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Exact Sampling Results for Some Classes of

Parametric Nonbandlimited 2-D Signals
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Abstract—We present sampling results for certain classes of two-
dimensional (2-D) signals that are not bandlimited but have a para-
metric representation with a finite number of degrees of freedom.
While there are many such parametric signals, it is often difficult
to propose practical sampling schemes; therefore, we will concen-
trate on those classes for which we are able to give exact sampling
algorithms and reconstruction formulas. We analyze in detail a
set of 2-D Diracs and extend the results to more complex objects
such as lines and polygons. Unlike most multidimensional sampling
schemes, the methods we propose perfectly reconstruct such sig-
nals from a finite number of samples in the noiseless case. Some
of the techniques we use are already encountered in the context
of harmonic retrieval and error correction coding. In particular,
singular value decomposition (SVD)-based methods and the anni-
hilating filter approach are both explored as inherent parts of the
developed algorithms. Potentials and limitations of the algorithms
in the noisy case are also pointed out. Applications of our results
can be found in astronomical signal processing, image processing,
and in some classes of identification problems.

Index Terms—Annihilating filters, critical sampling, Fourier se-
ries, signals of finite complexity, singular value decomposition.

I. INTRODUCTION

SAMPLING theory has been a topic of extensive research

over the past few decades, which led to refinements of the

foundations of Shannon’s theory and the development of more

general formulations with immediate relevance to signal pro-

cessing and communications. For example, it is already well

known that the traditional sampling theorem for representation

of bandlimited functions can be extended to classes of nonban-

dlimited signals that belong to shift-invariant spaces, such as

uniform splines [1], [16]. While this result is valid for signals

that live on a subspace spanned by a generating function and

its uniform shifts, it cannot be extended to a general case, and

typically, only the projection of the signal onto that specific sub-

space can be reconstructed.

Recently, it was shown that it is possible to develop sampling

schemes for a larger class of signals that are neither bandlim-

ited nor live on a subspace, namely, certain signals of a finite

innovation rate [20]. Examples of such signals include streams

of Diracs, nonuniform splines, and piecewise polynomials, with

Manuscript received February 21, 2002; revised March 7, 2003. The associate
editor coordinating the review of this paper and approving it for publication was
Dr. Olivier Cappe.
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Fig. 1. Sampling setup analog signal g(x; y) is prefiltered with h(x; y) =
'(�x;�y) (anti-aliasing step). The sampled signal is given by g (p; q) =

g (x; y)�(x � p; y � q).

the common feature that they allow for a parametric representa-

tion with a finite number of degrees of freedom and can be per-

fectly reconstructed from a finite set of samples. The proposed

methods were intended for one-dimensional (1-D) signals, but

when going to higher dimensions, the problem becomes more

involved and does not allow direct extension of 1-D results. In

this paper, we consider the problem of developing exact sam-

pling schemes and reconstruction formulas for certain classes of

parametric nonbandlimited 2-D signals that have a finite number

of degrees of freedom. The sampling setup we will be using is

shown in Fig. 1, where the original 2-D signal is filtered

with a smoothing kernel , and a uniform set of samples

is taken from the filtered version ,

that is

(1)

The above setup is typical for acquisition devices encountered

in practice, and the key question is under what conditions we

can reconstruct from . While this question is

fundamental in signal processing, the problem we consider dif-

fers from standard problems in sampling theory in the following

way. Namely, the space of signals we analyze is not a vector

space but, rather, a nonlinear space of finite dimension, whereas

the classic assumption is that the signals belong to shift-in-

variant vector spaces (e.g. bandlimited space or spline spaces

[16]).

There are a few important issues that will be addressed

throughout the paper. We investigate if it is possible to develop

a sampling scheme for a signal with degrees of freedom that

requires on the order of samples and which kernels

allow for such a scheme. In effect, this would substantially

reduce computational and storage requirements compared to

existing methods. Another important point is the numerical

performance of the algorithms, i.e., we will be interested in de-

veloping techniques that can recover the signal from a set of its

samples with high numerical precision, regardless of the signal
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complexity (e.g., the value of the parameter ) or signal struc-

ture. Finally, we expect the algorithms to be computationally

efficient and, if possible, robust to noise and model mismatch.

We will show that under certain conditions, one can develop

methods that satisfy all of the above requirements. Some of

the techniques we will be using are encountered in spectral

analysis [6]–[12], [14], [15], [17]–[19] or in error correction

coding [2], [3], [10]. The proposed methods, while being more

complex than the existing schemes for bandlimited signals, still

offer efficient algorithmic implementations. We will analyze in

detail the case of a signal made up of 2-D Diracs, which is of

particular interest to the field of astronomical image processing,

and discuss a possible extension of the results to the problem

of sampling some simple objects, such as lines and polygons.

The outline of the paper is as follows. In Section II, we re-

view classes of nonbandlimited two-dimensional (2-D) signals

that will be of interest in the sequel. In Section III, we develop

sampling methods for a periodic set of Diracs in two dimen-

sions in continuous space and extend the results to signals that

can be modeled as a convolution of Diracs and a known point

spread function. In Section IV, we consider the problem of sam-

pling finite length signals and derive sampling theorems using

the Gaussian kernel. A possible application of the previous re-

sults to the problem of sampling some simple objects, such as

polygons, is addressed in Section V. In Section VI, we analyze

the problem of estimating the model order and discuss numer-

ical performance of the proposed methods as well as their ro-

bustness to model mismatch and noise. In particular, we modify

the algorithms in order to improve their numerical precision in

the case of noisy data. Simulation results that indicate desirable

properties both in the deterministic case and in the presence of

noise are given in Section VII. We also address limitations due

to ill-conditioning in the Gaussian finite length case. Finally,

we discuss some directions for future work in the concluding

remarks.

II. TWO-DIMENSIONAL SIGNALS OF FINITE COMPLEXITY

An intuitive way to introduce the concept of signals of finite

complexity is to think of them as having a parametric represen-

tation with a finite number of degrees of freedom. The main

reason for considering the sampling problem for such a class of

signals is the fact that the number of degrees of freedom can be

often directly related to the minimum sampling density or to

the minimum number of samples that allows for a perfect re-

construction. For example, consider the simple case of a 2-D

bandlimited real signal , with a Fourier transform that is

nonzero over a finite region in the frequency space. If we let

and represent the widths in the and directions

of the smallest rectangle that encloses the region , then appro-

priately spaced samples can perfectly represent the signal, i.e.,

(2)

where and are such that and .

The above relation implies that we can think of the bandlimited

signal as having and degrees of freedom per unit of

length in the and direction, respectively, which correspond

to minimum sampling densities and . A more general form

of (2) is given by

(3)

where and are arbitrary shifts. For example, when

and both and are

i.i.d. random variables with exponential density, then

describes a separable 2-D Poisson process. Other examples of

finite complexity signals include simple lines and polygonal

lines, planar parametric curves, as well as some parametric

signals whose boundaries have a finite number of degrees of

freedom. In general, the space of signals we will be considering

is a finite-dimensional nonlinear space. By exploiting this

property, we will develop sampling schemes that allow for a

perfect reconstruction from a finite number of samples.

III. PERIODIC SET OF 2-D DIRACS IN CONTINUOUS SPACE

A. Fourier Series

One of the most basic forms of nonbandlimited signals of fi-

nite complexity is a set of Diracs, that is, one particular realiza-

tion of a 2-D Poisson process. Although this signal has a simple

parametric representation, the problem of extracting its parame-

ters from a set of samples is a more involved task than in the 1-D

case. In this section, we present sampling methods for a periodic

set of Diracs in continuous space. Specifically, we will show

that a lowpass approximation of the signal, which is essentially

a projection of the signal onto the subspace of proper dimen-

sion, provides sufficient information for perfect reconstruction.

Let be a periodic 2-D signal given by

(4)

where is assumed to be known, and . Consider

the Fourier series representation of

(5)

where and are the Fourier series coeffi-

cients given by

(6)

(7)

(8)
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(9)

that is, a linear combination of complex exponentials. We

will first analyze the case where the set of Diracs has no common

components along one direction, that is, all are distinct (or

alternatively all have different values) and present a method

that can perfectly recover the signal from samples.

B. Annihilating Filter Method for the Separable Case

Consider the Fourier Series coefficients and

given by (9)

(10)

(11)

where , and define a filter of order ,

having zeros at

(12)

Let coeff . Since has

the form of a weighted sum of exponentials, i.e.,

, the following relation must be satisfied:

(13)

In other words, each exponential in is being zeroed out

by one of the roots of ; thus, the filter is called the

annihilating filter, and its zeros uniquely define the set of loca-

tions . A more detailed analysis of the annihilating filters

is given in [15] and [20]. Therefore, we will only outline the

basic steps of the algorithm and discuss its application to the

2-D problem.

Annihilating Filter Algorithm:

• Find the Fourier series coefficients and ,

from a set of samples

(14)

where is a 2-D sinc sampling kernel1 of bandwidth

, whereas the sampling periods

and are chosen such that

1Note that '(x; y) does not necessarily have to be a periodic function.

and , with .

Namely, the sample values are given by

(15)

(16)

(17)

where is the Fourier transform of ,

which satisfies

otherwise.
(18)

If the sampling periods and satisfy the above re-

quirements, this system of equations is invertible and will

yield a unique solution for and ,

.

• Find the filter coefficients , from a

system of equations

(19)

If we let , the above system reduces to

(20)

Assuming without loss of generality that , the filter

coefficients can be computed from the Yule–Walker

system

(21)

which has a unique solution if the ’s are distinct. If

that condition is satisfied, the Fourier series coefficients

, provide sufficient information

to solve uniquely for the filter coefficients and, hence,

for the set by factorization.

• Solve for the set of pairs and corresponding

weights .

Consider the expressions for and ,

in a matrix form

...
...

. . .
...

...
(22)
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The above system is a Vandermonde system that yields a unique

solution for the weights , provided when .

By a similar argument, can be found from the

coefficients

...
...

. . .
...

...
(23)

Equations (21)–(23) yield a unique solution for the set

; thus, we can state the following proposition.

Proposition 1: Let be a periodic set of weighted

2-D Diracs of periods in the and directions,

and assume that does not contain common components

along the direction. Denote by the 2-D sinc sampling

kernel of bandwidth , and choose

the sampling periods and such that

and , where .

Then, the samples

are a sufficient representation of .

In the case when the coordinates of the Diracs are distinct

along the direction but not along the direction, the algo-

rithm remains virtually the same. The only difference is the use

of an alternative sinc sampling kernel of bandwidth

, whereas the signal parameters can be found

from the Fourier series coefficients and ,

. The presented method thus yields a unique solution

by taking only samples of the signal, but its numerical

stability typically degrades as the number of Diracs increases

due to the root-finding part of the algorithm. Another disadvan-

tage is that the method fails when the Diracs have common com-

ponents along both directions, which also points to numerical

instability if the coordinates are very close.

It is worth noting that it is also possible to solve for the signal

parameters from the same set of the Fourier series coefficients

by using alternative algorithms, based on 1-D subspace methods

for harmonic retrieval, such as ESPRIT [8] or the state space

method [12]. As opposed to the annihilating filter algorithm, a

basic principle inherent in the subspace methods is the singular

value decomposition (SVD). However, the same necessary con-

dition for the success of these methods holds, namely, the set of

Diracs must have no common components along the or the

direction. If such is not the case, one possible way of handling

this problem is discussed in the next subsection.

C. Sampling Schemes in the Nonseparable Case

The algorithm we described is based on the idea of reducing

the 2-D sampling problem to one dimension and applying

the 1-D annihilating filter method. We have seen that this

approach imposes certain constraints in terms of the loca-

tions of the Diracs in the set, i.e., the necessary condition

is that the problem is separable in the , or alternatively,

direction. In order to avoid this constraint, it seems natural

to try to extend the idea of annihilating filters to two dimen-

sions. In other words, if we can find an FIR filter

having zeros at , which

satisfies , then the problem would

essentially be equivalent to the one we discussed in the 1-D

case. Yet, it turns out that this approach cannot be used.

The main reason is that in the 2-D case, there is no general

relationship between the degree of a bivariate polynomial

and the number of its zeros. For example, consider a filter

that is a

2-D counterpart of the annihilating filter defined in Section III.

is a polynomial in and of degree and

satisfies the relation but has an infinite

number of zeros over the complex field, which is located at

hyperbolas . Clearly, the problem in two

dimensions is more involved, and a simple extension of the

method from the 1-D case will not lead to the solution.

An alternative way to estimate the locations and weights of

Diracs is to use the SVD as the inherent part of the algorithm.

Two-dimensional SVD-based algorithms have been studied ex-

tensively in the context of harmonic retrieval, typically for dis-

tinguishing and tracking signals of interest and extracting rel-

evant information from noisy measurements. In that particular

framework, subspace methods are used with the aim to estimate

the signal parameters from noisy data, and a model that approx-

imately fits all the available information is more desirable. We

will prove that in the deterministic case, 2-D subspace methods

can be adapted in such a way that the exact values of the param-

eters , , and can be found from only samples of

the signal .

D. Subspace Methods

Consider again the Fourier series coefficients given

by (9)

(24)

To make the notation simpler, we can write the above system as

(25)

where , and . If we let

and , (25) can be written as ,

with matrices , , and defined as

...
(26)

diag (27)
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...
(28)

If projections of the set of Diracs on the and the directions

are distinct, then the rank of the matrix is equal to , and the

values and can be obtained from the principal left or right

singular vectors of . If this condition is not satisfied, the algo-

rithm fails due to the rank deficiency of . Among the earliest

spectral estimation techniques that addressed this problem was

the matrix enhancement and matrix pencil (MEMP) algorithm

[7]. The method introduces so-called “enhanced matrices,” both

of rank , from which the sets and could be ob-

tained, yet an additional step is required to form the correct pairs

. This often involves a costly minimization procedure,

making this algorithm unattractive due to its computational cost.

In response to that, there has been a lot of work toward de-

veloping high-resolution methods that would link the estima-

tion problems in both dimensions [6], [14], [17]–[19]. We will

show how one of them, the algebraic coupling of matrix pencils

(ACMP) algorithm, can be efficiently applied to our sampling

problem. A more detailed discussion of the method can be found

in [17].

E. Outline of the ACMP Algorithm

Let the enhanced matrix be defined

as

(29)

where the th block component of is given by (30), shown

at the bottom of the page. The matrix can be written as

(31)

where and are generalized Vandermonde matrices

(32)

(33)

and are diagonal matrices diag ,

diag , while and are given by

...
(34)

...
(35)

Define a top-left matrix obtained by omitting the last row and

the last column of the block components of , i.e. the top-left

matrix has block components

(36)

where denotes the operation of deleting the last column of

, whereas denotes the operation of deleting the last row of

. Define in a similar way top-right and bottom-left matrices

and . The outline of the ACMP algorithm is then the

following.

• Compute the singular value decomposition of

(37)

• Find , , , and from

(38)

(39)

• Compute the eigenvalue decomposition of a matrix

(40)

where is a scalar introduced with the aim of avoiding

multiple eigenvalues.

• Apply the eigentransformation to and

to find and , i.e.,

(41)

(42)

Since the same transformation is used to diagonalize both ma-

trices, and correspond to the same sinusoidal component.

A necessary condition for this property to hold is that all the ma-

trices involved in the two matrix pencils and

can be written as the product of the same left and right matrices,

...
(30)
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with possibly a different matrix in the middle. On the other hand,

a sufficient condition for and to have the full rank is

(43)

Equation (43) implies that if we set , the sufficient

condition for having a unique solution is , .

In other words, it suffices to know , , ;2

therefore, only samples of will yield a unique

solution for the set of pairs . Note that do not

necessarily have to correspond to the lowpass version of the

signal, and it is possible to obtain a perfect reconstruction from

any subspace of the same dimension. While this is true for de-

terministic signals, in the presence of noise, it is desirable to use

oversampled schemes and estimate the signal parameters from a

frequency band where a signal-to-noise ratio (SNR) is highest.

Finally, the corresponding set of weights can be found

from (31), i.e., , where denotes a pseudoin-

verse of . Since both and are of rank , the above

system will have a unique solution for the matrix of coefficients

. This leads us to the following proposition.

Proposition 2: Consider a periodic set of weighted 2-D

Diracs having periods in the and

directions, and let be the 2-D sinc sampling kernel of

bandwidth . If the sampling

periods and are such that

and , where , then in

the general case, the samples

are a sufficient characterization of .

In our analysis, we specifically considered the sinc sampling

kernel because it allows for a straightforward computa-

tion of the Fourier series coefficients of the signal from

the set of samples. However, we can use any bandlimited

kernel whose spectrum is nonzero over the same region

, assuming that the inverse

of over that frequency range exists and is numerically

stable. That is, the only modification is that the Fourier series

coefficients of the sampled signal have to be divided by the

corresponding Fourier series coefficients of the sampling kernel

before running the estimation algorithm. This allows us to

use the same approach based on the shift-invariant subspace

property together with a much wider class of antialiasing filters.

F. Point Spread Function

The previous results can be directly extended to the case of

signals modeled as a “blurred” version of the set of Diracs or,

more precisely, as a convolution of the signal with a cer-

tain point spread function (PSF). This case is of interest to the

field of optical astronomy, where the image formation, without

noise, can be modeled as a convolution of the object being made

up of point sources (i.e. stars) with the PSF, which may be a

result of the imperfections of imaging optics, atmospheric pro-

cesses, etc.

2In our case G[m;n] are the Fourier series coefficients of g(x; y).

There is no exact expression describing the shape of the PSF;

however, many authors [11], [13] prefer to model the blurring

process due to the atmospheric turbulence by a Gaussian func-

tion of the form

(44)

or, equivalently, in the frequency domain, as

(45)

which turns out to be a good approximation in the case of aber-

ration-free imaging optics. Clearly, the only modification of the

sampling scheme is that we have to deconvolve a blurred signal

prior to estimating relevant parameters. This can be done in the

frequency domain by multiplying the Fourier series coefficients

of the blurred signal with the inverse of . Under the noise-free

assumption, this step is sufficient to obtain a set of coefficients

that can be expressed as a linear combination of exponentials.

However, this step is appropriate if the parameter is suffi-

ciently large so that finding the inverse of over the frequency

range of interest is numeri-

cally stable. While the above analysis is valid for periodic sig-

nals, the method does not substantially change in the case of

finite length signals, which is of more practical importance and

will be discussed in the next section.

IV. FINITE LENGTH SIGNALS

The previous results on sampling the 2-D point process have

been derived under the assumption that the signal is modeled

as a periodic pattern of Diracs so that the relevant parameters

can be extracted from the appropriate set of the Fourier series

coefficients. In this section, we analyze the problem of sampling

2-D signals made up of a finite number of weighted Diracs.

Let a signal be given by

(46)

Consider the samples obtained by filtering the signal with the

Gaussian kernel taken at ( , )

(47)

(48)

Extending a technique used in [20], let us denote

and . Then, (48)

reduces to

(49)

The set of modified samples can thus be expressed as

a linear combination of real exponentials, and in order to deter-
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Fig. 2. Annihilating filter method. (a) Two-dimensional signal made up ofM = 9 weighted Diracs. (b) 2-D sinc sampling kernel of bandwidth [�M! ;M! ]�
[�! ; ! ]. (c) Lowpass approximation obtained by convolving the signal with the sinc function. (d) Reconstructed signal.

mine and , we can apply the method described in the

previous section. Thus, we have the following proposition.

Proposition 3: Consider a finite set of weighted 2-D

Diracs , and let be the Gaussian sampling

kernel . If and

, then the sample values

are sufficient to reconstruct the signal.

Note that if the problem is separable in the or the direc-

tion, the above result holds for the sinc kernel as well, yet the al-

gorithm becomes more complicated [20]. The Gaussian kernel,

however, is more important in practical applications. Besides, it

allows for an almost local reconstruction, due to the exponen-

tial decay of the Gaussian function. In the presence of noise,

the width of the reconstruction window must be chosen care-

fully; otherwise, the system can become ill-conditioned, as we

will show in Section VII. While in the separable case there are

methods to improve the numerical behavior of the algorithm [4],

they cannot be directly extended to the nonseparable problem,

and improving the conditioning of the system in such a case is

still an open question.

V. GENERALIZATION OF THE RESULTS ON 2-D DIRACS

The results we derived so far can be applied to a larger class

of 2-Dsignals, such as simple lines, polygonal lines, as well

as some simple 2-D objects. Although the extensions are not

straightforward and typically become more intricate as we in-

crease the complexity of the model, our results still indicate that

developing new sampling schemes for such objects is rather in-

triguing and potentially entails many interesting applications.

A. Line of Finite Length

Consider a periodic signal represented within one pe-

riod as

otherwise.
(50)
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Fig. 3. ACMP algorithm. (a) Signal made up of M = 9 weighted Diracs that have common components along both directions. (b) Sinc sampling kernel of
bandwidth [�M! ;M! ] � [�M! ;M! ] used in the algorithm. (c) Lowpass approximation of the signal.

The above notation assumes that the line is not vertical; other-

wise, a similar expression can be written by swapping and .

The Fourier series coefficients of are given by

(51)

(52)

(53)

(54)

Clearly, no longer has the form of a linear combination

of complex exponentials since both and appear in the de-

nominator. Therefore, neither the annihilating filter method nor

the subspace methods can be used directly with the set of the

Fourier series coefficients. Yet, the problem can be handled in

the following way. Consider the coefficients

(55)

and define .

Since ,3 we can solve for the set by using

the 1-D annihilating filter with zeros and

. The filter coefficients coeff

can be found from the system of equations ,

.

Next, consider the coefficients

(56)

3We assumed that the line is not vertical, otherwise we have to consider the
coefficients G[0; n].
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There are three unknowns , , and that can be found from

, . Along with the set , this uniquely

defines the line.

B. Polygonal Line

A straightforward extension of the previous result is the case

of a 2-D signal made up of a periodic pattern of a polyg-

onal line, that is, a closed curve made up of a finite number

of linear pieces. Let the vertices be located at points ,

. Since we can think of as being com-

posed of lines, the Fourier series coefficients can be

found using (54)

The above relation holds if there are no vertical segments in

the signal and is obtained after grouping the terms with the

same denominator. Consider the set of coefficients ,

:

and let

(57)

where . Since has the form of a

weighted sum of complex exponentials, the sets and

can be found from the coefficients , using

the annihilating filter method. In order to obtain a unique so-

lution, two conditions need to be satisfied. Namely, all must

be different, and none of the coefficients should be equal to

zero. The second condition is always satisfied, given the fact

that the adjacent segments of the polygonal line must have dif-

ferent slopes ( and ). On the other hand, the first condi-

tion poses further constraints on the location of the vertices.

Next, consider a set of coefficients

given by

(58)

The above relation is a system of nonlinear equations with

unknowns that can be solved for and .

Together with the corresponding values , this uniquely defines

the polygonal line.
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Fig. 4. Numerical performance versus average spacing of the Diracs. The
numerical behavior of the algorithms is tested for different values of the
average spacing (normalized to one period) ofM Diracs in the set, as well as
for different values ofM . (a) Average reconstruction error for the annihilating
filter algorithm. (b) Average reconstruction error for the ACMP algorithm.

While all the signal parameters can be extracted from the

above set of samples, the described method includes solving the

system of nonlinear (58), which may yield a mediocre numerical

precision and high complexity. One possible way to overcome

this problem is to solve separately for the and the coordi-

nates of vertices and then use a combinatorial approach, that

is, find a set of pairs that best matches the lowpass ap-

proximation obtained from the samples. Although this solution

requires twice the number of samples compared with the pre-

vious method and involves an optimization procedure as well,

its numerical precision is typically much better. Clearly, both

methods yield a solution by taking samples; however,

the necessary condition for their success is that the vertices of

the polygonal line have no common components along the and

directions.
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Fig. 5. Finite set of 2-D Diracs. (a) Two-dimensional signal made up ofM = 17 weighted Diracs. (b) Gaussian sampling kernel. (c) Convolution of the signal
with the sampling kernel. (d) Reconstructed signal with an RMSE of less than 10 .

C. Bilevel 2-D Signals

A further extension of the previous results includes the case

of a bilevel signal made up of a periodic pattern of poly-

gons. As in the previous case, assume that does not con-

tain vertical lines. Under this assumption, we can take a par-

tial derivative with respect to , and by denoting

, we get

(59)

Since is a signal made up of a polygonal line, its Fourier

series coefficients are given by

(60)

Therefore, instead of taking a derivative of the signal itself, the

derivation can be done on the Fourier series coefficients, and the

values should be used in the algorithm developed in

Section III.

VI. NUMERICAL PERFORMANCE AND ALGORITHMS IN THE

PRESENCE OF NOISE

So far, we have assumed deterministic signals and consid-

ered the possibility of developing the sampling schemes that

allow for perfect reconstruction from as few samples as possible.

Questions that naturally arise from this approach are related to

numerical precision and stability of the developed algorithms as

well as to their performance in the presence of noise.

A. Complexity

In Section II, we proved that under certain conditions, the

annihilating filter algorithm leads to perfect reconstruction

from only samples. However, in the presence of noise,

this approach has several disadvantages. Namely, the anni-

hilating filter method is basically a 1-D approach, that is,

the coordinates of Diracs along one direction are estimated
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by finding the roots of the annihilating filter, whereas the

corresponding coordinates along the other direction are then

found by solving a Vandermonde system (i.e., the information

is extracted from a set of weighting coefficients). In general, the

root-finding part of the algorithm is more robust to noise than

the estimation of the weighting coefficients, which then results

in a different numerical precision in the and directions.

Besides, even in the case of noiseless data, the numerical

accuracy of the method decreases if there are closely spaced

Diracs in the set (particularly for large values of ), due

to the root-finding part of the algorithm. On the other hand,

the approach based on 2-D subspace methods exploits the

shift-invariance property and relies only on a right deployment

of matrix manipulations. It avoids the problem of different

precision in and and typically yields better performances at

the expense of a higher computational complexity. The major

computational requirement of the annihilating filter method is

associated with the root-finding part of the algorithm so that

the overall computational order is . On the other

hand, the computational requirement of the ACMP algorithm

is dominated by the SVD of the matrix , which

results in the overall order of .

B. Noisy Case

In the case of noisy signals, critically sampled schemes typi-

cally result in poor numerical accuracy. In practice, this problem

can be dealt with by using oversampling and truncation of the

SVD of certain matrices. For example, we can exploit this idea

to modify the ACMP algorithm presented in Section III. Since

the presence of noise destroys the low rank property of the ma-

trix defined in (36), we have to truncate the SVD of ex-

plicitly to rank , i.e.,

(61)

with being a full-rank matrix. The presence of noise

thus necessarily degrades the performance of the algorithm due

to the fact that the eigentransformation will no longer per-

fectly diagonalize both matrix pencils.

The same approach can be used to modify the annihilating

filter method, that is, we should consider an extended system of

(21)

(62)

and decompose a matrix of coefficients as

...
...

. . .

(63)
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Fig. 6. Numerical precision versus width of the Gaussian kernel. The signal

from Fig. 4(a) is sampled with the Gaussian kernel e . The
parameter � is varied between 0:03T and 25T , where T denotes the spacing
between adjacent samples. The reconstruction error is plotted as a function of
�=T , indicating a strong sensitivity to the choice of the width �.

where the first term corresponds to the best (in the Frobe-

nius-norm sense) rank approximation of the matrix . The

filter coefficients are then computed as

...
(64)

C. Estimation of the Model Order and Model Mismatch

Note that in the methods presented so far, we required prior

knowledge of the model order . Therefore, an obvious ques-

tion is how do we know in advance the number of parame-

ters that have to be estimated? This question is at the core of

a model-based approach to nonlinear estimation problems en-

countered in signal and data analysis [5], [12]. For example, if

we use the ACMP algorithm, can be estimated as the number

of dominant singular values of , which is a very good estimate

of the model order if the smallest singular value of the original

low-rank matrix is not dominated by the noise variance. On

the other hand, for low values of SNR, it is often difficult to dis-

criminate between small singular values corresponding to the

signal from extraneous ones due to noise, and typically, only

dominant signal components can be reliably estimated. That is,

in such a case, overmodeling the signal can give rise to spurious

poles that can be incorrectly identified as signal poles. Similarly,

if the annihilating filter algorithm is used, the number of dom-

inant singular vectors of the extended matrix (assuming that

the number of columns is greater than ) should be used as an

estimate of the model order. A more detailed treatment of this

problem can be found in [5].

Another interesting question is how well we can reconstruct

the signal if the number of samples is less than the minimum

number theoretically required for perfect reconstruction? Intu-

itively, if the signal has only dominant components,
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Fig. 7. Model mismatch and performance in the presence of noise. (a) Set ofM = 8 weighted Diracs with K = 5 Diracs being dominant, all having the same
weights a = 10, whereas the rest have weights a = 3. (b) Reconstructed signal. We assumed that the model order is M = 5 and used the ACMP algorithm to
reconstruct the signal. Only the dominant components are extracted, with the reconstruction error of RMSE = 0:006. (c) Average reconstruction error for different
values of the ratio of amplitudes A =A as well as for different number of nondominant components in the set for the ACMP method. (d)
Performance of the ACMP algorithm in the noisy case: RMSE versus SNR for different values of the oversampling factor.

one might expect to extract only these components from the un-

dersampled signal, provided that the number of samples is still

sufficient for that. This turns out to be true, as we will demon-

strate in the next section, which points to some robustness of the

algorithms to model mismatch.

VII. EXPERIMENTAL RESULTS

We illustrate the performance of the proposed sampling

schemes with some simulation examples. A noiseless periodic

signal made up of weighted Diracs that have common

components along the direction but not along the direction

is presented in Fig. 2(a). The signal is filtered with the sinc

sampling kernel of bandwidth ,

which is shown in Fig. 2(b), leading to the lowpass approxima-

tion in Fig. 2(c). All the signal parameters are estimated using

the annihilating filter method, and the reconstructed signal is

illustrated in Fig. 2(d). The algorithm provides almost perfect

reconstruction in this case, with an RMSE of less than .

Fig. 3(a) illustrates a noiseless signal consisting of

weighted Diracs that have common components in both direc-

tions. Since the annihilating filter method would fail in this case,

we will use the ACMP algorithm to recover the signal from

its lowpass approximation. The signal is sampled with the sinc

sampling kernel, shown in Fig. 3(b), and reconstructed with an

RMSE of less than . However, as opposed to the annihi-

lating filter method, the numerical precision of this algorithm

is not considerably affected by the spacing of Diracs in the set.

This is shown in Fig. 4, where a reconstruction error is plotted as

a function of average spacing of the Diracs in the set. Clearly,

for small values of , the performance of the annihilating filter

method degrades as the number of Diracs increases, whereas the

ACMP method retains good numerical properties, even for large

values of .
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Fig. 8. Set of finite lines. (a) Signal made up of two finite lines. (b) Lowpass approximation obtained by convolving the signal with the sinc kernel of bandwidth
[�4! ; 4! ] � [�! ; ! ]. (c) Reconstructed set of lines.

The case of finite-length signals, namely finite sets of Diracs,

is considered next. Fig. 5(a) illustrates a signal made up of

weighted Diracs. The signal is filtered with the Gaussian

kernel shown in Fig. 5(b), and a set of uniform samples is taken

from a filtered version shown in Fig. 5(c). The reconstructed

signal is presented in Fig. 5(d), and the reconstruction error is

less than . Note that in this case, the width of the Gaussian

kernel (i.e. the value of the parameter ) must be chosen care-

fully in order to ensure the good numerical performance of the

method, as illustrated in Fig. 6.

We next analyze robustness of the algorithms to model mis-

match, in particular, how well they perform if the signal is under-

sampled. Fig. 7(a) shows a signal made up of weighted

Diracs with of them being dominant. The locations of

the Diracs are randomly chosen according to a uniform dis-

tribution over [1,150] [1,150]. The signal is sampled with

the sinc kernel of bandwidth ,

and the ACMP method is used to find the signal parameters

from its lowpass approximation. In Fig. 7(b), we show a recon-

structed signal where only the dominant components have been

extracted, whereras the precision with which we can estimate

them depends on the number of nondominant components and

their overall power, as illustrated in Fig. 7(c). Fig. 7(d) shows the

behavior of the ACMP algorithm in the presence of noise. We

considered the signal made up of eight Diracs, this time having

equal weights, embedded in additive white Gaussian noise. The

method was tested for different values of a SNR and different

values of the sampling kernel bandwidth . For each value of

the SNR, as well as , we plotted an average RMSE over 50

different realizations of the signal. The results clearly indicate

that the numerical precision of the method is improved by in-

creasing the bandwidth of the sampling kernel and estimating

the signal parameters from a larger set of samples. Roughly

speaking, in order to reduce the RMSE by a factor of , the

bandwidth of the sampling kernel has to be increased times.

Some extensions of the developed sampling schemes to

simple objects are considered next. One example is presented

in Fig. 8, which demonstrates the performance of the algorithm

when applied to a set of two finite lines. The signal is filtered

with the sinc kernel of bandwidth ,

leading to a lowpass approximation shown in Fig. 8(b). A

set of lines is almost perfectly reconstructed by using the

annihilating filter method [see Fig. 8(c)]. Another example is

illustrated in Fig. 9(a), that is, sampling a bilevel pentagon.
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Fig. 9. Bilevel polygon. (a) Bilevel pentagon. The signal has 2M = 10 degrees of freedom. (b) Lowpass approximation obtained by convolving the signal with
the sinc kernel of bandwidth [�2M! ; 2M! ]� [�! ; ! ]. (c) Polygonal line reconstructed with the annihilating filter method and the original polygonal line.
(d) Polygonal line reconstructed with the state space method. In this case, the line is reconstructed with an RMSE of less than 10 .

The signal is first filtered with a sinc kernel of bandwidth

(where ), and a set

of samples is taken from a lowpass approximation shown

in Fig. 9(b). Although the signal is completely specified by

this set of samples, we extracted only the coordinates of

vertices from the given set, whereas the coordinates are found

from sample values taken with the sinc kernel of bandwidth

. The reason for doing this is

to avoid solving the system of nonlinear equation (58), which

typically results in less numerical precision than the above

approach. The corresponding pairs are then found by

using a combinatorial method, that is, by choosing a set that

corresponds to a signal with a lowpass version that best matches

the lowpass approximation from Fig. 9(b). Fig. 9(c) shows

the polygonal line reconstructed using the annihilating filter

method, whereas in Fig. 9(d), a 1-D subspace method (the state

space method [12]) is applied, which clearly performs better.

VIII. CONCLUSION

We have presented several algorithms for sampling certain

classes of 2-D signals that are not bandlimited but have a finite

number of degrees of freedom. Our approach differs form stan-

dard multidimensional sampling schemes since we tried to de-

velop methods that can perfectly reconstruct such signals from

a finite set of samples. We analyzed in detail the signal made

up of 2-D Diracs, whose algebraic structure gives a good in-

sight into the basic principles inherent in all our algorithms, and

discussed possible extensions of the results to more complex

classes of signals. In order to derive exact sampling formulas,

we used some techniques already encountered in the context

of spectral estimation. Although the sampling results were de-

rived under the noise-free assumption, the case of noisy data was

considered as well. With the exception of one case that is very

sensitive to noise (the nonseparable Gaussian case with finite

length signals), the methods have desirable numerical proper-

ties, given good choices of parameters and sufficient oversam-

pling. The proposed algorithms potentially have impact in cer-

tain signal processing applications like image processing. We

are currently looking into one application to super-resolution

videogrammetry, where the position of 3-D objects can be deter-

mined with subpixel precision by locating some clearly marked

features, such as points or edges, using a set of 2-D images taken
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from various angles [4]. Finally, we would like to mention that

while the methods we presented are rather specific, we believe

there is a much larger class of nonbandlimited signals that can

be perfectly reconstructed from a finite set of samples. We are

investigating some alternative techniques, such as Radon trans-

form sampling, that would be applicable to more general classes

of signals, and the first results are promising [9].
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Irena Maravić received the B.S. degree from the
Department of Electrical Engineering, University
of Belgrade, Belgrade, Yugoslavia, in 1997 and
the M.S. degree from the California Institute of
Technology, Pasadena, in 2000. She is currently
pursuing the Ph.D. degree in the filed of digital
signal processing at the Swiss Federal Institute of
Technology (EPFL), Lausanne, Switzerland.

From 1997 to 1999, she was a member of
academic staff at the University of Belgrade. In
2000, she joined the Laboratory for Audio-Visual

Communications, EPFL. Her research interests include signal processing for
communications, sampling theory, multidimensional signal processing, and
computational harmonic analysis.

Martin Vetterli (F’95) received the Dipl. El.-Ing.
degree from ETH Zürich (ETHZ), Zürich, Switzer-
land, in 1981, the M.S. degree from Stanford
University, Stanford, CA, in 1982 and the Doctorat
ès Science degree the Swiss Federal Institute of
Technology (EPFL), Lausanne, Switzerland, in
1986.

He was a Research Assistant at Stanford and EPFL
and has worked for Siemens and AT&T Bell Labora-
tories. In 1986, he joined Columbia University, New
York, NY, where he was an Associate Professor of

electrical engineering and co-director of the Image and Advanced Television
Laboratory. In 1993, he joined the University of California, Berkeley, where
he was a Professor with the Department of Electrical Engineering and Com-
puter Sciences until 1997 and now holds an Adjunct Professor position. Since
1995, he has been a Professor of communication systems at EPFL, where he
chaired the Communications Systems Division from 1996 to 1997 and was head
of the Audio-Visual Communications Laboratory. He held visiting positions at
ETHZ in 1990 and Stanford in 1998. He is also on the editorial boards of An-

nals of Telecommunications, Applied and Computational Harmonic Analysis,
and The Journal of Fourier Analysis and Applications. His research interests
include wavelets, signal processing for communications, computational com-
plexity, image/video processing and compression, and distributed signal pro-
cessing and communications. He is the co-author, with J. Kovacevic, of the book
Wavelets and Subband Coding (Englewood Cliffs, NJ: Prentice-Hall, 1995). He
has published about 90 journal papers on a variety of topics in signal/image pro-
cessing and communications and holds seven patents.

Dr. Vetterli is a member of SIAM and was the Area Editor for Speech,
Image, Video, and Signal Processing of the IEEE TRANSACTIONS ON

COMMUNICATIONS. He received the Best Paper Award of EURASIP in 1984
for his paper on multidimensional subband coding, the Research Prize of the
Brown Bovery Corporation (Switzerland) in 1986 for his doctoral thesis, and
the IEEE Signal Processing Society’s Senior Award in 1991 and in 1996 (for
papers with D. LeGall and K. Ramchandran, respectively). He received the
Swiss National Latsis Prize in 1996, the SPIE Presidential award in 1999, and
the IEEE Signal Processing Technical Achievement Award in 2001. He is a
member of the Swiss Council on Science and Technology. Since 2001, he has
directed the National Competence Center in Research on mobile information
and communication systems (www.terminodes.org). He was a plenary speaker
at various conferences (e.g., 1992 IEEE ICASSP).


