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Wavelets have motivated development of a host of new ideas in nonparametric
regression smoothing. Here we apply the tool of exact risk analysis, to understand the
small sample behavior of wavelet estimators, and thus to check directly the conclusions
suggested by asymptotics. Comparisons between some wavelet bases, and also between
hard and soft thresholding, are given from several viewpoints. Our results provide insight
as to why the viewpoints and conclusions of Donoho and Johnstone differ from those of
Hall and Patil.
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1. INTRODUCTION

In a series of papers, Donoho and Johnstone (in press; 1994a; 1995) and Donoho,
Johnstone, Kerkyacharian, and Picard (1995) developed nonlinear wavelet shrinkage tech-
nology in nonparametric regression. For other work relating wavelets and nonparametric
estimation, see Doukhan (1988); Kerkyacharian and Picard (1992); Antoniadis (1994);
and Antoniadis, Gregoire, and McKeague (1994). These papers have both introduced a
new class of estimators and provided new viewpoints for understanding other nonpara-
metric regression smoothers. In particular, these papers study curve estimation from a
minimax viewpoint, using some important function classes not previously considered in
statistics, which model the notion of “different amounts of smoothness in different lo-
cations” more effectively than the usual classes. Hall and Patil (1996a) studied wavelet-
based methods from the different viewpoint of a fixed target function, as opposed to the
minimax approach of Donoho and Johnstone.

To date, with the exception of Donoho and Johnstone (1994a), the study of these
methods has been mostly asymptotic in character. As with any asymptotic result, there
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remain doubts as to how well the asymptotics describe small sample behavior. How large
the sample should be before the asymptotic lessons apply is an important question. Here
we address these issues using the tool of exact risk analysis, which was developed by
Gasser and M̈uller (1984) and Marron and Wand (1992), and first applied to wavelet
estimators by Antoniadis, Gregoire, and McKeague (1994). This type of analysis is more
efficient than simulation. This efficiency allows deeper study of the issues at hand.

Important lessons learned about wavelets in nonparametric regression are that “hard
thresholding” (defined in Sec. 1.4), with a simple threshold value, as studied in Donoho
and Johnstone (1994a), performs as asymptotically predicted for reasonable sample sizes.
In particular their performance is not far from the optimum, across a wide variety of
contexts. However “soft thresholding” (also defined in Sec. 1.4), using the asymptotic
minimax optimal threshold derived in Donoho and Johnstone (1994a) did not perform so
well in small samples, and seems to require large samples before the asymptotic lessons
apply. Insight is provided as to why the soft threshold based method requires larger
samples for the asymptotic effects to be dominant.

The theoretical literature contains some differing viewpoints and conclusions. In
particular the asymptotic results and ideas in a series of papers by Donoho and Johnstone
and co-workers are rather different from those in papers by Hall and Patil and coauthors.
In Section 2.5 it is seen that both viewpoints are relevant in small samples, and insight
is given as to what aspects each viewpoint is studying.

Wavelet estimators are a new subset of an old class of nonparametric regression
estimators—orthogonal series methods. The basics of this are reviewed in Section 1.1.
An important contribution of wavelet ideas to the classical theory is a useful new set
of bases, which allow characterizations in terms of both “time” and “frequency.” An
overview of these is given in Section 1.2.

In Section 1.3 we introduce a set of test regression functions that we used in this
research. These include four functions of Donoho and Johnstone that have become quite
well known, but others are added with the intent of studying additional issues. Important
features of these functions are discussed. Insight into how the various estimators perform
in the exact risk calculations comes from studying their wavelet spectra, which are also
presented. In particular, it is seen that when the wavelet basis has sufficiently many
vanishing moments, the nature and order of a discontinuity can be obtained from the
slope of linear decay of the coefficients that intersect the singularity.

The exact risk calculations are developed in Section 2. Substantial insight comes
from applying these ideas to a single coefficient (i.e., just to estimation of the mean of a
single Gaussian random variable), which is done in Section 2.1. Exact risk from a variety
of other viewpoints is studied in the remaining subsections.

In Section 2.2 exact risk is studied as a function of the threshold scale. This allows
simple comparison of bases, which shows that no basis is uniformly best, although smooth
wavelet bases are effective in all-around sense. For each basis, its risk performance is well
predicted by a “row-wise power remaining.” We also do a comparison of threshold types,
and show that the “hard denoising threshold” is usually superior to the “soft minimax
optimal threshold” (these are defined in Section 1.4), despite their similar asymptotic
performance.

In Sections 2.3 and 2.4, we use the optimal value of the threshold scale, and study
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exact risk as a function of sample size, and also of the noise level (i.e., the variance of
the residuals). Slopes of these curves give “finite sample rates of convergence,” and show
how better signal compression gives a faster rate of convergence. It is seen that in some
cases it can take surprisingly long for “the asymptotics to take effect.” This viewpoint
also provides confirmation that wavelet bases have good all-around performance, although
none is uniformly best, and that the hard denoising threshold is generally better than the
soft minimax optimal threshold.

In Section 2.5, we study risk as a function of both the threshold scale, and the thresh-
old level. We use this to address the issue raised by Hall and Patil (1996b), of “where
is the smoothing parameter in wavelet methods?” We see that indeed these quantities
work like smoothing parameters, in the sense that various trade offs of variance and
bias can be created by appropriate adjustment of these parameters. However, for hard
thresholding, with the denoising threshold, there are simple choices that are surprisingly
effective in general. Although they are not always close to the optimal values, the Risk
at those values is never too far from the minimizing Risk. This is a visual demonstration
of the ideas in Donoho and Johnstone (1994a) and Donoho and Johnstone (in press).

The aforementioned points are illustrated here using only a few carefully chosen
examples, but we have studied many more. To assist readers who would like to look at
more, we have constructed a MATLAB browser that provides easy menu-driven access
to construction of linked versions of these pictures. This is available on the World Wide
Web at the URL: http://occams.dfci.harvard.edu/˜adak/Susoft.htm.

The exact risk development in this article is for nonparametric regression, but some-
what related calculations might also be done in wavelet density estimation, using the
formulas in Hall and Patil (1995b). In that context, the continuous case can be treated
as well as the discrete case considered here.

1.1 SETTING AND ORTHOGONAL SERIES ESTIMATION

In this article we study nonparametric regression, in the case of a fixed, equally
spaced design, with homoscedastic Gaussian errors. The data are of the form:

Yi = m(xi) + εi, i = 1, . . . , n,

where thexi are equally spaced on[0,1], wheren is a power of 2, where theεi are
independent and identically distributedN(0, σ2), and where the curvem(x) is “smooth”
in some sense. The goal is to use the dataY = (Y1, . . . , Yn)t to estimate the curvem(x).

The classical orthogonal series estimation is motivated as follows. Given a basis
{ψ1, . . . , ψn} of <n, that is orthonormal with respect to counting measure on{x1, . . . , xn}
(e.g., the classical discrete Fourier basis), the vectorm =

(
m(x1), . . . ,m(xn)

)t
has the

“spectral representation”

m(xi) =
n∑

i′=1

θi′ψi′,i, i = 1, . . . , n,

where the coefficients are given by

θi′ = 〈m, ψi′〉 = mtψi′ , (1.1)
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and whereψi′,i is the ith entry of the vectorψi′ . The vectorθ = (θ1, . . . , θn)t is called
the transform ofm and is an isometry ofm in <n. A useful way to view the problem
of usingY to estimatem is to think of estimating theθi′ by the empirical coefficients

θ̃i′ = 〈Y, ψi′〉 = Ytψi′ . (1.2)

The vectorθ̃ = (θ̃1, . . . , θ̃n)t is the transform ofY. For a good choice of basis, most of
the “power ofm,” which is conveniently quantified as

Pm =
n∑

i=1

m(xi)2 =
n∑

i=1

θi
2,

(where the last equality follows by the Parseval identity), will be “contained in a few”
of the θi. For example, when the underlying curvem(x) is smooth and periodic, most
of the power of the Fourier representation will be concentrated in the lower frequency
terms. In this case, a reasonable reconstruction of the “signal”m can be obtained from
the dataY by inverting the transformation, but using only the important coefficients

m̂(xi) =
∑
i′∈S

θ̃i′ψi′,i,

whereS is some set of “high power coefficients.” If the setS is small, but at the same
time

∑
i∈S θ

2
i is a large part ofPm, then this estimator will be quite effective. This is

because in that case most of the power of the noise will be in the other coefficients,
and hence eliminated. For example, this happens when using the Fourier basis with
a smooth, periodic functionm, because the resultingPm is concentrated in the low-
frequency coefficients.

Adaptive choice of the setS is an important aspect of the “thresholded estimators”
considered in the following. Also considered in the following are estimators that modify
m̂ through “shrinkage” of thẽθi, to reduce variability.

The assumption of iid Gaussian errors could be viewed as a very strong one in a
nonparametric setting. However, the main ideas studied in this article are approximately
true for dependent Gaussian data (see, e.g., Johnstone and Silverman 1997). This is
also true even in non-Gaussian and some dependent cases, through an asymptotic risk
equivalence to the Gaussian case, in a wide variety of settings, as noted by Neumann
(1995). Details are given for regression by Neumann and Spokoiny (1995), and for
spectral density estimation by Neumann (1996).

More serious departures from our assumptions include heteroscedasticity and a
nonequally spaced design. Although wavelet methods can be adapted for these cases,
study of these using exact risk tools is beyond the scope of this article.

1.2 WAVELET BASES

The Fourier basis can effectively compress signals (i.e., pack most of the power into
a few coefficients) when they are very smooth everywhere and also periodic. But in a
wide variety of other cases other bases are preferable. Good wavelet bases are useful
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both for smooth targets, and also for those which are “somewhat unsmooth in some
locations.”

As with Fourier theory, wavelets have closely parallel discrete and continuous the-
ories, which are connected by Riemann summation. Here, and in the following, vectors
are often usefully viewed as being formed from evaluating a function (ofx ∈ <) at
x1, . . . , xn. Often the distinction between discrete and continuous is blurred, but every-
thing in this article should be viewed as discrete.

The standard discrete orthogonal transform provides coefficientsθi, often reindexed
asθj,k, which give both a “frequency” and a “location” decomposition ofm. The intuitive
idea of “local frequency” is modeled with a collection of basis functions which work like
“single-period wave pieces.” Different frequencies are modeled through various scalings
of these wave pieces. Hence the common intuitive notion of “frequency” is equivalent
to “scale” of the basis functions. Following standard terminology in signal processing,
we will use the latter term. A convenient index for scale isj = 0, . . . , log2

(
n/2

)
(recall

n is assumed to be a power of 2). At scalej, there are 2j basis vectors that are shifts
of each other indexed byk = 0, . . .2j − 1. See Strang (1989) and Strang and Nguyen
(1996) for intuitive introduction to the specifics of wavelet bases. Daubechies (1988) and
Daubechies (1992) gave methods of construction of discrete bases of the form:

ϕ0,0, ψj,k, j = 0, . . . , log2

(
n/2

)
, k = 0, . . .2j − 1

which are orthonormal. The simplest of these is the Haar basis which consists of step
functions. The smoother wavelet bases which compress smooth signals better are more
complicated.

In this article, we will concentrate on the Haar wavelet basis, and on the Symmlet
8, as described by Daubechies (1992, p. 198). In that book, this basis is called “least
asymmetric” (because of how it was derived), but here we use the shorter name of
“Symmlet.” In some of the work described in this article, we also considered the Coiflet
3 basis, as described by Daubechies (1992, p. 258), but the results were sufficiently
similar to those for the Symmlet 8 that we do not include them here. For such a basis
the coefficients defined at (1.1) have the form

f0,0 = 〈m, ϕ0,0〉 , θj,k = 〈m, ψj,k〉 , j = 0, . . . , log2

(
n/2

)
, k = 0, . . .2j − 1,

and the empirical coefficients from (1.2) become

f̃0,0 = 〈Y, ϕ0,0〉 , θ̃j,k = 〈Y, ψj,k〉 , j = 0, . . . , log2

(
n/2

)
, k = 0, . . .2j − 1.

Just as the fast Fourier transform allows very fast calculation of the Fourier coef-
ficients, the wavelet coefficients can be calculated much more efficiently than by the
n inner products (i.e., anO(n2) operation matrix multiplication) suggested by the for-
mula (1.1). Fast wavelet algorithms were developed by Mallat (1989a, 1989b), based on
ideas for sub-band coding in the electrical engineering literature. Some of the history of
these ideas was summarized by Daubechies (1988; 1992). These ideas result in anO(n)
algorithm which is faster and in our opinion simpler than the FFT.

Wavelet bases that are smoother than the Haar basis have difficulty in handling data
near the edges of[0,1]. One approach to this problem is based on “boundary filters;” see
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Figure 1. Ten Regression Functions, Used in Examples in this Article. Lower right figures give visual impression
of “low noise” and “high noise” Gaussian errors, also used later.

Cohen, Daubechies, and Vial (1993) and Cohen, Daubechies, Jawerth, and Vial (1993).
In this article, the boundary problem is addressed (both for the Fourier and wavelet bases)
by assuming a “circular design”—that is, by “wrapping the data” and by using periodic
target functions.

1.3 TEST FUNCTIONS AND SPECTRA

How well the power of a signal may be compressed into relatively few coefficients
is crucial to the choice of basis, as nicely shown by Donoho (1993). In this section we
develop a set of examples that are expected to work both quite well and also quite poorly
for a variety of bases.

A set of test functions,m(x), is shown in Figure 1. Explicit parameterizations of
these curves are given in the appendix.

Here is a summary of the motivation behind each, and its special features and
properties:

1. Step. This function should be very hard to compress with the Fourier basis,
because of its jumps, but relatively easy for the smooth wavelet bases, and very
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easy for the Haar basis. The first jump is atx = 1
3, which means that the Haar

basis will spread power to a single coefficient at every scale. The second jump is
at x = 3

4, so its power will be entirely contained in a single coefficient, for the
Haar basis.

2. Wave. This is a sum of two periodic sinusoids. Hence the Fourier basis can
compress the power of this signal into just two coefficients. On the other hand,
the Haar basis has a good deal of difficulty with compression, because the power
of the signal is spread widely across the coefficients. The smoother wavelets are
in between, since this signal is smooth, so much of the power appears at coarser
scales, although the time localization property of the wavelets is not useful here.

3. Blip. This is essentially the sum of a linear function with a Gaussian density, and
has been often used as a target function in nonparametric regression. To make
the jump induced by the assumed periodicity visually clear, the function has been
periodically rotated so the jump is atx = .8. This function does not compress
well in the Fourier basis, because of the jump. It does not compress well in the
Haar basis because much of the function is smooth. However, the smooth wavelet
bases give good compression of this signal.

4. Blocks.This step function has many more jumps than the Step, and has been used
in several Donoho and Johnstone; for example, Donoho and Johnstone (1994a).
Compression is worst for the Fourier basis, and the many jumps create difficulties
for the smoother wavelets as well.

5. Bumps.This also comes from Donoho and Johnstone, and is very challenging for
any basis to compress. The smooth wavelets do the best job, but only for very
largen.

6. HeaviSine.Another Donoho and Johnstone example. This looks promising for the
Fourier basis, except for the two jumps. The Haar basis is not good here because
it cannot effectively compress the smooth parts of signal. The smooth wavelet
bases compress this signal quite well.

7. Doppler. The final Donoho and Johnstone example. The time varying frequency
makes this very hard for the Fourier basis, with power spread all across the
spectrum. It is more suitable for the wavelets, with their space time localization.
The smooth wavelets have an advantage over the Haar, because the function is
smooth.

8. Angles.This function is piecewise linear, and continuous, but has big jumps in
its first derivatives. It is ideal for the Daubechies 4 wavelet, which passes lines
through its low pass filter (but no higher degree polynomials). The Haar basis
should be somewhat worse than the smoother wavelet, because more of the power
of the signal will be spread to finer scales. The Fourier basis is not expected to
compress this well, although the performance should not be so bad as most of
these examples, since this one is continuous,

9. Parabolas.This function is piecewise parabolic. The function and its first deriva-
tive are continuous, but there are big jumps in its second derivative. It is ideal
for the Daubechies 6 and Symmlet 6 bases. It is too smooth to compress well in
the Haar basis. Compression should be reasonable for the Fourier basis, because
both the function and its first derivative is continuous.
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10. Time Shifted Sine.This is a time-shifted sine wave. It is intended to be a very
smooth function, but rather far from a linear combination of sine waves. We view
this as representing the type of curve that “traditional smoothers” would consider
estimating. The Haar basis should do a poor job of compression, but the smoother
bases should do well.

A visual idea of two noise levels that are used later in the article is also given in
Figure 1. “Low Noise,”σ = .02, is usually somewhat lower than the noise in examples
by Donoho and Johnstone. “High Noise,”σ = .1, is intended to be a “usual amount” in
a conventional nonparametric regression setting.

Transforms for some of the curves in Figure 1 are shown in Figure 2, forn = 256.
The rows correspond respectively to the target curves # 1,8,10. All these plots display
magnitudes of the transformed coefficients,|θi|, on the scale of log10, since they have a
large dynamic range. The first column shows a visual display of the magnitudes of the
log10 |θj,k| shown as gray levels with black meaning essentially 0 and lighter representing
larger magnitude, for the Haar basis. Locations on the image reflect locations in “time-
frequency” space, with scales indexed byj = 0, . . . ,7 shown vertically, andx locations
on the same scale as in Figure 1, shown horizontally. For each scalej, there are 2j gray
bars of equal length, which represent the influence of eachθj,k over the support of the
corresponding basis function. The second column is a similar gray level representation
of the log10 |θj,k| for the Symmlet 8 basis. The third column shows the log10 |θi| for
the Fourier basis, where the ordering is based on frequency. The fourth column allows
comparison of the performance of the wavelet bases with the Fourier basis in compressing
these signals. It shows the same set of magnitudes as shown in the first three columns,
but now they are in decreasing order.

A key point visible in these plots: so long as the wavelet basis has sufficiently many
vanishing moments, the nature and order of a discontinuity can be read off from the
slope of linear decay (on the log scale) of the wavelet coefficients that intersect that
singularity. This is described for the continuous wavelet transform in Daubechies (1992,
pp. 45, 48).

For the Step regression function shown in the top row, the good compression pro-
vided by the Haar is visually clear. The gray level display shows that the jump atx = 1/3
gives a single large coefficient at each scale (recall black means the coefficient has es-
sentially zero magnitude), while the jump atx = 3/4 appears only forj = 1, but for no
finer scales, because it is represented completely by the basis functionψ1,1. The Symmlet
8 basis has some coefficients at all scales that are affected by both of the jumps (i.e.,
are light at fine scales), but the number is not terribly large, so the compression is good
for this basis too (more dark locations means better signal compression). However, the
Fourier basis is severely affected by the jumps, and spreads the power of this signal all
across the spectrum.

For the Angles regression function shown in the middle row, the Haar basis has
some coefficients that are 0 for locationsx ∈ (.2, .5), where the target curve is flat, but
is nonzero in most locations, because the differencing operation captures some of the
power of the sloped parts. The sorted spectrum on the right has steps, because many
coefficients are the same as each other, coming from regions where the regression curve
has constant slope. The Symmlet 8 basis compresses this signal better than the Haar basis.
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Figure 2. Logs of Absolute Values of Transformed Coefficients of Target Functions, with Respect to Different
Bases. First and second columns represent magnitudes oflog10 |θi| as gray level images, for the Haar and Symm-
let 8 bases. Third column shows magnitudes as heights for the Fourier basis, in order of increasing frequency.
Last column shows same magnitudes, but sorted in decreasing order, to allow comparison of compression across
bases.

At finer scales, it gives 0 coefficients everywhere except near the kinks. The Fourier basis
now gives somewhat better compression (than it did for the Step target), because this
regression function is continuous.

For the Time Shifted Sine, the Haar basis again gives very poor compression. The
Symmlet 8 and the Fourier both give very good compression of this smooth signal.
Versions of these plots have been made for the other target functions, but these are not
shown here to save space, because most of the main ideas are contained in the ones
selected for Figure 2, and because they can be constructed using our MATLAB browser.

An important point is that there is no single basis that is effective for the good
compression (and hence estimation) of all plausible signals. This has led to recent research
in fast algorithms for “best basis selection;” see, for example, Coifman, Meyer, Quaker,
and Wickerhauser (1992). Some theoretical results on denoising in the context of best
basis algorithms are contained in Donoho and Johnstone (1994c).

Figure 3 gives an indication of what compressibility of a target function by a basis
implies in terms of possible performance by an orthogonal series estimator. A benchmark
for this comes from having an “oracle” that indicates the order of the|θi|. With this
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extra information, a sensible estimator (the unordered version is called the “projection
estimator” in Section 1.4) would involve the first few coefficients. More precisely, let∣∣θ(1)

∣∣ , . . . , ∣∣θ(n)
∣∣ be a decreasing ordering of|θ1| , . . . , |θn|. Given a cutoff valuei0 define

the “oracle projection estimator”

m̂O,i0(xi) =
∑
i′≤i0

θ̃(i′)ψ(i′),i,

Performance of this estimator can be assessed by its expected averaged squared error,
called “risk” in Section 2,

RO(i0) = En−1
n∑

i=1

[m̂O,i0(xi) −m(xi)]2.

Insight into the risk comes from writing it as the sum of the averaged variance

AV O(i0) = n−1
n∑

i=1

var(m̂O,i0(xi)) = n−1
∑
i′≤i0

σ2 = i0σ
2/n,

and the averaged squared bias,

ASBO(i0) = n−1
n∑

i=1

[Em̂O,i0(xi) −m(xi)]2 = n−1
∑
i′>i0

θ2
(i′).

The curvesRO(i0), AV O(i0), andASBO(i0) are shown in Figure 3, for the Step re-
gression function. TheAV O(i0) curve is the same for all bases, as this depends only on
σ2.

Performance in Figure 3 of the different bases with respect toRO(i0) is driven by the
compressibility indicated in the right hand column of Figure 2. A useful quantification
of compression comes from the functional

Ωσ =
(

1
n

) ∑
i

min(σ2, θ2
i ).

This has a close relationship toRO as shown in Figure 3, since

Ωσ = i(σ)
σ2

n
+

(
1
n

) ∑
i>i(σ)

θ2
(i) = AV O

(
i(σ)

)
+ASBO

(
i(σ)

)
= RO

(
i(σ)

)
,

wherei(σ) = #{i : θ2
i > σ2}. The Haar basis gives the best compression of the signal,

which results in the smallestASBO(i0) andRO(i0). The Fourier basis is the worst, and
the Symmlet 8 basis is in between. In general, when bias is worse, the optimal choice of
i0 is larger, and the minimumRO(i0) is increased. Asn increases,AV O(i0) decreases,
with a resulting improvement in the minimumRO(i0).

This estimator̂mO,i0 makes use of the ordering of the magnitudes of the coefficients
θi, which is unavailable in practice. Thresholding methods, discussed in Section 1.4,
attempt to give similar performance, without making use of this ordering.
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Figure 3. Mean Squared Errors, With Variance and Squared Bias Decompositions, for the Oracle Based Pro-
jection Estimator, With Respect to Different Bases, for Different Sample Sizes. The number of terms used by the
estimator isi0 with log2(i0) shown on the horizontal axis. Noise levels are “High”,σ = .02 and “Low” σ =
.1, which give the two values ofAV O(i0) (since these are the same regardless of basis). Thin line types for the
averaged squared biasASBO(i0), and thick line types for the riskRO(i0) = AV O(i0) + ASBO(i0).

A useful diagnostic tool for understanding thresholded estimates is given in Figure
4. For each signal, and each basis, again let

∣∣θ(1)
∣∣ , . . . , ∣∣θ(n)

∣∣ be decreasing ordering of
|θ1| , . . . , |θn|. For a proportionp, the “power remaining in the lastnp of the coefficients”
is

PR(p) =
∑
i>np

θ2
(i).

See Donoho (1993) for discussion of a closely related quantity. This is a relabeling of
the curveASBO shown in Figure 3, the averaged squared bias of the “oracle projection
estimator.” It is also a single target function version of the minimax notion of “tail-
n-widths” of sets of coefficients arising from certain smoothness classes; see Donoho,
Johnstone, Kerkyacharian and Picard (1995, sec. 4.3.3, def. 4). It is the part of the risk
due to the lastnp of the ordered coefficients, if they are simply all set to 0.

Two such curves are shown in the lower right of Figure 4. The curves go down quite
rapidly in p when there is good compression of the signal, and go down slowly when
the power of the signal is spread among many coefficients. There is a strong qualitative
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relation of these curves to those in the right hand column of Figure 2, which provides a
somewhat different measure of how well each basis can compress the signals. In particular
the comparisons as to how well each basis compresses each signal are the same from
either viewpoint. The curves in Figure 4 look visually smoother mostly because they
are cumulative in nature. We found them somewhat more useful for understanding the
behavior of different estimators seen in later sections of this article, probably because
they are more intimately connected to the bias of the estimation process.

To understand how the relative magnitudes of the coefficients relate to the size of
the two noise levels, shown in the lower right hand parts of Figure 1, we also include
“power remaining in the noise” curves in the lower right hand part of Figure 4. These are
similar to PR(p), except that eachθ2

i is replaced by a realization of the noisy version,
θ̃2

i , where the regression curve is taken to be 0, so this is a “pure noise process.” These
give some insight into which parts of the power remaining curves are “negligibly small.”

Even more useful than power remaining, for understanding the behavior of estima-
tors, was a “row-wise” version of the power remaining plots, which is shown in the
rest of Figure 4. This is crucial in understanding the exact risk calculations, because
much of what is seen there depends on whether or not the finer scale terms have some
significantly large coefficients. For each scale, indexed byj = 0, . . . ,7, the coefficients
θ2

j,0, . . . , θ
2
j,2j−1 are ordered asθ2

j,(0), . . . , θ
2
j,(2j−1). For a proportionp, the “power re-

maining in the lastp of the coefficients for scalej” is

RPR(p) =
∑
i>np

θ2
j,(i).

These curves are then arranged in order of finer scale. The finest scale part,j = 7 appears
in the plot above the interval[7,8), the next finest scale,j = 6, is above the interval
[6,7], and so on.

An important lesson of Figure 4 is that the Symmlet 8 basis very often gives either
the best compression of the signal, or is not far from the basis which is best. Both the Haar
and the Fourier bases have cases where they are the best, but all too many spectacular
failures. This is a graphical demonstration of why smooth wavelet bases, such as the
Symmlet 8, have generated considerable interest. In particular they provide a reasonable
balance between two goals. First, they are localized in time (in contrast to the Fourier
basis), which allows greater spatial adaptivity. Second, whenm is sufficiently smooth,
power at each location is packed into relatively few coefficients (the Haar basis is poor
at this). See, for example, Meyer (1990, vol. I, sec. III.11), where an explicit comparison
of Fourier and wavelet bases is carried out.

In studying the Symmlet 8 basis, a key idea for understanding the exact risks below
is that the regression functions can be divided into two groups. The first group has some
significantly large coefficients at each scale, and includes Step, Blip, Blocks, Bumps,
HeaviSine, and Doppler. These are functions which are essentially smooth in a spatially
inhomogeneous sense (modeled as regions in certain types of Besov-Triebel spaces), in
particular allowing some nonsmooth features, but only at a few locations. The second
group has no significant coefficients for scales finer than a certain level, including Wave,
Angles, Parabolas, and Time Shifted Sine. The second group are those that are essentially
smooth in a more commonly considered spatially homogeneous sense (often modeled as
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Figure 4. Bottom row, two right hand plots are power remaining,PR(p) in the lastnp coefficients, for each
target curve, forn =256, overlaid with pure noise power remaining. Other plots are row-wise power remaining,
RPR(p). Part above the interval[j, j + 1] is RPR(p) for the givenj; that is, for that “row” of wavelet
coefficients having all the same scale. These allow comparison of how well the bases compress signals, in this
row-wise sense, which will give insights in later sections.

Sobolev classes). Here the amount of smoothness is roughly the same at all locations.

1.4 THRESHOLDED WAVELET ESTIMATORS

Because of the generally good compression properties of the wavelet bases, the
double index structure will be frequently used in the rest of this article. Hence wavelet
transforms ofm andY will be

θ =



f0,0

θ0,0

θ1,0

θ1,1

θ2,0
...


and θ̃ =



f̃0,0

θ̃0,0

θ̃1,0

θ̃1,1

θ̃2,0
...


,
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where obvious analogs of (1.1) and (1.2) are used, and basis vectors are appropriately
relabeled. This structure will be used even for the Fourier basis, where the terms are rather
arbitrarily grouped so that smallerj corresponds to lower frequency. This is somewhat
restrictive for the Fourier basis, because only log2(n) different projections will thus be
considered in the comparisons to come (instead of the usual full range of frequencies).

A simple orthogonal series estimator, called here the “projection estimator,” is based
on the hope that most of the power of the signal is concentrated in the lowest frequency
components, while the noise is spread evenly across coefficients, and thus most of it will
be in the high-frequency coefficients. A reasonable estimator is then simply based on
the coarse scale (i.e., low frequency) empirical wavelet coefficientsθ̃j,k, defined at (1.2).
This is equivalent to setting the fine scale coefficients to 0 and inverting the transform.
Suppose scales of levelj0 and finer are to be truncated. Then we get the estimator

m̂P (xi) = m̂P (xi, j0) = f̃0,0ϕ0,0 +
j0−1∑
j=0

2j−1∑
k=0

θ̃j,kψj,k,i, (1.3)

whereψj,k,i denotes theith entry of thej, kth basis vector,ψj,k. An alternate way of
writing this estimator, which is convenient for generalization to “thresholded estimators”
is based on the concept of “estimated coefficients”

θ̂j,k,T =

{
θ̃j,k j < j0

ηT (θ̃j,k, λσ) j ≥ j0
,

which uses some “thresholding function”,ηT (θ̃j,k, λσ), parameterized byλ as discussed
in the following, and results in the general form

m̂T (xi) = m̂T (xi, j0) = f̃0,0ϕ0,0 +
log2(n/2)∑

j=0

2j−1∑
k=0

θ̂j,k,Tψj,k,i. (1.4)

The caseT = P—that is, the projection estimator—comes fromηP (θ̃j,k, λσ) = 0.
The hard thresholding idea can be viewed as an extension of (1.3) where a few finer

scale terms are very selectively added in. Terms are included if their magnitudes are
larger than some “threshold value”λ timesσ (or an estimated value in practice). This
idea is summarized mathematically by a threshold function of the form

ηH(θ, λ) = θ1{|θ|>λ}.

The resulting estimator is (1.4) withT = H.
Soft thresholding is a related idea, in particular the same type of choice is made as

to which terms to include. The difference between soft and hard thresholding is that in
the soft case, the finer scale terms that are included are also shrunk. This shrinking has
the effect of reducing variance, but at some cost in increased bias (this will be made
more clear in the following). More precisely define the threshold function

ηS(θ, λ) = sgn(θ)(|θ| − λ)+.

The resulting estimator is (1.4) withT = S.
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An attractively simple choice of threshold valueλ, is based on the idea of “de-
noising,” which attempts to eliminate terms which are pure noise. For homoscedastic
noise,σ can be very well estimated, say by a robust scale estimate applied to the finest
scale wavelet coefficients, so we will assume thatσ is known. Assuming the errors are
Gaussian allows use of the interesting property that forX1, . . . , Xn iid N(0, σ2),

P

(
max

i=1,...,n
|Xi| ≤ σ

√
2 log(n)

)
→ 1;

for example, see Leadbetter, Lindgren, and Rootzén (1983, theorem 1.5.3), where log
denotes the natural logarithm. Hence the thresholdλD =

√
2 log(n) will zero out every

term that has all noise, and no signal. This threshold choice gives some interesting
asymptotic near-minimax properties, as shown in Donoho et. al. (1995).

A smaller threshold choice, which adjusts for some of the bias problems of soft
thresholding, has been proposed by Donoho and Johnstone (1994a), using finite sample
minimax considerations. We call this choice (which depends onn) λMO, for minimax
optimal.

There are a number of variations on the hard and soft thresholding schemes available.
For example, Gao (1996) used a two parameter family of piecewise linear trade offs
between hard and soft thresholding.

2. EXACT RISK FOR THRESHOLDED ESTIMATORS

A commonly considered measure of the performance of an estimator,m̂(x) of the
curvem(x) (i.e., of the vectorm̂ as an estimate ofm), is the expected averaged squared
error risk function

R(m̂) = R(m̂) = n−1E(m̂ − m)t(m̂ − m) =En−1
n∑

i=1

[
m̂(xi) −m(xi)

]2
.

For estimators of the form introduced in Section 1.4 (now replacing thej, k indexing by
an equivalenti = 1, . . . , n), a useful representation of the risk, by Parseval’s identity is:

R(m̂) = n−1
n∑

i=1

E
[
θ̂i − θi

]2
.

Note that under the assumption of independent normal errors,ε ∼ N(0, σ2I), where
ε = (ε1 . . . εn)t, the orthonormality of the transformation gives̃θ ∼ N(θ,σ2I), where
θ = (θ1, . . . , θn)t and θ̃ = (θ̃1, . . . , θ̃n)t. Hence it is simple to calculate the risk of the
projection estimator̂mP . When m̂ is a thresholded orthogonal series estimator, calcu-
lation of R(m̂) is complicated by the fact that̂m is not a linear estimator. However,

closed forms for theE
[
θ̂i − θi

]2
have been derived under the normal error assumption,

by Donoho and Johnstone (1994b).

For a threshold valueλ, not based on the data, calculation of eachE
[
θ̂i − θi

]2

is equivalent to the risk of estimating a single normal meanθ, based on a single ob-
servationX ∼ N(θ, σ2). Hard and soft thresholded estimatesθ̂H = ηH(X,λσ) and
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θ̂S = ηS(X,λσ) may be employed in this context as well. The risks are:

E
[
θ̂H − θ

]2
= σ2rH(θ/σ, λ), (2.1)

and

E
[
θ̂S − θ

]2
= σ2rS(θ/σ, λ), (2.2)

where

rH(µ, λ) = µ2
[
Φ(λ− µ) − Φ(−λ− µ)

]
+ Φ̃(λ− µ) + Φ̃(λ+ µ)

+(λ− µ)φ(λ− µ) + (λ+ µ)φ(λ+ µ) (2.3)

and

rS(µ, λ) = 1 + λ2 +
(
µ2 − λ2 − 1

) [
Φ(λ− µ) − Φ(−λ− µ)

]
−(λ− µ)φ(λ+ µ) − (λ+ µ)φ(λ− µ) (2.4)

for Φ the standard normal cumulative distribution function, andΦ̃ it’s complement, given
by Φ̃(x) = 1−Φ(x). These formulas are summed to give the exact risks used in the rest
of the article.

2.1 THE SINGLE COEFFICIENT CASE

The formulas (2.3) and (2.4) provide substantial insight into the relative behaviors
of hard and soft thresholding. Hence we study these functions first. Plots are shown for
both hard and soft thresholding in Figure 5. They show single coefficient risks in the
caseσ2 = 1. For generalσ2, the picture is the same, except scaled vertically byσ2, and
the θ axis should be replaced byµ = θ/σ.

First, consider the hard thresholding display in Figure 5, think of fixedλ, and study
the risk as a function ofθ. For θ < 1—that is, when the power of the signal is less than
the noise—the risk is less than 1(= σ2), which is the risk from simply using the raw
data as the estimate—that is,θ̂ = θ̃. This value is smaller for largerλ. Whenλ > 1
(usually true in this context), forθ roughly between 1 andλ + 2, the risk is quite a bit
larger, with a peak atθ nearλ. This peak is taller for largerλ. Hard thresholding is
worse than estimating with the raw data whenθ is in this range, because there is a large
probability (highest nearθ ≈ λ) of zeroing out a relatively large coefficient (the height of
the curve is essentially the “squared bias,” which is the product ofθ2 and the probability
of its being mistakenly zeroed). The risk decreases forθ � λ, because then there is
only a small probability that such a coefficient will be zeroed. For very largeθ the risk
is essentially 1, sincêθ ≈ θ̃, soR(θ̂) ≈ var(θ̃) = σ2 = 1—that is, the performance is
essentially the same as usingθ̂ = θ̃. Hard thresholding will be effective when few of the
coefficients are close to the thresholdλσ. Thresholding only those terms with scale finer
thanj0 can help avoid having too many terms in this “boundary” area.

Next consider the soft threshold risk in Figure 5, as a function ofθ, for each fixed
λ. Soft thresholding has a higher maximum risk over this range than hard thresholding.
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Figure 5. Single Coefficient Exact Risks. Hard thresholding in the upper left, soft thresholding in the upper
right, the difference in the lower left. The top shows that hard thresholding has smaller risk in most regions. A
different display is used in the bottom, to show that the soft threshold is slightly smaller for smallθ and moderate
λ, which is where many terms should be when there is good signal compression.

Again for θ ≤ 1—that is, the signal is smaller in magnitude than the noise—the risk is
less than 1, and there is an advantage to thresholding. As for hard thresholding though,
when the signal is bigger than the noise, soft thresholding is worse than using the raw data
as the estimator. Unlike hard thresholding, this effect does not diminish for larger values
of θ, because the shrinkage in the soft threshold induces some bias. Instead of going
down to 1, the risk instead increases monotonically to 1+ λ2. This has the potential to
create severe bias problems, because some of the coarser scale coefficients are expected
to be quite large. Hence for soft thresholding it is important (and more important than
for hard thresholding) to threshold only those terms with scale finer than a reasonably
large value ofj0. Furthermore, the value ofj0 that is used will have a stronger effect
than for hard thresholding. This effect is seen in Figure 7.

Comparison between the risks is given in the bottom part of Figure 5. This is an
overlay of functions ofθ, for severalλ’s, since it is hard to tell which method is better
from a surface plot as in the other parts. Note that soft thresholding is slightly better
than hard for smallerθ. This is because the shrinkage effect of soft thresholding reduces
variability, and bias is not important. But for largerθ, bias effects become dominant,



EXACT RISK ANALYSIS OF WAVELET REGRESSION 295

and hard thresholding is superior. Note that the latter effect is much larger in magnitude,
especially for larger values ofλ.

The riskR (m̂) is an aggregate of such single coefficient risks. Soft thresholding will
be superior to hard when a large enough share of the large coefficients are at coarser
scales thanj0. But it does not take too many large coefficients at finer scales to put hard
thresholding ahead of soft. This will happen in a number of the following examples.
However, it is important to keep in mind that we look only from the particular view
of squared error risk. Soft thresholding has attractions of other types. One of these is
that it is theoretically more tractable, so it is sensible to first analyze new settings in
these terms, to give insights into handling the theory for the technically demanding case
of hard thresholding. Another attraction is the intuitive connection to the deterministic
theory of optimal recovery, as discussed by Donoho et. al. (1995, sec. 4), which gives a
different and also important type of benefit: a high probability of no sampling artifacts
appearing (which comes at a cost of increased bias).

2.2 AS A FUNCTION OF I NITIAL THRESHOLD SCALE

In this section we study how the riskR(m̂) depends on the scalej0 beyond which
terms are thresholded (or zeroed in the case of the projection estimator).

The first comparison is of the bases, as shown in Figure 6, where comparisons are
done for hard thresholding, and the threshold valueλD, since this is among the best as
seen in the following. The examples in Figure 6 are based onn = 1,024 observations.
The rows of Figure 6 correspond to different signals, and the two columns show the
log of the risk, for the low and high noise levels. The curves are all much higher in
the second column because it is harder to estimate in the presence of more noise. The
upper horizontal line in each plot corresponds to the “Raw Data Estimate,”m̂ = Y.
At j0 = 10, each estimator is the same as this estimator, because then no terms are
thresholded sôm = θ̃ = Y. The other horizontal lines, that are thin and have the same
line types as the curve for each basis, indicate the “ideal projection Risk,” mini0 RO(i0)
(i.e., the minimum of the curve of the type shown in Fig. 3) which is the risk of a
projection estimator, when an oracle indicates exactly which terms should be included.
Note that this ideal risk depends critically on the basis, since it is essentially a measure
of how well the signal compresses in that basis.

The top row provides a comparison of the performance of bases for the Step regres-
sion function. Recall from Figure 4 that the Haar basis compresses this signal very well
(i.e., a great deal of the power of the signal is contained in relatively few coefficients),
so its ideal risk is quite small. This results in superior risk for this basis, compared to the
others. For the Haar basis, the risk is also better for smallerj0, since this allows more
terms to be zeroed by the thresholding process (not zeroing them introduces additional
variance). The Fourier basis gives very poor performance (for low noise andj0 < 8, it is
even worse than the estimator̂m = Y, and its ideal risk is also quite poor). The reason
for this is seen in Figure 4: the power of the signal is spread among very many coeffi-
cients. A large proportion of the coefficients are in the peak area of the hard thresholding
part of Figure 5. The effect is less for the high noise, because many coefficients are
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then relatively smaller than the thresholdλσ. The performance of the Symmlet 8 basis
is between that of the others, which fits with the fact that its compression of this signal
is in between as well.
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Figure 6. Exact Risk as a Function of Initial Threshold Scalej0, Shown as Thick Curves, Allowing Comparison
of Bases. For hard thresholding with denoising thresholdλD . Target functions selected here are Step, Wave,
and HeaviSine. Both noise levels are shown. Bases are Haar, Symmlet 8, and Fourier, with indicated line types.
“Ideal Risk”—that is,mini0 RO(i0)—is shown for each basis as the thin horizontal line with the same line type.
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The second row provides a similar comparison for the Wave regression function.
Now the situation with respect to the bases is reversed, both in Figure 4 and here. For
both noise levels, the Symmlet 8 basis has the same risk as the Fourier basis forj0 ≥ 6,
because the power of the signal for both bases is concentrated in scales coarser thanj0 (as
shown in Fig. 4), so each estimator is based on using a set of 2j0 raw data coefficients that
contain essentially the full power of the signal. The Symmlet 8 becomes much worse
for smaller j0 because the signal does have substantial power (widely spread among
coefficients, since the time localization property of the wavelets does not help in this
example) for scales withj < 6 (this corresponds top < .0625 in Fig. 4). The picture
for high noise is similar to that for low noise, except the right side is “lifted up” by the
higher variability in the data.

The third row of Figure 6 is roughly representative of the performance for the large
majority of regression functions that we considered (see our MATLAB browser for the
rest of these). The Symmlet 8 basis was almost always superior, although sometimes
one of the other bases was competitive, especially for high noise, because the superior
compressibility properties of the Symmlet 8 does involve some “start up cost” as seen in
Figure 4, meaning that there are relatively many “large” coefficients, while the “superior
compressibility” applies to the majority of smaller coefficients. This confirms the assertion
that the smooth wavelet bases give reasonable all around performance; see, for example,
Donoho (1993). Hence in much of the following, we will focus on the Symmlet 8 basis.

The next comparison is of the different thresholding types—that is, a comparison of
m̂P , m̂H , andm̂S—shown in Figure 7. Again the two rows show two different target
functions. The format is the same as in Figure 6. This comparison is explicitly shown
for the Symmlet 8 basis, for the low noise levelσ = .02, for the threshold valueλD,
and forn = 1,024. See our MATLAB browser for many more such plots.

The main ideas for the plots for all the different regression examples were of two
different types, represented by Time Shifted Sine and Blocks in Figure 7. Where the
finer scale coefficients were all essentially negligibly small, the estimators gave the same
performance (and indeed are practically the same as each other) for largej0. But for
smaller j0 there is some benefit to thresholding, because many of the terms are quite
small, but some should be included. The effect was usually larger for hard thresholding
than for soft, because soft thresholding pays a higher price for the larger coefficients, as
shown in the soft threshold part of Figure 5. A typical setting of this type is shown in
the top row, where the target is the Time Shifted Sine. In this case, the power of the
signal is negligible forj ≥ 6, as seen in Figure 4.

The other type of performance appeared in settings where the signal had appreciable
power in some coefficients at all levels, as for the Blocks regression in Figure 4. Here
the three estimators are different even for the largerj0. Soft thresholding encounters
difficulty even for the largerj0 since now there too many terms in the high region of the
soft threshold part of Figure 5. The projection estimator is scarcely better than the Raw
Data estimate, since zeroing all the terms at any scale incurs too much bias.

In all cases, the Projection estimator was often a lot worse, and essentially never bet-
ter, than the thresholded estimators. This confirms the wavelet nonparametric regression
folklore; see, for example, Donoho and Johnstone (in press), who indicated this estima-
tor should be ruled out in most situations because it is not spatially adaptive. Another
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Figure 7. Exact Risk as a Function of Initial Threshold Scalej0, Allowing Comparison of Threshold Types.
Selected target functions are Time Shifted Sine and Blocks. Only low noise shown. Basis is Symmlet 8.

viewpoint on this is provided by Hall and Patil (1995a), who showed it is essentially a
kernel estimator with a special bivariate kernel. The hard type of thresholding was typi-
cally much better, and essentially never worse, than the soft thresholding, in the sense of
squared risk considered here. Note, however, that this is only for the case of the threshold
valueλD. Soft thresholding improves dramatically forλMO.

The next comparison is of the thresholding types and values. In particular, this now
includesλMO. We omit the combination of hard thresholding, withλMO, because that
value was not intended for hard thresholding, and because it was almost always much
worse than hard thresholding with the valueλD, and was never significantly better. This
comparison was also done using the Symmlet 8 basis, andn = 1,024.

The top row of Figure 8 show this comparison for the Doppler regression, which
was typical of the majority of cases studied. Hard thresholding withλD was either
comparable to the others, or else somewhat better. Soft thresholding withλD was almost
always worse, because of the bias problems suggested by Figure 5. One exception to
this is shown in the bottom row of Figure 8, for HeaviSine regression, with high noise.
Here the soft threshold, withλD, is slightly better than the others. In this case, the scales
j ≥ 3 had very few large coefficients (which are worst for this estimator, as shown in
Fig. 5), but relatively many that were “small but nonzero,” and hence in the low region
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Figure 8. Exact Risk as a Function of Initial Threshold Scalej0, Allowing Comparison of Threshold Values and
Threshold Types. In particular this compares hard thresholding withλD , versus soft thresholding withλMO .
Selected target functions are Doppler and HeaviSine. Both noise levels are shown. Basis is Symmlet 8.

of the soft threshold part of Figure 5. The magnitude ofλMO is smaller thanλD, which
results in increased risk, as shown in Figure 5.

2.3 AS A FUNCTION OF SAMPLE SIZE

In this section we study exact risk, as a function of sample sizen. We consider
the rangen = 64(26), . . . ,16,384(214). The parameterj0 is handled by using the value
that minimizes the risk in each case, so each curve here is constructed using only the
minimum of the curves shown in the previous section. The midpoint of these plots,
log2(n) = 10, isn = 1,024, which is used for most other examples in this article.

For comparison of the bases, the main ideas were similar to those in the preceding
section. Figure 9 shows hard thresholding, withλD, but very similar pictures were ob-
tained for soft thresholding, withλMO. In particular the Symmlet 8 basis was generally
superior, being either best or nearly best in the great majority of cases. Fairly repre-
sentative behavior is seen in Figure 9 for the low noise parts of Blocks and Blip. As
expected, the Haar basis was excellent, and the Fourier basis very poor for the Step (not
shown to save space) and Blocks regressions. An exception to the expected is shown for
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Figure 9. Exact Risk as a Function of Sample Sizen, Shown as the Thick Curves, Allowing Comparison of
Bases. The initial threshold scalej0 is chosen to minimize the risk in each case. The thin curves of each line type
are the ideal projection risks,mini0 RO(i0) which give a theoretical lower bound for the actual risk. Selected
target functions are Blocks, Blip, and Angles. Both noise levels are shown. Bases are Haar, Symmlet 8, and
Fourier. Thresholding is hard, withλD .
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the high noise case, with Blocks regression, where it took surprisingly largen = 2,048
(211), before the Haar had smaller risk. This is a case where it takes surprisingly long for
the asymptotic effect to be dominant. For the Wave example (again not shown to save
space), the Fourier basis was far superior, and the Haar basis was much the worst. The
Symmlet 8 basis was in between in these cases, and generally superior otherwise. An
exception was the Blip regression, with high noise, where the Haar basis was surprisingly
competitive with the Symmlet 8. This is because while there are a large number of Haar
coefficients visible in Figure 4, most of them are much lower than the high pure noise
level shown in the lower right parts of Figure 4, and thus are practically negligible. The
Fourier basis gave surprisingly good performance for the Angles regression, for the same
reason. The Symmlet 8 basis will eventually be superior, but this requires samples larger
thann = 16,384. Again the ideal projection risk for the given function and basis has
also been shown on the plot. The reason that some of the ideal risks decrease faster than
the thresholded risks (even for largen) is the following. From Donoho and Johnstone
(1994a), we may derive the inequality

log2(Risk) ≤ log2(2 logn) + log2(Ideal Risk)

which indicates a slowly increasing upper bound on the separation between the actual
and ideal risk lines for a given signal-basis combination.

Figure 10 allows comparison (this time looking at risk as a function ofn) of threshold
types and values, as in Figure 8. As noted in the discussion of Figure 7, the examples
were of two main types. Again the types are determined by whether or not there are a
few large fine scale components.

The case where there are fine scale components is typified by the Blip regression,
where there were important differences. For all of these, the hard thresholding withλD

was the best in low noise contexts. In high noise cases, soft thresholding withλMO, was
often better for smallern, but this effect tended to disappear asymptotically and then
hard thresholding withλD was superior.

The Angles regression is typical of the case of essentially no large coefficients finer
than a certain scale. Here all of the estimators had very similar performance, because
they are essentially the same. In these cases, soft thresholding, withλD was sometimes
slightly better than the others, for the same reason as given previously for HeaviSine in
Figure 8.

2.4 AS A FUNCTION OF NOISE L EVEL

Another interesting way to study the risk of wavelet estimators is as a function of the
noise levelσ. A comparison of the bases shows mostly the same lessons as previously,
so no pictures are included to save space. An interesting feature was that for bases which
do a poor job of signal compression, small enoughσ entailed that the best estimator (i.e.,
best choice ofj0) was simply to return the raw data—that is, usem̂ = Y. This is sensible,
because in such situations the data are very informative. However, bases that provide
good signal compression (extreme examples are the Haar basis for the Step regression,
and the Fourier basis for the Wave regression) always give improved performance, even
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Figure 10. Exact Risk as a Function of Sample Sizen, Allowing Comparison of Threshold Values and Threshold
Types. In particular this compares hard thresholding withλD , versus soft thresholding withλMO . The initial
threshold scalej0 is chosen to minimize the risk in each case. Selected target functions are Blip and Angles.
Both noise levels are shown. Basis is Symmlet 8.

in the limit σ → 0.
A comparison of the thresholding types and values, again leads to two main types

of examples, depending on whether there are large coefficients at finer scales or not.
Representative examples are in Figure 11 (this time looking at risk as a function ofσ).
When there are large coefficients at finer scales, there is a difference between the different
types of estimator, as shown for the Bumps regression, and hard thresholding, withλD,
is eventually better asσ → 0. This is because asσ gets smaller, more and more terms
are in the area of the lower part of Figure 5 where hard thresholding is superior. But the
other approaches can be better in other regions. In particular, note that soft thresholding
with λMO is better atσ = .1—that is, log10(σ) = −1. When there are no important
coefficients for fine scales—for example, for the Time Shifted Sine function, all methods
are roughly the same, as noted previously.

An important lesson from these sections is that the hard thresholding generally has
better squared error risk than soft thresholding. The overall strong performance of hard
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Figure 11. Exact Risk as a Function of Noise Levelσ, for n = 1,024, and the Symmlet 8 Basis, Allowing
Comparison of Threshold Values and Threshold Types. In particular this compares hard thresholding withλD ,
versus soft thresholding withλMO . The initial threshold scalej0 is chosen to minimize the risk in each case.
Vertical lines show the “low noise level,”σ = .02 and the “high noise level,”σ = .1 used in other examples.
Selected target functions are Bumps and Time Shifted Sine.

thresholding withλD was perhaps surprising, since no attempt at optimizing risk is
made, to the level done byλMO. In this sense the comparison is not fair to the hard
thresholding approach. It would be interesting to see how similar attempts to optimize
hard thresholding would perform.

Again the driving force behind the overall good performance of this simple hard
thresholding seems to be that the gains in the single coefficient risk, as indicated in the
lower part of Figure 5, outweigh the advantages of the careful soft threshold choice.

2.5 AS A FUNCTION OF THRESHOLD VALUE

An interesting question from a classical nonparametric regression viewpoint, con-
sidered by Hall and Patil (1996b), is “where is the smoothing parameter in wavelet
methods?” They suggest that for a reasonable range of level dependent threshold values,
both the initial threshold scale and the threshold value function as smoothing parameters.
In this section we investigate the joint effect ofj0 andλ on the Risk, as shown in Figure
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Figure 12. Exact Risk as a Function of Initial Threshold Scalej0 and Threshold Valueλ, for n = 1,024, the
Symmlet 8 Basis, and Hard Thresholding. The threshold valuesλDandλMO . are shown as dotted rectangles.
The lowest point on the surface, hence the minimizing values ofj0 and λ, is indicated by the vertical dashed
line. Selected target functions are Blocks and Angles. Both noise levels are shown.

12. The curves shown in Section 2.2, are slices of surfaces such as these, taken along
the dotted rectangles.

These surfaces had the same general shape for all of our examples. Forj0 close to
10, the surfaces are high, because there is too much variance. This is essentially the right
hand side of each part of Figure 3, whereAV dominatesR. The variance comes from the
estimator having too many unthresholded terms. Recall the extreme casej0 = 10 is the
raw data estimator̂m = Y. Similarly, the surfaces are high for small values ofλ, again
because of high variance from too many terms in the model, but this time they come
from the low threshold (again the extreme case is the raw data estimator). Whenj0 is
small, andλ is large, the surface is high because the bias is too large. This is essentially
the left side of each part of Figure 3, whereASB dominatesR. The bias comes from
not enough terms being used in the estimator.

In between these high regions are two valleys, which both start in the central area.
One valley is in the direction of smallerj0. This shows that for good choice ofλ, there is
usually not a large penalty for smallerj0—that is, for applying the thresholding operation
to more terms. The other valley is in the direction of largeλ, and suggests there is often
not a large penalty for raising the threshold level. This second valley has some important
differences depending on the particular regression function, in a manner similar to that
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noted previously. When there are a significant number of large coefficients at fine scales
(see Fig. 4), as in the Blocks case, this valley is relatively high, because bias is created by
important terms being eliminated through the higher threshold. In such cases the optimal
choice ofλ was usually close to the valueλD. It was usually smaller as suggested by
the intuition behindλD, with the one exception being the high noise case for the Blocks
regression. When all the finer scale terms are negligible (again see Fig. 4), as in the
Angles case, this valley tended to be rather lower. This is because, for reasonablej0,
there are no terms to create additional bias from largerλ. In such cases, the optimum
(over theλ’s considered) was often at the largest value,λ = 2

√
2 log(n).

These plots show that in an absolute sense,j0 andλ do work like smoothing pa-
rameters, in the sense that various trade offs of variance and bias can be created by
appropriate adjustment of these parameters, which illustrates the points of Hall and Patil
(1996b). However, the choices of “j0 fairly small” andλD, give results that are unusually
good (in the broader context of smoothing parameter selection) for such simple methods.
Although they are not always close to the optimal values, the Risk at those values is
never too far from the minimizing Risk. This is a visual demonstration of the ideas in
Donoho and Johnstone (1994a) and Donoho and Johnstone (in press). The two cases
we find here correspond to different smoothness classes as discussed above. The case
of no significant coefficients at finer scales; for example, the Angles in Figure 12 is an
example of spatially homogeneous smoothness, which is roughly constant with respect to
location. The case of some significant coefficients at isolated locations at finer scales; for
example, the Blocks in Figure 12 is an example of spatially inhomogeneous smoothness,
which is far less homogeneous with respect to location. The appealing feature of hard
thresholding with the thresholdλD is that it is not far from optimal with respect to both
types of smoothness.

In contrast, Hall and Patil (1996b) use only spatially homogeneous smoothness con-
ditions. This corresponds to the Angles part of Figure 12. Note that near the optimal
value ofλ, the parameterj0 works more like a smoothing parameter, which corresponds
roughly to their observations. This part of Figure 12 also shows Hall and Patil’s point
that for values ofλ that are smaller than the optimal, the performance is not too far from
the optimal, see Section 2.7 of Hall and Patil (1996a).

The Soft thresholding analogs of Figure 12 are shown in Figure 13. These pictures
are roughly similar in structure to those in Figure 12, with two valleys for the same
reason. As expected from the lower part of Figure 5, the case of smallj0, largeλ is
worse for soft thresholding, but the smallλ variance is better.

An important disfference though is that nearly optimal choice of the parameters is
not so simply available for soft thresholding. There is no longer a common value of
j0 and λ whose risk is always reasonably close to the optimum. The thresholdλMO

performs well in an average sense (and in a number of the examples considered here),
but there is substantial variability in each direction. Two extreme cases are shown in
Figure 13. Another unfortunate feature is that in a number of our examples, even at
λMO, choice ofj0 is important too. However, our plots suggest that the use ofλMO

coupled with a good choice ofj0 does reasonably well. An interesting open problem is
data based choice ofj0, which could be perhaps based on some estimate of the Risk.

The oracle inequalities of Donoho and Johnstone (1994a) and the asymptotics of
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Figure 13. Exact Risk as a Function of Initial Threshold Scalej0 and Threshold Valueλ, for n = 1,024, the
Symmlet 8 Basis, and Soft Thresholding. The threshold valueλD and λMO are shown as dotted rectangles.
The lowest point on the surface, hence the minimizing values ofj0 and λ, is indicated by the vertical dashed
line. Selected target functions are Wave and Blocks. Both noise levels are shown.

Donoho et al. (1995) showed that both hard and soft thresholding have near optimal
rates of convergence over a very large range of functions classes. Our results suggest
that for soft thresholding, careful choice of the levelj0 is needed for good mean squared
error performance. On the other hand, hard thresholding withλD does surprisingly well
for reasonable sample sizes, and is not adversely affected by a fixed and relatively small
choice ofj0. This greater robustness of hard thresholding can be understood from the
lower part of Figure 5, which suggests that carefully controlled circumstances are required
for soft thresholding to be better than hard thresholding. While such circumstances do
occur asymptotically, it is not surprising that this can often require very large sample
sizes.

Note that in Figure 13, Blocks, low noise, the best threshold for soft thresholding is
noticeably less than even the “minimax optimal.” This is hardly surprising, sinceλMO

attempts to guard against the worst-case. Some improvements are expected from explicit
estimates of the threshold (even allowing it to be different, level by level), based for
example on Stein’s unbiased estimate of risk as in Donoho and Johnstone (1995), or
based on cross-validation.
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APPENDIX

Here are the forms of the target functions introduced in Section 1.3.
1. Step:

m1(x) = .2 + (.6) 1( 1
3 ,.75)(x).

2. Wave:

m2(x) = .5 + (.2) cos(4πx) + (.1) cos(24πx).

3. Blip:

m3(x) =
(
.32+ .6x+ .3e−100(x−.3)2

)
1[0,.8]+

+
(
−.28+ .6x+ .3e−100(x−1.3)2

)
1(.8,1].

4. Blocks: this is Donoho and Johnstone’s Blocks, vertically rescaled to[.2, .8], first
define the sign function sgn(x) = 1(0,∞)(x) − 1(−∞,0)(x), then define a shifted
version ssgn(x) =

(
1 + sgn(x)

)
/2, then

m4(x) =
(
.6

9.2

)
{4ssgn(x− .1) − 5ssgn(x− .13)+}

3ssgn(x− .15) − 4ssgn(x− .23) + 5ssgn(x− .25)

−4.2ssgn(x− .4) + 2.1ssgn(x− .44) + 4.3ssgn(x− .65)

−3.1ssgn(x− .76) + 2.1ssgn(x− .78) − 4.2ssgn(x− .81) + 2} + .2.

5. Bumps: this is Donoho and Johnstone’s Bumps, vertically rescaled to approxi-
mately [.2, .8], first defineKw(x) =

(
1 +

∣∣ x
w

∣∣)−4
, then

m5(x) =
(

.6
5.3437952

)
{4K.005(x− .1) + 5K.005(x− .13)+

+3K.006(x− .15) + 4K.01(x− .23) + 5K.01(x− .25) +

+4.2K.03(x− .4) + 2.1K.01(x− .44) + 4.3K.01(x− .65) +

+3.1K.005(x− .76) + 5.1K.008(x− .78) + 4.2K.005(x− .81)} + .2.

6. HeaviSine: this is Donoho and Johnstone’s HeaviSine, vertically rescaled to
[.2, .8], again using sgn(x) = 1(0,∞)(x) − 1(−∞,0)(x),

m6(x) =
(
.6
9

) (
4 sin (4πx) + 5 − sgn(x− .3) − sgn(x− .72)

)
+ .2.

7. Doppler: this is Donoho and Johnstone’s Doppler, vertically rescaled to[.2, .8]

m7(x) = .6

(√
x(1 − x) sin

(
2.1π
x+ .05

)
+ .5

)
+ .2.
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8. Angles:

m8(x) = (2x+ .5) 1[0,.15](x) +
(−12(x− .15) + .8

)
1(.15,.2](x)+

+ (.2) 1(.2,.5](x) +
(
6(x− .5) + .2

)
1(.5,.6](x) +

+
(−10(x− .6) + .8

)
1(.6,.65](x) +

(−.5(x− .65) + .3
)

1(.65,.85](x) +

+
(
2(x− .85) + .2

)
1(.85,1](x).

9. Parabolas: first define the “quadratic ramp function”r2(x, c) = (x− c)21(c,1](x),
then

m9(x) = .8 − 30r2(x, .1) + 60r2(x, .2) − 30r2(x, .3)+

+500r2(x, .35) − 1000r2(x, .37) + 1000r2(x, .41) − 500r2(x, .43) +

+7.5r2(x, .5) − 15r2(x, .7) + 7.5r2(x, .9).

10. Time Shifted Sine: first define the transformationg(x) = (1 − cos (πx)) /2, then

m10(x) = .3 sin{3π [g (g (g (g (x)))) + x]} + .5.

[Received August 1995. Revised February 1998.]
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