hL

(
1

2
ˆ̄F 2
L − 3

2
ˆ̄F

2
3

L + 1

)
≥ 0. (4.40)

From (4.16) as well as (4.33), we obtain that

Θ(hL) = zS − zR. (4.41)

So, on one hand, if zS ≥ zR, we have 0 ≤ Θ(hL) ≤ Θ(h−) ≤ Θ(h̄L). Thus the

state J(zR;U+, z) exists for any zL ≤ z ≤ zR. On the other hand, if zS < zR, we have

Θ(hL) < 0 < Θ(h̄L). From the intermediate value theorem there is a unique solution,

denoted as h̃cs , to the equation Θ(h−) = 0 where h− ∈]hL, h̄L[. The corresponding

velocity can be calculated from

ũcs =
hLuL

h̃cs

, (4.42)

and the related bottom step denoted as zc can be deduced from equation (4.28), i.e.

zc = −h2
Lu2

L

2gh̃2
cs

+ h̃cs −
u2
L

2g
− hL − zL. (4.43)

Hence Θ(h−) ≥ 0 if zc ≤ z ≤ zR. �

Lemma 4.8. Assume that uL > cL for zT , given by (4.17); we have zT < zc if zT < zR.
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Proof. Denote U∗
c,l = J(zR;U+, zT ). Taking z = zT in (4.28), we obtain that

α(h−) :=
h2
Lu2

L

2h2
−

+ gh− − 3

2

(
uLc2L

) 2
3 = 0. (4.44)

The function α(h−) is continuous and differentiable. The derivative of this function is

α′(h−) = −h2
Lu2

L

h3
−

+ g. (4.45)

Setting h∗ = hLF
2
3

L , we have α′(h−) < 0 if h− < h∗, while α′(h−) > 0 if h− > h∗. It has

the minimum value at h− = h∗ and α(h∗) = 0. Therefore there is a unique solution to

α(h−) = 0, i.e. h∗
c,l = h∗ = hLF

2
3

L . Using (4.23) we obtain that

u∗
c,l = uLF

− 2
3

L = cLF
1
3

L =
√

gh∗
c,l = c∗c,l.

Thus the state U∗
c,l is the sonic state. Hence we have h+ = h∗

c,l and F+ = 1 in (4.32)

and (4.24) respectively. From (4.6) we have Θ(h∗
c,l) = zT − zR < 0 if zT < zR. Since

Θ(h̃cs) = 0, we have by (4.38) h∗
c,l < h̃cs . Consequently we have zT < zc due to

(4.29). �
Based on Lemmas 4.6, 4.7, and 4.8, we now study the existence region for the wave

curve defined in (4.22).

Lemma 4.9. Assume that zL < zR and uL > cL; then we have

(1) if zR ≤ zS < zT , the curve in (4.22) exists.

(2) if zS < zR ≤ zT , the curve in (4.22) exists when z ∈]zc, zR[.

(3) if zS < zT < zR, the curve in (4.22) fails to exist.

Proof. The wave curve defined in (4.22) exists if the two states U− = J(z;UL, zL)

and U = J(zR;U+, z) exist. Lemma 4.5 implies that the state U− = J(z;UL, zL) exists

if z ≤ zT .

Thus in one case when zR < zT , the state U− defined in (4.22) with z ∈]zL, zR[ always

exists. Lemma 4.7 conveys that on one hand if zS ≥ zR the state U = J(zR;U+, z) exists

when z ∈]zL, zR[. Thus the first statement is true due to zS < zT by Lemma 4.5. On

the other hand, if zS < zR, the state U = J(zR;U+, z) exists when z ∈]zc, zR[. This is

the second statement.

In the other case when zR > zT , the state U− exists if z ∈]zL, zT [. By Lemmas 4.8

and 4.7 we have ]zL, zT [
⋂

]zc, zR[= ∅. This is sufficient for the third statement. �
Remark 4.10. Suppose that we have zL < zR, uL > cL and zS < zR < zT . Lemma

4.9 reveals that there exists an h̃cs such that Θ(h̃cs) = 0. Moreover, note that Θ(h̃cs)

is the minimum value of the velocity function to J(zR; Ûcs , zc); i.e. the outflow state of

J(zR; Ûcs , zc) is the sonic state. We denote it as Uc3 , i.e. Uc3 = J(zR; Ûcs , zc).

Remark 4.11. Suppose zS < zR < zT and uL > cL, i.e. hmin
L = ĥL. Note that

ω(ĥL) = zS − zR < 0. (4.46)

Analogously to Lemma 4.3, there is a unique solution to ω(h−) = 0. Here we denote this

as h̃L
c . The corresponding velocity ũL

c can be calculated from (4.15) by setting h̃c = h̃L
c .
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Also we have Uc2 = J(zR; Ũc, zL), where Uc2 is the sonic state. The subscript 2 is used

to distinguish the sonic state Uc2 from the sonic state Uc3 in Remark 4.10.

4.1.1. Monotonicity. In this section we consider the monotonicity of two types of

curves as the preliminary step for the study of the L–M and R–M curves.

We define

P l(UR) = {U|U = J(zR;U−, zL) and U− ∈ T1(UL) } (4.47)

where hmin
L < h− < hmax

L and

P r(UR) = {U|U = J(zL;U−, zR) and U− ∈ T2(UR) } (4.48)

where 0 < u− + c− < c−. Note that P l(UL) and P r(UR) are the composites of the 1–

or 2–wave curve with a stationary wave. Before studying the behavior of P l(UL) and

P r(UR), we consider the following lemma first.

Lemma 4.12. For any state U− ∈ T1(UL) connected to UL by a negative speed 1–wave,

we have

u− − h−f ′(h−; hL) < 0, and u−f ′(h−; hL) − g < 0. (4.49)

Proof. We have u− − c− < 0 since the states U− and UL are connected by a negative

speed 1–wave. From (2.18) we have

u− − h−f ′(h−; hL) =

⎧⎪⎨
⎪⎩

u− − c−, if h− ≤ hL,

u− − h−
√

g
2

1
h−

+ 2
hL

+
hL
h2
−

2
√

1
h−

+ 1
hL

, if h− > hL.
(4.50)

If h− ≤ hL, obviously we have u− − h−f ′(h−; hL) < 0. Otherwise if h− > hL, we have

√
g

2

1
h−

+ 2
hL

+ hL

h2
−

2
√

1
h−

+ 1
hL

=

√
g

2
√

2

⎛
⎝
√

1

h−
+

1

hL
+

1
hL

+ hL

h2
−√

1
h−

+ 1
hL

⎞
⎠

≥
√

g

2

√
1

hL
+

hL

h2
−

>

√
g

h−
. (4.51)

So using (4.51) in (4.50), we obtain

u− − h−f ′(h−; hL) < u− − c−. (4.52)

Hence we have u− − h−f ′(h−; hL) < 0 due to u− − c− < 0.

Now we turn to u−f ′(h−; hL) − g. Note that

u−f ′(h−; hL) − g =

⎧⎪⎪⎨
⎪⎪⎩

√
g
h−

(u− − c−) < 0, if h− ≤ hL,

u−
√

g
2

1
h−

+ 2
hL

+
hL
h2
−

2
√

1
h−

+ 1
hL

− g, if h− > hL.
(4.53)

So it is only necessary to consider the case that h− > hL. To ensure that the 1–wave has

a negative speed, we have h− > hmin
− where

hmin
− =

{
hL, if uL ≤ cL,

ĥL, if uL > cL,
(4.54)
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where ĥL was defined in (2.12). Besides, by (2.20), we have

∂u−f ′
L(h−; hL)

∂h−
= − (f ′

L(h−; hL))
2

+ u−f ′′
L(h−; hL) < 0.

Therefore, when h− > hL, we have

u−f ′
L(h−; hL) < umin

− f ′
L(hmin

− ;UL), (4.55)

where umin
− = uL − f(hmin

− ;UL). Specifically, by (4.54), we have

u−f ′(h−; hL) − g <

⎧⎪⎨
⎪⎩

uL

√
g
hL

− g if uL ≤ cL,

ûL

√
g
2

1

ĥL
+ 2

hL
+

hL
ĥ2
L

2
√

1

ĥL
+ 1

hL

− g, if uL > cL.
(4.56)

Note that when uL ≤ cL, u−f ′(h−; hL) − g <
√

g
hL

(uL − cL) ≤ 0. Now we consider the

case when uL > cL. By ûL = hLuL

ĥL
, we have

ûL

√
g

2

1
ĥL

+ 2
hL

+ hL

ĥ2
L

2
√

1
ĥL

+ 1
hL

=
hLuL

ĥL

√
g

2

1
ĥL

+ 2
hL

+ hL

ĥ2
L

2
√

1
ĥL

+ 1
hL

=
g

2
√

2
FL

hL

ĥL

(
hL

ĥL

)2

+ hL

ĥL
+ 2√

hL

ĥL
+ 1

.

Moreover, from (2.12), we obtain that

hL

ĥL

=
1 +

√
1 + 8F 2

L

4F 2
L

.

Set x = hL

ĥL
. Then FL =

√
x+1√
2x

. So we have

g

2
√

2
FL

hL

ĥL

(
hL

ĥL

)2

+ hL

ĥL
+ 2√

hL

ĥL
+ 1

= g
x2 + x + 2

4
< g by 0 < x < 1.

Hence by (4.56), we obtain that u−f ′(h−; hL) − g < 0 when uL > cL. This completes

the proof of the lemma. �

Theorem 4.13. The curve P l(UL) defined in (4.47) is strictly decreasing in the (u, h)

state plane, while P r(UR) defined in (4.48) is strictly increasing in the (u, h) state plane.

Proof. It is sufficient to consider P l(UL). The other curve P r(UR) can be dealt with

in an analogous way.

We need to prove that du
dh < 0. Due to U = J(zR;U−, zL), we have

hu = h−u−, (4.57)

u2

2
+ g(h + zR) =

u2
−
2

+ g(h− + zL), (4.58)

where

u− = uL − f(h−; hL), (4.59)
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and f(h−; hL) is defined in (2.16). By (4.57) and (4.58) we obtain the equations τ (h, h−)=

0 and �(u, h−) = 0, where

τ (h, h−) =
(h−u−)2

2h2
+ g(h + zR) −

u2
−
2

− g(h− + zL) (4.60)

and

�(u, h−) =
u2

2
+ g(

h−u−
u

+ zR) −
u2
−
2

− g(h− + zL). (4.61)

With the implicit function theorem we obtain

dh

dh−
= −

∂τ
∂h−
∂τ
∂h

=

∂τ
∂h−
u2−c2

h

(4.62)

and
du

dh−
= −

∂�
∂h−
∂�
∂h

= −
∂�
∂h−

u2−c2

u

, (4.63)

so we have
du

dh
=

du
dh−
dh
dh−

=
−u ∂�

∂h−

h ∂τ
∂h−

. (4.64)

Lemma 4.49 tells us that

∂τ

∂h−
=

h−u−
h2

u− (u− − h−f ′(h−; hL)) + u−f ′(h−; hL) − g < 0 (4.65)

and
∂�

∂h−
=

g

u
(u− − h−f ′(h−; hL)) + u−f ′(h−; hL) − g < 0. (4.66)

Hence we have du
dh < 0 from (4.64) by h > 0, u > 0. This completes the proof of the

lemma. �
Now we define the wave curve

Ps0s(Uq) = {U|U = J(zo;U+, z); U+ = Sk
0 (U−); U− = J(z;Uq, zi) } , (4.67)

where u2
q ≥ c2q, zi ≤ z ≤ zo, as well as k = 1 when uq > 0 while k = 2 when uq < 0.

The state U− = J(z;Uq, zi) is supersonic while U = J(zo;U+, z) is subsonic. Note that

this type of resonant wave curve is the general case of the wave curve defined in (4.22).

Moreover, we have the following monotonicity lemma for Ps0s(Uq).

Lemma 4.14. Assume that u2
q ≥ c2q ; we have dh

dz > 0, while du
dz > 0 when uq > 0 as well

as du
dz < 0 when uq < 0 for the wave curves in (4.67).

Proof. It is sufficient to consider the case that k = 1. The case for k = 2 can be dealt

with in a similar way.

The curve Ps0s(Uq) defined in (4.67) is a function in terms of z. Note that dh
dz =

dh
dh−

dh−
dz . So we consider dh

dh−
and dh−

dz in the following. Moreover, we have

hquq = h−u− = h+u+ = hu. (4.68)

From U− = J(z;Uq, zi) and U = J(zo;U+, z), we respectively have

u2
qh

2
q

2gh2
−

+ h− + z −
u2
q

2g
− hq − zi = 0 (4.69)
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and
u2
qh

2
q

2gh2
+ h + zo −

(hquq)
2

2gh2
+

− h+ − z = 0, (4.70)

where h+ is defined in (4.32). Similarly to (4.29) and (4.30), we have

z(h−) := −
h2
qu

2
q

2gh2
−

− h− +
u2
q

2g
+ hq + zq (4.71)

and
dz(h−)

dh−
= F− − 1 > 0. (4.72)

Taking (4.29) into (4.70), we introduce a equation ξ(h, h−) = 0 where

ξ(h, h−) =
u2
qh

2
q

2gh2
+ h + zo −

(hquq)
2

2gh2
+

− h+ − z(h−). (4.73)

So by the implicit function theorem we have

dh−
dh

= −
∂ξ
∂h
∂ξ
∂h−

=
F 2 − 1

∂ξ
∂h−

(4.74)

where F = u
c . Using (4.26) and (4.37), we have

∂ξ

∂h−
=

∂ξ

∂h+

dh+

dh−
+

∂ξ

∂h−

= (F 2
+ − 1)

dh+

dh−
− F 2

− + 1

= −Θ′(h−) < 0. (4.75)

So we obtain that ∂ξ
∂h−

< 0 and dh−
dh > 0. From (4.30) and (4.75), we obtain that

dh
dz = dh

dh−

dh−
dz > 0. Since hu = hquq,

du
dz = −u

h
dh
dz . Hence du

dz < 0 if u > 0 and vice

versa. �
In the next section we study the L–M and R–M curves case by case. The gravity

constant g = 9.81 unless otherwise stated.

4.2. L–M curves with u0L > 0 and u > 0. There are five different types of L–M curves.

We list the classification for all cases in the following:

• CASE IL: zmax < zR.

• CASE IIL: zmax ≥ zR, uL ≤ cL ⇐⇒ FL < 1.

• CASE IIIL: zmax ≥ zR, uL > cL ⇐⇒ FL > 1, zR < zS < zT .

• CASE IVL: zmax ≥ zR, uL > cL ⇐⇒ FL > 1, zS < zR < zT .

• CASE VL: zmax ≥ zR, uL > cL ⇐⇒ FL > 1, zS < zT < zR.

Later we will construct the L–M curves for all cases. Before doing this, we consider an

example given by Andrianov in [3, (8)]. To match with the assumption zL < zR, we

reflect the Riemann initial data with respect to x = 0.5. They become

(z, h, u) =

{
(1.1, 0.1, 2.0), x < 0.5,

(1.5, 1.3, 2.0), x > 0.5,
(4.76)

with x ∈ [0, 1]. Note that g = 2 in this example. For the given data cL =
√

0.2, we have

uL − cL > 0. From (4.14), we obtain zmax = 1.7912, zS = 1.3028 and zT = 1.7928. So
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the L–M curve of this example belongs to CASE IVL. Reducing zR from 1.5 to 1.3, we

obtain the Riemann initial data for CASE IIIL. Later these Riemann initial data will

be used to give examples for the Riemann solutions.

4.2.1. CASE IL: zmax < zR. This is the case when the jump of the bottom step

is too high as compared with the inflow state U− of the stationary wave, which is

connected to UL by a negative 1–wave. Mathematically we say that there is no solution

to J(zR;U−, zL) for any U− ∈ T1(UL) with a negative speed 1–wave. This was proved

in Lemma 4.2.

Generally there are two different subcases for this case:

• hR = 0.

• u0R > 0.

We have the following two Riemann problems:

ht + (hu)x = 0,

(hu)t + (hu2 + gh2

2 )x = 0.
(4.77)

(h, u)(x, 0) =

{
(hL, uL), x < x0,

(hL,−uL), x > x0.
(4.78)

(h, u)(x, 0) =

{
(0, 0), x < x0,

(hR, uR), x > x0.
(4.79)

We find that when hR = 0 or u0R > 0, the solution of the Riemann problem can be split

into two parts. One part is the solution to the Riemann problem (4.77) and (4.78) in the

region x < x0. The other part is the solution to Riemann problem (4.77) and (4.79) in

the region x > x0. Note that if hR = 0, the solution to (4.77) and (4.79) is h = 0 and

u = 0 for (x, t) ∈ R × R
+. The wave configuration of u0R > 0 can be seen in Figure 3.

The wave configuration of hR = 0 can refer to Figure 4.

Here we give two examples to illustrate our construction. The first example has the

wave configuration H1. The results are shown in Figure 20, where zmax = 3.5769 < zR =

4.7. The second example has the wave configuration H2. The results are shown in Figure

21, where zmax = 2.4724 < zR = 4.0.
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Fig. 20. Left: The water free surface h+ z at t = 0.75. Right: The
velocity. The Riemann initial data are (zL, hL, uL) = (0, 3, 1) when
x < 0 and (zR, hR, uR) = (4.7, 1.0, 7.0) when x > 0.
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Fig. 21. Left: The water free surface h+ z at t = 0.75. Right: The
velocity. The Riemann initial data are (zL, hL, uL) = (0, 3.0,−1.0)
when x < 0 and (zR, hR, uR) = (4.0, 0, 0) when x > 0.

4.2.2. CASE IIL: zmax ≥ zR, uL ≤ cL. In this case the L–M curve consists of three

segments which are defined as follows:

P l
1(UL)={U|U ∈ T1(UL) with u < 0} ,

P l
2(UL)={U|U = J(zR;U−, zL) and U− ∈ T1(UL) with 0 < u− < ũc, 0 < u < uc},

P l
3(UL)={U|U ∈ T1(Uc) with u > uc} ,

where Uc = J(zR; Ũc, zL), Ũc ∈ T1(UL) which is defined in (4.15).

The continuity of the three segments is obvious. According to Theorem 4.13, the

segment P l
2(UL) is strictly decreasing in the (u, h + z) space. Also the segments P l

1(UL)

and P l
3(UL) are strictly decreasing in the (u, h + z) space due to Lemma 2.1. So the

L–M curve
3⋃

k=1

P l
k(UL) is strictly decreasing in the (u, h + z) space.

We define

u∗
0L = 3uc. (4.80)

If u∗
0L > u0R, there is a unique intersection point between the L–M curve and the R–

M curve. If the intersection point lies on the segment P l
2(UL), the solution has the

wave configurations A; see Figure 2. Here we use an example given by Alcrudo and

Benkhaldoun in [5] to illustrate the corresponding L–M curve and the exact free surface

of the fluids, as well as the Froude number in Figure 22. If the intersection point lies on

the segment P l
3(UL), the solution has the wave configuration B. An example is shown

in Figure 23. We observe that the Froude number is greater than 1 when the water goes

across the bottom jump.

Otherwise if u∗
0L < u0R and hR > 0, the Riemann solution contains a dry bed state

and behaves in the manner of the wave configuration Bv; see Figure 7. The example for

hR > 0 is shown in Figure 24. The example for hR = 0 is shown in Figure 25.
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Fig. 22. Top: L–M curve
3⋃

k=1

P l
k(UL). Bottom left: The water free

surface h + z at t = 1.0. Bottom right: The Froude number. The
Riemann initial data are (zL, hL, uL) = (0.0, 4.0, 0.0) when x < 0
and (zR, hR, uR) = (1.0, 1.0, 0.0) when x > 0.

4.2.3. CASE IIIL: zmax ≥ zR, uL > cL, zR < zS < zT . In this case the L–M curve

consists of the following four parts:

P l
1(UL)={U|U ∈ T1(UL) with u < 0} ,

P l
2(UL)={U|U=J(zR;U−, zL) and U− ∈ S−

1 (UL) with 0<u−<ûL, 0<u< ¯̂uL

}
,

P l
3(UL)={U|U=J(zR;U+, z); U+ = S0

1(U−); U− = J(z;UL, zL), zL ≤ z ≤ zR} ,

P l
4(UL)=

{
U|U ∈ T1(ŪL) with u > ˆ̄uL

}
,

where
¯̂
UL = J(zR; ÛL, zL) and ÛL = S0

1(UL), while ˆ̄UL = S0
1

(
ŪL

)
and ŪL =

J(zR;UL, zL). Due to zL < zR, Lemma 4.14 tells us that h is increasing while u is

decreasing when z varies monotonically from zL to zR. So
¯̂
hL < ˆ̄hL and ¯̂uL > ˆ̄uL. As

shown in Figure 26, the L–M curve is folding in the (u, h + z) state space.

We define

u∗
0L = ūL + 2c̄L. (4.81)
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Fig. 23. Top: L–M curve
3⋃

k=1

P l
k(UL). Bottom left: The water free

surface h + z at t = 1.0. Bottom right: The Froude number. The
Riemann initial data are (zL, hL, uL) = (0.0, 4.0, 0.0) when x < 0
and (zR, hR, uR) = (1.0, 0.2, 0.0) when x > 0.

Note that if u∗
0L > u0R, there are intersection points between the L–M curve and the

R–M curve. If the intersection point lies on the segment P l
2(UL), the solution is in

the pattern of the wave configuration A. This is analogous to the CASE IIL. If the

intersection point lies on the segment P l
3(UL), the solution has the wave configuration

C, while if the intersection point lies on the segment P l
4(UL), the solution has the wave

configuration D.

Due to the fact that the L–M curve is folding in the (u, h + z) state space, if the

intersection point lies on the segment P l
3(UL), we can also find two other intermediate

states lying on the segments P l
2(UL) and P l

4(UL) respectively. So for one set of given

initial data, there are three solutions with wave configurations A, C and D respectively.

An example with g = 2.0 is shown in Figure 26. An example for g = 9.81 is shown in

Figure 27.
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Fig. 24. Top: L–M curve
3⋃

k=1

P l
k(UL). Bottom left: The water

free surface h + z at t = 0.3. Bottom right: The velocity. The
Riemann initial data are (zL, hL, uL) = (0, 0.9, 1.2) when x < 0 and
(zR, hR, uR) = (1.0, 1.0, 19.0) when x > 0.

Moreover, if u∗
0L < u0R, the solution with the wave configuration Dv occurs. An

example for hR > 0 is shown in Figure 28. An example for hR = 0 is shown in Figure

29. Note that the computational region for these two examples is [−10, 10] and g = 2.0.

4.2.4. CASE IVL: zmax ≥ zR, uL > cL, zS < zR < zT . In this case the L–M curve

consists of six parts. They are defined as follows:

P l
1(UL) = {U|U ∈ T1(UL) with u < 0} ,

P l
2(UL) = {U|U = J(zR;U−, zL) and U− ∈ S−

1 (UL) with u− < ũL
c , u < uc2},

P l
3(UL) = {U|U = J(zR;U+, z); U+ = S0(U−); U− = J(z;UL, zL), zc ≤ z ≤ zR} ,

P l
4(UL) =

{
U|U ∈ T1(ŪL) with u > ˆ̄uL

}
,

P l
5(UL) = {U|U ∈ T1(Uc2) with u > uc2},

P l
6(UL) = {U|U ∈ T1(Uc3) with u > uc3} ,

where (h̃L
c , ũL

c ) and Uc2 are defined in Remark 4.10, while Uc3 is defined in Remark

4.11. Compared with the L–M curve in CASE IIIL, it seems that the boundary state
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Fig. 25. Left: The water free surface h + z at t = 0.4. Right: The
velocity. The Riemann initial data are (zL, hL, uL) = (0, 4.0, 0.0)
when x < 0 and (zR, hR, uR) = (1.0, 0.0, 0.0) when x > 0.

ˆ̄UL bifurcates into two segments P l
5(UL) and P l

6(UL). Generally the L–M curve in this

case consists of three branches P l
1(UL)∪P l

2(UL)∪P l
5(UL), P l

3(UL)∪P l
6(UL) and P l

4(UL);

see Figure 31. Apparently, if the intersection points belong to P l
3(UL), P l

4(UL), P l
5(UL)

or P l
6(UL), there are three possible solutions for the same initial data.

Analogously to CASE IIIL, the wave configurations A, C and D are related to the

segments P l
2(UL), P l

3(UL) and P l
4(UL) respectively. Besides, the wave configuration B is

related to the segment P l
5(UL), while the wave configuration E, see Figure 12, is related

to the segment P l
6(UL).

An example of the three solutions with the wave configurations A, C and D is presented

in Figure 31. As we have mentioned, this example comes from Andrianov [3]. However,

he omitted the solution with the wave configuration C due to the fact that it contains

a resonant wave S0S(UL); see [9]. We reduce hR in (4.76) from 1.3 to 0.45. There are

still three solutions but with the wave configurations B, E and F ; see Figure 30.

We define

u∗,1
0L = 3uc2 , u∗,2

0L = 3uc3 , u∗,3
0L = ūL + 2c̄L. (4.82)

Note that if u∗,1
0L < u0R, a solution with the wave configuration Bv occurs. Similarly, if

u∗,2
0L < u0R, a solution with the wave configuration Ev occurs, while if u∗,3

0L < u0R, the

solution with the wave configuration Dv occurs. The example of these three types of

solutions with hR > 0 can be found in Figure 32. The example for the case when hR = 0

is shown in Figure 33.

4.2.5. CASE VL: zmax ≥ zR, uL > cL, zS < zT < zR. When zT < zS < zR, Lemma

4.9 tells us the segment P l
3(UL) in (4.22) fails to exist. Therefore the L–M curve in this

case consists of three segments, which are defined as follows:

P l
1(UL) = {U|U ∈ T1(UL) with u < 0} ,

P l
2(UL) = {U|U = J(zR;U−, zL) and U− ∈ S−

1 (UL) with u− < ũL
c , u < uc2},

P l
3(UL) = {U|U ∈ T1(Uc2) with u > uc2}.
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Fig. 26. Top: L–M curve
4⋃

k=1

P l
k(UL). Bottom left: The water free

surface h + z at t = 0.13. Bottom right: The Froude number. The
Riemann initial data are given in (4.76) but with zR = 1.3.

Note that the L–M curve in this case is just one branch of the L–M curve in CASE IVL

and it is decreasing and continuous. We define

u∗
0L = 3uc2 . (4.83)

We observe that if u∗
0L > u0R, there is an intersection point between the L–M curve and

the R–M curve. If the intersection point lies on P l
2(UL), the solution has the wave con-

figuration A. An example is shown in Figure 34. In the other case when the intersection

point lies on P l
2(UL), the solution has the wave configuration B. An example is shown in

Figure 35. In the other case when u∗
0L < u0R, the solution with the wave configuration

Bv occurs. An example with hR > 0 is shown in Figure 36. An example with hR = 0 is

shown in Figure 37.

4.3. R–M curves with u0R < 0 and u < 0. Generally, there are two possible cases for

the R–M curves if zL < zR. Remember that we do not have to consider zR > zL because

these cases can be deduced by symmetry of solutions.

• CASE IR: uR + cR ≥ 0 ⇐⇒ FR > −1.
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Fig. 27. Left: The water free surface h + z at t = 0.03. Right:
The Froude number. The Riemann initial data are (zL, hL, uL) =
(0, 2.0, 12.0) when x < 0.5 and (zR, hR, uR) = (1.5, 3.9524, 1.0142)
when x > 0.5. The computational region is [0.4, 0.95].
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Fig. 28. Left: The water free surface h + z at t = 0.4. Right: The
velocity. The Riemann initial data are (zL, hL, uL) = (0, 0.7, 4.0)
when x < 0 and (zR, hR, uR) = (0.8, 0.2, 14.0) when x > 0.

• CASE IIR: uR + cR < 0 ⇐⇒ FR < −1.

We define hmax
R as the solution to equation

0 = uR + f(hmax
R ; hR). (4.84)

The calculation procedure for hmax
R is similar to hmax

L in (4.13). We intend to study

these two cases of the R–M curves in the following.

4.3.1. CASE IR: uR + cR ≥ 0. In this case the sonic state can only appear on the

right side of the initial discontinuity located at x = x0 due to the fact that zL < zR,

i.e. Uc ∈ T2(UR). According to Remark 3.3, U = J(zR;Uc, zL) has two solutions. One

is supersonic, and the other one is subsonic. We use Ū∗
c = J(z;Uc, zR) to denote the

supersonic one and Ūc = J(z;Uc, zR) to denote the subsonic one.
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Fig. 29. Left: The water free surface h + z at t = 0.4. Right: The
velocity. The Riemann initial data are (zL, hL, uL) = (0, 0.7, 4.0)
when x < 0 and (zR, hR, uR) = (0.8, 0, 0) when x > 0.
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Fig. 30. Left: The water free surface h + z at t = 1. Right: The
Froude number. The Riemann initial data are given in (4.76) but
with hR = 0.45.

The R–M curve in this case consists of four segments, which are defined in the follow-

ing:

P r
1 (UR) = {U|U ∈ T2(UR) with u > 0} ,

P r
2 (UR) = {U|U = J(zL;U−, zR) and U− ∈ T2(UR) with uc<u−<0, ūc<u<0},

P r
3 (UR) = {U|U = J(zL;U+, z); U+ = S0

2(U−); U− = J(z;Uc, zR), zL ≤ z ≤ zR} ,

P r
4 (UL) =

{
U|U ∈ T2(Ū

∗
c) with u < ˆ̄uc

}
.

(4.85)

We have to remember that the state U = J(zR;U+, z) is subsonic, and the state U− =

J(z;Uc, zL) is supersonic for the segment P r
3 (UR).

The continuity of the three segments is obvious. From Lemma 2.1 the segments of

P r
1 (UR) and P r

4 (UR) are strictly increasing in the (u, h+z) space. Theorem 4.13 indicates

that P r
2 (UR) is strictly increasing in the (u, h + z) space. Moreover, due to the fact that

zL < zR, Lemma 4.14 tells us that h and u are strictly decreasing when z varies from zR
to zL. So the segment P r

3 (UR) is strictly increasing in the (u, h + z) space. In summary,

the R–M curve in this case is continuous and strictly increasing in the (u, h + z) space.
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Fig. 31. Top: L–M curve
6⋃

k=1
P l
k(UL). Bottom left: The water free

surface h + z at t = 1. Bottom right: the Froude number. The
Riemann initial data are given in (4.76).

We define

u∗
0R = u∗

c − 2c∗c . (4.86)

Note that if hL > 0 and u0L > u∗
0R, the curve P l

1(UL) and the R–M curve always have

an intersection point. If the intersection point lies on P r
2 (UR), the solution has the

wave configuration AT ; see Figure 16. An example can be found in Figure 38. If the

intersection point lies on P r
3 (UR), the solution has the wave configuration F ; see Figure

9. An example is shown in Figure 39. We can see that the resonant wave occurs around

x = 0.5. Similarly, if the intersection point lies on P r
4 (UR), the solution has the wave

configuration G; see Figure 14. An example is shown in Figure 40.

However if u0L < u∗
0R and hL > 0, the Riemann solution contains a dry bed state

since there is no intersection point between P l
1(UL) and the R–M curve; see Figure 41.

Specifically, the solution has the wave configuration Gv; see Figure 15. An example with

hL > 0 can be found in Figure 41. An example with hL < 0 is shown in Figure 41. Here

all of the examples are in the interval [0, 1].
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Fig. 32. Left: The water free surface h+ z at t = 0.08. Right: The
velocity. The Riemann initial data are (zL, hL, uL) = (1.1, 0.1, 2.0)
when x < 0.5 and (zR, hR, uR) = (1.5, 0.45, 5.0) when x > 0.5.
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Fig. 33. Left: The water free surface h+ z at t = 0.08. Right: The
velocity. The Riemann initial data are (zL, hL, uL) = (1.1, 0.1, 2.0)
when x < 0.5 and (zR, hR, uR) = (1.5, 0, 0) when x > 0.5.

4.3.2. CASE IIR: uR + cR < 0. In this case the R–M curve also consists of four

segments, which are defined as follows:

P r
1 (UR) = {U|U ∈ T2(UR) with u > 0} ,

P r
2 (UR) = {U|U = J(zL;U−, zR) and U− ∈ S+

2 (UL) with ûR<u−<0, ¯̂uR<u<0
}
,

P r
3 (UR) = {U|U = J(zL;U+, z); U+ = S0

2(U−); U− = J(z;UR, zR), zL ≤ z ≤ zR} ,

P r
4 (UR) =

{
U|U ∈ T2(ŪR) with u < ˆ̄uR

}
,

where
¯̂
UR = J(zL; ÛR, zR) and ÛR = S0

2(UR), while ˆ̄UR = S0
2

(
ŪR

)
and ŪR =

J(zL;UR, zR). Analogously to CASE IR, the R–M curve in this case is continuous

and strictly increasing in the state space (u, h + z).

We define

u∗
0R = ūR − 2c̄R. (4.87)

Note that if u0L > u∗
0R and hL > 0, the curve P l

1(UL) and the R–M curve always

have an intersection point. If the intersection point lies on P r
2 (UR), the solution has

the wave configuration AT . This is the same as for the solution related to the segment
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Fig. 34. Left: The water free surface h + z at t = 0.15. Right:
The Froude number. The Riemann initial data are (zL, hL, uL) =
(0.0, 0.1, 2.0) when x < 0.5 and (zR, hR, uR) = (0.2, 0.177, 1.69)
when x > 0.5.
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Fig. 35. Left: The water free surface h + z. Right: The Froude
number at t = 0.15. The Riemann initial data are (zL, hL, uL) =
(0.0, 0.1, 2.0) when x < 0.5 and (zR, hR, uR) = (0.2, 0.0077, 0.0)
when x > 0.5.

P r
2 (UR) in CASE IR. If the intersection point lies on P r

3 (UR), the solution has the wave

configuration CT ; see Figure 17. An example is shown in Figure 43. We can see that

the resonant wave occurs around x = 0.5. If the intersection point lies on P r
4 (UR), the

solution has the wave configuration DT ; see Figure 18. An example is shown in Figure

44.

Otherwise, if u0L < u∗
0R or hL > 0, the solution has the wave configuration DT

v . An

example with hL > 0 is shown in Figure 45. An example with hL = 0 is shown in Figure

46.

5. Algorithm for exact Riemann solutions to the shallow water equations.

In this section we present an algorithm for solving the exact Riemann problem for (1.1)

and (1.3) under the assumption zL < zR. For the given Riemann initial data, if hL =

hR = 0, the solution is h = 0 and u = 0 for (x, t) ∈ R × R
+. So in the following we

always assume that hL = 0 and hR = 0 cannot occur.
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Fig. 36. Left: The water free surface h + z. Right: The Froude
number at t = 0.09. The Riemann initial data are (zL, hL, uL) =
(0.0, 0.1, 2.0) when x < 0.5 and (zR, hR, uR) = (0.2, 0.0077, 4.0)
when x > 0.5.
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Fig. 37. Left: The water free surface h + z. Right: The Froude-
number at t = 0.09. The Riemann initial data are (zL, hL, uL) =
(0.0, 0.1, 2.0) when x < 0.5 and (zR, hR, uR) = (0.2, 0, 0) when
x > 0.5.

If hL = 0, there is no L–M curve. Otherwise, if hL > 0 but u0L < 0, the L–M curve

contains only one segment which is P l
1(UL), defined in (4.3). Analogous to the R–M

curves, if hR = 0, there is no R–M curve. Otherwise, if hR > 0 but u0R > 0, the R–M

curve contains only one segment which is P r
1 (UR), defined in (4.5). The common point

of these cases is that there is no stationary wave on the L–M and R–M curves. Generally

there are three types of possible solutions:

(1) If hL = 0 and u0R > 0, the solution is defined in (2.27);

(2) If hR = 0 and u0L < 0, the solution is defined in (2.25);

(3) If u0L < 0 and u0R > 0, the solution has the wave configuration Av.

Besides, if u0L > 0 or u0R < 0, the stationary wave exists except in the case when

hmax
L +zL < hmax

R +zR and u0R > 0. Note that if u0R > 0, we have hmax
R = 0. Therefore

by (4.14) we obtain zmax < zR, i.e. CASE IL occurs.
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Fig. 38. Top: R–M curve
4⋃

k=1

P r
k (UR). Bottom left: The water free

surface h + z at t = 0.15. Bottom right: The Froude number. The
Riemann initial data are (zL, hL, uL) = (0.0, 0.2883, 1.393) when
x < 0.5 and (zR, hR, uR) = (0.2, 0.558,−0.68) when x > 0.5.

Consider the case when the stationary wave exists. If hmax
L + zL < hmax

R + zR and

u0R < 0, we have uM < 0. Hence the stationary wave is on the R–M curve. Otherwise

the stationary wave is on the L–M curve.

According to our construction, the L–M curve is classified into 5 different cases, while

the R–M curve is classified into 2 different cases. Every case contains different types of

wave configurations. Each type of wave configuration corresponds to a specific segment

of the wave curve. The intermediate state (hM , uM ) of the exact Riemann solution is

the intersection point of segments of the L–M and R–M curves. The L–M curve, in

the absence of CASES IIIL and IVL involving the bifurcation, is strictly decreasing

while the R–M curve is strictly increasing in the (u, h + z) state space. This mono-

tonicity behavior of the curves guarantees that the intersection point exists uniquely.

Moreover, the L–M curve in CASES IIIL and IVL consists of more than one branch.
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Fig. 39. Left: The water free surface h + z at t = 0.15.
Right: The Froude number. The Riemann initial data are
(zL, hL, uL) = (0.0, 0.1871, 1.1222) when x < 0.5 and (zR, hR, uR) =
(0.2, 0.558,−0.68) when x > 0.5.
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Fig. 40. Left: The water free surface h + z at t = 0.1.
Right: The Froude number. The Riemann initial data are
(zL, hL, uL) = (0.0, 0.0109, 0.2712) when x < 0.5 and (zR, hR, uR) =
(0.2, 0.558,−0.68) when x > 0.5.

Every branch, however, is strictly decreasing. So every solution exists uniquely on the

corresponding branch.

We present the algorithm for the exact Riemann solutions of (1.1) and (1.3) with

zL < zR in Algorithm 4. Because of space limitations we just take the modular unit

CASE IIIL as an example to show the algorithm for the L–M and R–M curves. Note

that the L–M curve in CASE IIIL contains bifurcation. Also the solver for the wave

configuration A, see Algorithm 3, is presented as an example to calculate the intermediate

state (uM , hM ). The remaining cases of L–M and R–M curves and wave configurations

can be dealt with in similar ways. The bisection method is used to solve the nonlinear

system. Of course we can also adopt other iteration methods, say the secant method, to

solve the problem. The Newton method is not so easy to apply because it is complicated

to compute the derivative of the corresponding function.
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Fig. 41. Left: The water free surface h + z at t = 0.03. Right:
The Froude number. The Riemann initial data are (zL, hL, uL) =
(0.0, 0.5674,−10) when x < 0.5 and (zR, hR, uR) = (0.2, 0.558, 3.0)
when x > 0.5.
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Fig. 42. Left: The water free surface h+ z at t = 0.03. Right: The
Froude number. The Riemann initial data are (zL, hL, uL) = (0, 0, 0)
when x < 0.5 and (zR, hR, uR) = (0.1, 0.558, 3.0) when x > 0.5.

6. Conclusion. For any given Riemann initial data UL and UR with zL < zR, we

obtain all possible Riemann solutions to the shallow water equation by constructing the

L–M and R–M curves. We analyze the behavior of the L–M and R–M curves. We observe

that on one hand if the intersection points belong to CASES IIIL and IVL of the L–M

curves, a bifurcation appears on the L–M curves. There may be three possible solutions

due to the bifurcation. In the other cases, the solution always uniquely exists. The dry

bed problem has also been considered in this framework. Here the dry bed problem refers

to two subcases. One is for the water propagating to a dry bed, i.e. hL = 0 or hR = 0.

The other one is for the dry bed state emerging due to the motion of the flow.
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Fig. 43. Top: R–M curve
4⋃

k=1
P r
k (UR). Bottom left: The water free

surface h + z. Bottom right: The Froude number at t = 0.03. The
Riemann initial data are (zL, hL, uL) = (0.0, 0.5674,1.9542) when
x < 0.5 and (zR, hR, uR) = (0.8, 0.558,−3.0) when x > 0.5.
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Fig. 44. Left: The water free surface h + z. Right: The
Froude number at t = 0.01. The Riemann initial data are
(zL, hL, uL) = (0.0, 0.0109, 0.2712) when x < 0.5 and (zR, hR, uR) =
(0.8, 0.558,−3.0) when x > 0.5.
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Fig. 45. Left: The water free surface h + z at t = 0.025.
Right: The Froude number. The Riemann initial data are
(zL, hL, uL) = (0.0, 0.5574,−14.0) when x < 0.5 and (zR, hR, uR) =
(0.1, 0.558,−3.0) when x > 0.5.
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Fig. 46. Left: The water free surface h+ z at t = 0.025. Right: The
Froude number. The Riemann initial data are (zL, hL, uL) = (0, 0, 0)
when x < 0.5 and (zR, hR, uR) = (0.1, 0.558,−3.0) when x > 0.5.
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Algorithm 2 Modular unit for CASE IIIL

Require: u0L > u0R, uL > cL, zR < zS
1: u∗

0L ← ūL + 2c̄L
2: if u∗

0L > u0R then

3: u1 ← uR + f(¯̂u; hR), u2 ← uR + f(ˆ̄u; hR)

4: if u2 < ˆ̄uL then

5: Solver for the wave configuration A in Algorithm 3

6: else if u1 < ¯̂uL then

7: Solver for the wave configuration A in Algorithm 3

8: Solver for the wave configuration C

9: Solver for the wave configuration D

10: else

11: Solver for the wave configuration D

12: end if

13: else

14: Sample for the wave configuration Dv

15: end if
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Algorithm 3 Solver for the wave configuration A

Require: hl, hr and ε

1: ul ← uL − f(hl; hL), ur ← uL − f(hr; hL)

2: Ūl ← J(zR;Ul, zL), Ūr ← J(zR;Ur, zL).

3: f1 ← ūl − uR − f(h̄l; hR), f2 ← ūr − uR − f(h̄r; hR).

Require: f1ḟ2 < 0

4: if ‖f1‖ < ε then

5: return (ūl, h̄l)

6: else if ‖f2‖ < ε then

7: return (ūr, h̄r)

8: else

9: hmid ← hl+hr

2 , umid ← uL − f(hmid; hL)

10: Ūmid ← J(zR;Umid, zL)

11: fmid ← ūmid − uR − f(h̄mid; hR)

12: while ‖fmid‖ > ε do

13: if fmid · f1 > 0 then

14: hl ← hmid

15: else

16: hr ← hmid

17: end if

18: go to 9,10 and 11

19: end while

20: end if
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Algorithm 4 Algorithm for the exact Riemann solutions

Require: UL, UR, zL < zR
1: u0L ← uL + 2cL, u0R ← uR − 2cR
2: if u0L < 0 ∧ hR = 0 then

3: Sample solution in (2.25)

4: else if u0R > 0 ∧ hL = 0 then

5: Sample solution in (2.27)

6: else if u0R > 0 ∧ u0L < 0 then

7: Sample solution in the wave configuration Av

8: else

9: calculate hmax
L by (4.13) and zmax ← zL + hmax

L

10: if zmax < hmax
R + u0R and u0R > 0 then

11: if uR + cR ≥ 0 then

12: Modular unit for CASE IR
13: else

14: Modular unit for CASE IIL
15: end if

16: else

17: if zmax < zR then

18: if hR = 0 then

19: sample the solution in the wave configuration H2

20: else if u0R > 0 then

21: sample the solution in the wave configuration H2

22: end if

23: else if uL < cL then

24: Modular unit for CASE IIL
25: else if uL > cL then

26: calculate zT by (4.21) and zS by (4.16)

27: if zR < zS then

28: Modular unit for CASE IIIL in Algorithm 2

29: else if zR < zT then

30: Modular unit for CASE IVL

31: else

32: Modular unit for CASE VL

33: end if

34: end if

35: end if

36: end if
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