
ls the
c
ially
WKB
as an

n
-

ct

tic ex-

f
ity of
d Wu
mplex
t, they

Downloaded
Exact semiclassical expansions for one-dimensional
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Eric Delabaere
UMR CNRS J. A. Dieudonne´ No. 6621, University of Nice, 06108 Nice Cedex 2, France
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A set of rules is given for dealing with WKB expansions in the one-dimensional
analytic case, whereby such expansions are not considered as approximations but as
exact encodings of wave functions, thus allowing for analytic continuation with
respect to whichever parameters the potential function depends on, with an exact
control of small exponential effects. These rules, which include also the case when
there are double turning points, are illustrated on various examples, and applied to
the study of bound state or resonance spectra. In the case of simple oscillators, it is
thus shown that the Rayleigh–Schro¨dinger series is Borel resummable, yielding the
exact energy levels. In the case of the symmetrical anharmonic oscillator, one gets
a simple and rigorous justification of the Zinn-Justin quantization condition, and of
its solution in terms of ‘‘multi-instanton expansions.’’ ©1997 American Institute
of Physics.@S0022-2488~97!02911-3#

I. INTRODUCTION

The time-independent one dimensional Schro¨dinger equation,

2\2
d2f

dq2 1~V~q!2E!f50, ~0!

has always been a reservoir of useful models in quantum physics. In most such mode
potential functionV is analytic ~e.g., a polynomial!, enticing physicists into making analyti
continuations in the complexq plane, a technique they are especially fond of. This is espec
true for problems pertaining to semi-classical asymptotics, where analytic continuation of
expansions allows one to travel between ‘‘classically allowed’’ regions where the wave h
oscillatory behaviour@E.V(q), so that the classical momentump5(E2V(q))1/2 is real# and
‘‘classically forbidden’’ regions (E,V(q)) where tunnelling takes place. But it is well know
that analytic continuation of such divergent expansions as~1.1! should not be performed care
lessly, because of Stokes phenomena.

Stokes phenomena have been much written about, and remain a controversial subject~cf. for
instance the very lucid comments of Dingle in Ref. 1!. One source of miscomprehension is the fa
that most physicists work with WKB expansions as they would work with true functions~or
almost so!, whereas most modern mathematicians insist on considering them as asympto
pansions in the sense of Poincare´, i.e., broad equivalence classes of functions~modulo all fastly
decreasing functions of\, for instance!. The latter viewpoint makes it difficult to keep track o
small exponential effects, i.e. tunnelling. The former leaves place to doubts as to the valid
operations to be performed on formal power series: consider for instance how Bender an2

guessed the singularity structure of the energy levels of the anharmonic oscillator, in the co
plane of the coupling constant; after presenting a nice zeroth-order semiclassical argumen
felt compelled to pursue in a completely different way, writing the following:
0022-2488/97/38(12)/6126/59/$10.00
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We did not use the above argument on grounds of rigor. It is not clear what is meant
‘‘approximate zeroth-order analytic continuation.’’

In this paper we provide tools for making such arguments rigorous, allowing for ana
continuations with respect to the variableq and whichever parameters equation~0! depends on,
with an exact control of small exponentials to all orders. The underlying mathematics
elaboration of ideas of Balian and Bloch,3–5 pushed further in the one dimensional case
Voros,6,7 and set on a firm mathematical basis using Ecalle’s theory of resurgent function8–12

AssumingV to be an arbitrary~possibly complex! polynomial function~in fact, most of what we
shall say would still hold true whenV is an entire function ‘‘sufficiently well behaved at infin
ity’’ !, it can be shown that WKB expansions, if ‘‘well normalized’’ as explained hereafter,
resurgent functions of the scale parameter 1/\. What this means precisely is explained in t
introductory section of Ref. 12. For our present purpose all the reader needs to understan
following practical implication of that statement: well normalized solutions of the Schro¨dinger
equation can be exactly encoded by certain linear combinations of WKB expansions~which we
call WKB symbols!, thanks to resummation procedures of divergent series which generaliz
well known Borel resummation procedure. But in contradistinction to the Borel case we d
have one resummation operation but two such, the so-called right and left resummation ope
which generally differ by small exponential terms~the case when they coincide is the Bor
resummable case!. A given wave function~i.e., a solution of the Schro¨dinger equation! can thus,
if suitably normalized, be encoded by two different WKB symbols, its right~resp., left! symbol,
from which the function is recovered by right~resp., left! resummation. These two symbols diffe
only by smaller exponential terms, and the former can be recovered from the latter by a f
operation which we call the Stokes automorphism, and which we denote byG. Analytic continu-
ation of WKB symbols is possible along all paths of the complexq plane which avoid the
so-called turning points, whereV(q)5E. But our encoding~whether right or left! of wave func-
tions by WKB symbols is discontinuous across special lines called Stokes lines. Stokes
divide the complexq plane into simply connected regions called Stokes regions, and the wa
right ~resp., left! symbol of a wave function changes from one Stokes regionR to another oneR8
is given by what we call the right~resp., left! connection isomorphismC R8R

1 ~resp., C R8R
2 !.

Decomposing the spaces of WKB symbols into their direct summands corresponding to th
possible determinations of the momentum, we can writeC R8R

6 as a 232 matrix of operators,
whose entries will be called the ‘‘connection operators’’ fromR to R8: more precisely the con
nection operator from (R,p) to (R8,p8) will be the entry corresponding to the initial determin
tion p and the final determinationp8 of the momentum.

The encoding of a wave function by its right or left symbol has the awkward feature o
preserving reality properties~the right and left symbol of a real wave function are comp
conjugate to each other, so that except in the Borel resummable case none of them is real!. When
one is keen on keeping track of reality properties it is therefore convenient to replace right
resummation by Ecalle’s median resummation, kind of a ‘‘geometrical mean’’ between the
Explicit computations of median symbols will be presented in this article, along with the c
sponding computations of right and left symbols.

The rules for computing the Stokes automorphism and the connection isomorphisms ar
simple to state, without knowing anything of resurgence theory: we shall present them as k
a ‘‘do it yourself’’ kit, which the reader can use in a great variety of situations.

In section II we deal with generic values of the energy, for which all turning points are sim
in that case we know from Ref. 11 that the connection isomorphisms are given by combinati
analytic continuations along suitable paths of the complexq plane, which we shall describ
explicitly by simple pictograms.

In section III our pictographic rules are extended~using the results of Ref. 12! to the case
when there are double turning points. The corresponding WKB expansions now involve s
J. Math. Phys., Vol. 38, No. 12, December 1997
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prefactors~which are not just power series of\!, and in section IV we show how to deal with the
prefactors in the computations.

In the concluding section V we deal with the problem of solving the quantization conditio
bound states~or resonances! with respect to the energy parameter: from the results of the prev
sections we can thus obtain exact~resurgent! expressions for the energy levels, yielding rigoro
justifications of such results as the Zinn–Justin ‘‘multi-instanton expansions’’~see Refs. 13, 14 for
instance!, or the Bender and Wu complex branch point structure of the energy levels o
symmetrical quartic oscillator~cf. Refs. 2, 15–17!. We study the latter problem in detail in Re
18.

One should emphasize that, in the spirit of Ecalle’s resurgence theory,19–23a lot of interesting
results can be obtained without ever computing explicitly the WKB expansions we are spe
about: they can be treated as implicit objects, the main interest of which lies in the small
nentials they generate through the ‘‘resurgence’’ process~which is completely described by ou
pictograms!.

On the other hand our methods can also be used by computation lovers: examples o
formal computations are given in sections IV and V. The question immediately arises of h
deduce numerical information from these purely formal computations. The best answer we
is the ‘‘hyper-asymptotic’’ procedure of Berryet al.,24–26which gives wonderfully efficient ways
of extracting very precise numerical information from divergent series, knowing the resurg
properties of these series.

A. Basic formal ingredients of complex WKB calculus

Following Voros,6 we shall denote byĊ the punctured complexq-plane ~with the turning
points deleted! and by Ċ2 its two-fold covering @i.e., the Riemann surface ofp(q)5(E
2V(q))1/2#. Locally on that covering, complex WKB expansions read27 as

w~q!5~w0~q!1w1~q!\1w2~q!\21••• !e~ i /\!S~q!, ~1.1!

whereS ~the complexified action function! is a primitive ofp ~i.e., dS/dq5p!, and the expansion
in front of the exponential is a formal power series in\. The fact that~1.1! should be a formal
solution of the Schro¨dinger equation characterizes this series up to an arbitrary normaliz
factor ~an invertible formal power series in\, with constant coefficients!. A possible choice of
normalization is

w~q!5P~q,\2!21/2e~ i /\!*q0

q P~q8,\2!dq8

(1.2)q0

~Ref. 28! where the formal power series,

P~q,\2!5p~q!1p1~q!\21p2~q!\41••• ,

is defined as the even part~in \! of the solution of the Riccati equation,

Y22 i\Y85E2V~q!

@this Riccati equation is deduced from equation~0! by the change of unknown functionf
5exp(i/\*Y). Formally solving it, and separating even and odd parts~in \!, one checks that
Yodd5 i\/2(Yeven8 /Yeven)#.

Such expansions will be called well normalized atq0 (q0PĊ2); of course they are multival-
ued analytic onĊ2 , because the integral in the exponential depends on the homotopy class
integration path. For our purposes it will be more convenient to work with slightly diffe
normalization conventions, which read as
J. Math. Phys., Vol. 38, No. 12, December 1997
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w~q!5P~q,\2!21/2e~ i /\!*`
q

~P~q8,\2!2p~q8!!dq8)e~ i /\!S~q!,
(1.2)̀

whereS is as in~1.1! ~we have used the fact thatP2p is integrable at infinity!; such expansions
will be called well normalized at infinity~here again, of course, the precise meaning of t
expression depends on the homotopy class of the integration path!.

Whichever way WKB expansions are normalized, their multivaluedness can be describ
the following way. Letg be a cycle, i.e. a path inĊ2 starting from some pointq and getting back
to the same pointq with the same determination of the momentump. Then it immediately follows
from the above formulae that analytic continuation alongg transformsw into sgn(g)agw, where
ag is the Voros multiplier of the cycleg, defined by

ag5e~ i /\!*gP~q,\2!dq), ~1.3!

and sgn(g)561 is the ‘‘signature’’ of g, given by sgn(g)5(21)n(g)/2, where n(g) is the
‘‘index’’ of g, i.e. the number of times it encircles the turning points~counting them with their
multiplicities, when they are not simple!. Notice thatn(g) is an even integer, because of o
requirement thatg should not change the determination of the momentum.

Recalling thatP5p1O(\2), we can rewrite the Voros multiplier as

ag5age~ i /\!vg, ~1.4!

with

vg5E
g
pdq ~1.5!

and

ag5ei /\*g~P~q,\2!2p~q!!dq511O~\!

~a formal series of integral powers of\!.
Of courseag depends only on the homology class of the cycleg in the complex hyperelliptic

curvep25E2V(q). Furthermore

ag1g85agag8.

B. Wave interpretation of Stokes phenomena

It should be emphasized that in resurgence theory the meaning of such terms as Stoke
Stokes regions,... etc., is the same as in Dingle1 ~and as in Stokes’ original article!!: Stokes lines
are not the places where two exponentials~corresponding to two opposite determinations ofp!
‘‘exchange their dominance,’’ but the places where one of them is ‘‘maximally dominant’’ o
the other~this is the natural point of view when WKB expansions are understood not as
‘‘asymptotic expansions’’ in the Poincare´ sense, but as exact encodings of true functions thro
resummation procedures!.

Locally in Ċ ~the complexq plane minus the turning points! the space of WKB symbols split
into two subspaces, depending on which determination is chosen for the square
p5(E2V(q))1/2 in formula ~1.1!.

Stokes lines can be characterized as those places inĊ where the Stokes automorphismG is
not diagonal with respect to this splitting, so that speaking of ‘‘a wave function with momen
p’’ would be meaningless~do we mean a wave function with only components of momentump in
J. Math. Phys., Vol. 38, No. 12, December 1997
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its right symbol, or in its left symbol?!. This is why careful distinction should be made, in readi
what follows, between those notions which concern symbols~i.e., formal objects: e.g., the notion
of ‘‘dominant’’ and ‘‘recessive’’ symbols in Sec. I B 2! and those which concern wave function
~i.e., true solutions of the Schro¨dinger equation: e.g., the notion of an ‘‘L-decaying’’ wave func-
tion in Sec. I B 2!.

1. Canonical decomposition of a wave inside a Stokes region

Inside a Stokes region the Stokes automorphismG is diagonal with respect to the abov
mentioned direct sum decomposition into opposite determinations of the momentum: if th
symbol of a wave in some Stokes region belongs to the subspace with givenp, the same is true for
its right symbol and conversely. It therefore follows that inside a Stokes regionR the property of
‘‘having a given determination of the momentum’’ is not just a property of formal WKB exp
sions, it also has a meaning for true solutions of the Schro¨dinger equation. As an importan
example, letq belong to a classically allowed segment of the real axis~we consider here the ‘‘rea
case,’’ whereV is real valued andE is real!. Such a segment cannot coincide with a Stokes li
Let us restrict it so that it lies inside a Stokes region. By the above decomposition any
function in such a segment can be written as a sum of two waves: one with only positivep terms
in its symbol, which we can interpret as a wave propagating right; one with only negativep terms
in its symbol, which we can interpret as a wave propagating left.

Scattering through or above a potential barrier can be analyzed by comparing this dec
sition far right and far left along the real axis: letf be a wave function which forq real !0
propagates left in the above sense~this property defines it unambiguously, up to normalizatio!;
let f5f11f2 be forq real @0 its decomposition into components of positive and negativep:
for q real@0 we can interpretf2 as the incident wave andf1 as the reflected wave whereasf,
for q real !0, is the transmitted wave.

2. Comparing decompositions across an unbounded Stokes line

In the real case the classically forbidden segments of the real axis do not lie inside S
regions: they are examples of Stokes lines.

Comparing the canonical decompositions~Sec. I B 1! in two Stokes regionsR, R8 separated
by a Stokes line is especially interesting~and easier! along unbounded Stokes lines, which conn
infinity to a turning point. Along such a Stokes lineL the two possible determinations of th
momentump correspond, respectively, to waves which ‘‘fade into the turning point’’~resp., ‘‘fade
away at infinity’’!: by this we mean that moving alongL towards the turning point~resp., away
from it! is the fastest way for the exponential exp(i/\*pdq) to decrease. WKB symbols with th
corresponding determination of the momentum will be called dominant alongL ~resp., recessive
along L!; we denote by WKBL ~resp., WKBL! the space of WKB symbols nearL which are
dominant~resp., recessive! alongL.

Although the Stokes automorphismG is not diagonal with respect to the decompositi
WKB5WKBL % WKBL, the subspace WKBL of recessive symbols turns out to be stable underG.
In other words, the property for a wave of having a recessive symbol does not depend on w
the right or left symbol is considered. Such a wave will be called anL-decaying wave. In the
two-dimensional vector space of solutions of the Schro¨dinger equation,L-decaying waves are th
one-dimensional subspace of those solutions which decay exponentially at infinity alon
Stokes lineL. Such a solution can be normalized so that its symbol is Borel resummable, for
q on L ~this is the case for WKB expansions which are ‘‘well normalized at infinity’’ alongL, in
the sense of Sec. I A!.

Reflection against an infinite wall is a case where the present analysis applies near one
the real axis~the classically forbidden one, which is a unbounded Stokes lineL2! and analysis
~Sec. I B 1! near the other end~the classically allowed one!: by computing the connection operato
J. Math. Phys., Vol. 38, No. 12, December 1997
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from WKBL2
to either one of the two WKB components on the classically allowed end, we ge

symbols of the incident and reflected wave, as compared to that of the~decaying! transmitted
wave.

3. Search for bound states and resonances

Searching for bound states in a confining potentialV ~where both ends of the real axis a
classically forbidden! amounts to finding those values of the energyE for which W 2`

dec , the
subspace of wave functions decaying at2`, coincides withW 1`

dec , the subspace of wave func
tions decaying at1`.

Similarly, searching for resonances in a scattering problem of the kind considered in
I B 1, or in a reflection problem of the kind considered in Sec. I B 2, amounts to finding t
~complex! values of the energy for which the reflected component of the wave will van
Assuming that the incident wave comes from the right, this amounts to finding those values
energyE for which W 2` coincides withW 1`

2 ~the subspace of waves with negative moment
near1`!, where we have denoted byW 2` the following subspace:

W 2`5H W 2`
dec ,

W 2`
2 ,

if 2` is classically forbidden,
if 2` is classically allowed.

Setting in similar fashion,

W 1`5H W 1`
dec ,

W 1`
2 ,

if 1` is classically forbidden,
if 1` is classically allowed,

we thus see that the bound state or resonances energies can be defined in every case
values of the energy for whichW 2`5W 1` . This amounts of course to the vanishing of t
obvious operator,

J :W 2`→W /W 1` ,

which we shall call the Jost operator. To express this condition in a less abstract way, let us
some basis (f,f!) of the two dimensional vector spaceW , depending analytically onE in the
interval under concern, such that for everyE in that interval,

~1! fPW 2` ,
~2! f!¹W 1` ~so thatf! generatesW mod. W 1`!.

Such a basis will be called a Jost basis. Then one can write

f5J~E!f! mod W 1` ,

whereJ(E) is an analytic function of the energy, which we call the Jost function. The value
E we are looking for are just the zeros of this function.

II. SOLVING THE CONNECTION PROBLEM FOR GENERIC ENERGIES

We shall assume here thatE is a non critical value of the energy, so that all turning points
simple.

For any choiceR,R8 of Stokes regions we shall give an explicit ‘‘pictographic’’ description
the connection isomorphismsC R8R

1 and C R8R
2 as finite sums of analytic continuation operato

along suitable paths ofC.
In Subsection II A we will deal with the ‘‘simple pattern’’ case where all Stokes lines

unbounded. ThenC R8R
1

5C R8R
2 (5:C R8R).
J. Math. Phys., Vol. 38, No. 12, December 1997
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In Subsection II B we will reduce the general case to the simple pattern case~a different
reduction forC R8R

1 andC R8R
2 !.

In both cases we shall give explicit computations for explicit examples.

A. Connection isomorphisms for simple patterns

Each turning point is tied to three Stokes lines, and the ‘‘simple pattern’’ hypothesis m
that these Stokes lines come from infinity.

In this case, as shown in Ref. 12, the property of being Borel resummable in some S
regionR is preserved by analytic continuation to another Stokes regionR8. Accordingly, the right
and left connection isomorphisms are equal and we denote them simply byC R8R .

1. The elementary connection isomorphisms C L and C L
21

Let us consider a Stokes lineL, the Stokes regionR on the right side ofL, andR8 on its left
side as shown in Fig. 1~our convention is to orient unbounded Stokes lines toward the tur
point!. We shall callC L :5C R8R the elementary connection isomorphism acrossL.

With the convention that WKBL(R) @resp., WKBL(R)# is the summand of WKB(R) consist-
ing of all symbols which are dominant~resp., recessive! on L,C L is given by its restrictions:

C LuWKBL~R!5L1dL and C LuWKBL~R!5L,

whereL means analytic continuation acrossL, and

FIG. 1. Elementary connection operator acrossL.

FIG. 2. Inverse elementary connection operator acrossL.
J. Math. Phys., Vol. 38, No. 12, December 1997
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dL :WKBL~R!→WKBL~R8!

is the so-called elementary connection operator acrossL, which we shall now compute.
Proposition II.1.1:The elementary connection operatordL is the analytic continuation opera-

tor aroundL from R to R8 as shown in Fig. 1.
Proof (the idea of this proposition comes from Voros6): Just compare, forc in WKBL(R), the

two expressions ofC R8Rc obtained first by crossingL clockwise and secondly by crossingL9
thenL8 anticlockwise~for the details, cf. Ref. 11; See also Refs. 29, 30!. h

Consequence:In the same way one can describeC L
21:5C RR8 as follows:

C L
21

uWKBL~R8!5L1 d̄L , C L
21

uWKBL~R8!5L,

whered̄L is the analytic continuation operator aroundL from R8 to R as shown in Fig. 2.

Pictograms ofC L and C L
21: It will be useful to describe the elementary connection isomor-

phismsC L andC L
21 by simple pictograms as shown on Fig. 3: the arrows on the base level of

triangle are carrying WKBL symbols while those on the summit carry WKBL ones.

FIG. 3. Pictograms for elementary connection operators.

FIG. 4. The two kinds of Stokes regions.
J. Math. Phys., Vol. 38, No. 12, December 1997
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The diagrams on the right of the picture can be read in the following way: followin
horizontal arrow without changing level means analytic continuation across the Stokes li
volved~L operator!. Climbing down~resp., up! a triangle is allowed only from base to summit an
represents an operatordL ~resp.,d̄L!; it means analytic continuation around the Stokes line
volved. The number of arrows on each segment helps us to remember how many elementar
symbols are carried by this segment.

2. The connection isomorphism C R8R

For any two Stokes regionsR andR8 the connection isomorphismC R8R can be computed a
the product of successive elementary connection isomorphisms along any chain of adjacent
regions. Our aim here is to exhibit such a chain which is canonical.

Global topological properties:
~1! In the simple case we are interested in here, each turning point is tied to three unbo
Stokes lines coming from infinity.
~2! One can distinguish only two kinds of Stokes regions as shown in Fig. 4.

The first property is a simple remark. The second one is due to the following result, w
proof is given in Ref. 31~see also Ref. 32!:

Lemma II.1.1:The action functionS maps conformally each Stokes region either onto
half-plane~first kind! or onto a strip~second kind!.

Vocabulary:Two Stokes regions will be called adjacent when they have a common S
line in their boundary; conversely, two Stokes lines will be called successive when they bo
common Stokes region.

FIG. 5. The canonical sequence of Stokes regions and Stokes lines.

FIG. 6. Two canonical sequences for the harmonic oscillator.
J. Math. Phys., Vol. 38, No. 12, December 1997
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First elementary property of successive Stokes lines:For two successive Stokes linesL andL8
bounding a common Stokes regionR of the first kind one has WKBL(R)5WKBL8(R) or, equiva-
lently WKBL(R)5WKBL8(R).

A canonical way of connecting two given Stokes regions R and R8: The three Stokes lines tied
to a turning point divideC into three connected components, among which one or two contain
neitherR nor R8. After shading all such components for every turning point, we are left with a
finite sequenceR15R,2, . . . ,Rn115R8 of successively adjacent Stokes regions separated by
finite sequenceL1, L2, . . . , Ln of successive Stokes lines, as illustrated by Fig. 5.Remark:All
Stokes regionsRi betweenR andR8 in the above sequence are of the second kind.

The canonical sequence thus yields a canonical way to go fromR to R8.
Proposition II.1.2:The canonical way is the only way to go fromR to R8 across Stokes lines

all tied to different turning points.
Proof of the proposition:Let l be a connectingR to R8 as described in the proposition. One

easily checks that the shaded regions in the above construction are exactly those whichl does not
cross.

Corollary II.1.1: For any choiceR,R8 of Stokes regions, the connection isomorphismC R8R is
canonically given by the product

C R8R5C Ln

enC L~n21!

e~n21! •••C L1

e1 ,

where L1 ,L2 ,...,Ln is the canonical sequence ande i511 ~resp., 21! if the path l of the
proposition above crossesLi from right to left ~resp., from left to right!.

Definition II.1.1: Two successive Stokes lines in the canonical sequence are called para
~resp., antiparallel! if the canonical way to cross them is the same~resp., opposite!.

FIG. 7. Pictograms for the connection isomorphisms of Fig. 6.

FIG. 8. The harmonic oscillator.
J. Math. Phys., Vol. 38, No. 12, December 1997
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For instance, in Fig. 5 above,L1 , L2 andL3 , L4 are antiparallel whileL2 , L3 are parallel.
Second elementary property of successive Stokes lines:If two successive Stokes linesL and

L8 bound a common Stokes regionR of the second kind and are not tied to the same turning poin
then the following properties are equivalent:
~1! L andL8 are parallel.
~2! L andL8 have the same asymptotic direction.
~3! WKBL(R)5WKBL8(R).

A direct consequence of these properties is the following:
Proposition II.1.3:In the simple pattern case, the composition of our canonical sequence

elementary connection isomorphisms can be described pictographically by pasting side by sid
successive pictograms of Sec. II A 1, Fig. 3.

For instance, the connection isomorphisms corresponding to the two Stokes patterns of F
are described by the two pictograms on Fig. 7.

Proof of the proposition:The only thing to understand here is the fact that the conventions o
Fig. 3, whereby dominant and recessive WKB symbols are distinguished according to the leve
the corresponding horizontal arrows, are compatible from one elementary pictogram to the n
one. Since all Stokes lines in the canonical sequence are tied to different turning points,
compatibility property follows from the second elementary property of the successive Stokes li
above. h

3. The harmonic oscillator

TakingV(q)5q2 for our potential function~Fig. 8!, we get the Stokes patterns shown on Fig.
9. The corresponding connexion isomorphisms are shown on Fig. 10.

FIG. 9. Stokes patterns for the harmonic oscillator.

FIG. 10. Pictograms of the connection isomorphisms of Fig. 8.
J. Math. Phys., Vol. 38, No. 12, December 1997
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4. The cubic barrier (subcritical case)

Let us consider a cubic barrier and a valueE of the energy as shown on Fig. 11.
The corresponding Stokes pattern is thus given by Fig. 12.
Following the scheme announced in Sec. I B, we shall analyze our wave functionf in terms

of incoming, reflected and transmitted waves.
Since the transmitted wave must decay atq52`, we can takef(q)PW 2`

dec to be the Borel
sum for q,q1 of some recessive WKB expansionw, well normalized at2`. The connection
isomorphismC R1R2

then gives

C R1R2
~w!5w inc1w ref ,

wherew inc andw ref are the analytic continuations ofw indicated on Fig. 13, whose Borel sums c
be interpreted as an incoming wavef incPW 1`

2 and a reflected wavef refPW 1`
1 ~whereW 1`

1

is the subspace of waves with positive classical momentum near1`!.
Graphical conventions for connection paths:Here and in the sequel, we use full lines f

those portions of path following the realq-axis with a positive real determination ofp ~wave
travelling rightwards! or a positive imaginary determination ofp ~wave decaying leftwards!.

B. Connection isomorphisms in the presence of bounded Stokes lines

Although they are ‘‘non-generic,’’ bounded Stokes lines often occur as a result of the
metries of the potential function: for instance, if the potential is real, symmetry by com

FIG. 11. The cubic barrier.

FIG. 12. The Stokes pattern for a cubic barrier.
J. Math. Phys., Vol. 38, No. 12, December 1997
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conjugation implies that all classically forbidden segments of the real axis are Stokes lines,
all ‘‘tunnel segments’’ are bounded Stokes lines. Of course this is true only because of our s
way of choosing the ‘‘resummation direction’’ in the ‘‘Borel plane’’~the plane of the complex
variablej, dual to 1/\!, taking it to be the positive real direction argj50. Replacing this direction
by argj56e, with e a small enough positive number, results in splitting the Stokes pattern in
simple one~with only unbounded Stokes lines!. As shown in Ref. 12, one gets the connecti
isomorphismC R8R

1 ~resp.,C R8R
2 ! by applying the algorithm~Sec. II A! to this simple argj51e

~resp., argj52e! pattern.
The topology of this ‘‘split’’ pattern depends on the sign of argj. One gets it by rotating each

Stokes line anticlockwise (argj.0) or clockwise (argj,0) around its turning point, as illustrate
by the examples below.

1. The parabolic barrier (subcritical case)

Let V(q)52q2 be our potential function, and letE,0 ~Fig. 14!.
Since the ‘‘tunnel’’ segment@q1 ;q2# carries a bounded Stokes line, the corresponding Sto

pattern is singular as shown on Fig. 15.
Splitting this singular pattern gives the two simple patterns drawn on Fig. 16 and ther

two canonical sequences (L1
1 ;L2

1) and (L1
2 ;L2

2) of Stokes lines betweenR andR8.
The connection isomorphismsC R8R

1 andC R8R
2 can be computed explicitly as the products

C R8R
2

5C L
2
2

21
C L

1
2, C R8R

1
5C L

2
1C L

1
1

21
,

FIG. 13. Connection paths relating the symbols of the transmitted, incident and reflected waves.

FIG. 14. The subcritical parabolic barrier.
J. Math. Phys., Vol. 38, No. 12, December 1997
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and pictographically represented by Fig. 17.
Being interested here in transmission and reflection of a wavef coming from the right, we

assume that along the left end of the real axis its canonical decomposition Sec. I B 1 has
positive p terms~no component ‘‘coming from the left’’!. This amounts saying that it is expo-
nentially decreasing along the Stokes lineL1

2 , and the simplest way to ensure this is to take its
symbol w to be well normalized alongL1

2 : thereforew is Borel resummable onL1
2 and in the

adjacent Stokes regions~including the left end of the real axis!, where its Borel sum can be
assumed to be exactlyf ~this assumption amounts to suitably choosing the normalization of the
transmitted wave!.

From the pictogram ofC R8R
2 ~say! we thus infer that along the right end of the real axis the left

symbol off is the sum of the two analytic continuations ofw shown on Fig. 18, which we have
denoted byw inc andw ref because they can be interpreted, respectively, as the left symbol of th
incoming, resp., reflected wave~working with right symbols would have given a more compli-
cated decomposition, with four terms instead of two; we leave it to the reader to check which
the four belong to the incident wave, and which to the reflected wave!.

2. The parabolic barrier (overcritical case)

Let againV(q)52q2, but assume nowE.0 ~Fig. 19!. Here again the turning pointsq1 ,q2

~which are now complex conjugate! are tied by a bounded Stokes line as shown on Fig. 20.
Figures 21 and 22 show the corresponding split patterns, and the pictograms of the connect

isomorphisms. Now the transmitted wave is exponentially decreasing alongL1
1 , and the incoming

and reflected waves are most easily described by their right symbols, which are shown on Fig.

FIG. 15. The Stokes pattern of a subcritical parabolic barrier.

FIG. 16. Left splitting and right splitting of the singular pattern.
J. Math. Phys., Vol. 38, No. 12, December 1997
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FIG. 17. Pictograms of left and right connection isomorphisms.

FIG. 18. Connection paths relating left symbols~the graphical conventions have been explained at the end of subsection
II A !.

FIG. 19. The overcritical parabolic barrier.

FIG. 20. The Stokes pattern of an overcritical parabolic barrier.
J. Math. Phys., Vol. 38, No. 12, December 1997
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FIG. 21. Left splitting and right splitting of the singular pattern.

FIG. 22. Pictograms of left and right connection isomorphisms.

FIG. 23. Connection paths relating left symbols.

FIG. 24. The cubic barrier and the energy levelE.
J. Math. Phys., Vol. 38, No. 12, December 1997
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3. The cubic barrier (resonance case)

Let us now consider a cubic barrier and a valueE of the energy as on Fig. 24. The corre-
sponding Stokes pattern~Fig. 25! is singular~the ‘‘tunnel segment’’@q2 ;q3# carries a bounded
Stokes line!. Splitting this singular pattern leads to the two simple patterns drawn on Fig. 26, an
therefore to two canonical sequences (L1

1 ;L2
1 ;L3

1) and (L1
2 ;L2

2 ;L3
2) of Stokes lines betweenR

andR8.
The connection isomorphismsC R8R

1 andC R8R
2 are explicitly given by the products

C R8R
2

5C L
3
2

21
C L

2
2C L

1
2, C R8R

1
5C L

3
1C L

2
1

21
C L

1
1,

and pictographically represented by Fig. 27.
For the same reason as in Sec. II A we can assume that our wave functionf is, for large

negativeq, the Borel sum of a WKB expansionw well normalized at2` along the real axis.
The right, resp., left symbol of the reflected wave is deduced fromw by the right, resp., left

Jost connection operatorJ 1, resp.,J 2, which can be read directly on the pictograms of Fig. 27.
One thus finds

J 15l11gl21m,

J 25l11l2 ,

wherel1 , l2 , m denote analytic continuation along the paths shown on Fig. 28.
Notice that any two of these paths differ only by a cycle onĊ2 , i.e. a path coming back where

it started with the same determination of the momentum. For instance,

l2l1
215gosc,

FIG. 25. The singular Stokes pattern for a cubic barrier.

FIG. 26. Left and right splitting.
J. Math. Phys., Vol. 38, No. 12, December 1997
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ml2
215g tun,

wheregosc and g tun are the ‘‘oscillator’’ and ‘‘tunnel’’ cycles represented on Fig. 29. We thus
deduce from Sec. II A~noticing that these cycles have zero index, and therefore positive signatur!
the following rewriting of the Jost connection operators:

J 15~11agosc1agoscag tun!l1 ,

J 25~11agosc!l1 .

Remembering thatf has been defined for large negativeq as the Borel sum ofw, let us define
f* for large positiveq as the Borel sum ofl1w ~the latter symbol is indeed Borel resummable,
becausel1 crosses no bounded Stokes line, i.e. it does not cross the tunnel cycle!. One thus gets
a Jost basis (f,f* ) such that the right and left Jost symbols~i.e., the symbols of the Jost function!
read as

J1511agosc1agoscag tun,

J2511agosc.

Notice that the action period of the oscillator cycle is positive real, whereas the action period
the tunnel cycle is positive imaginary, so thatagosc has modulus 1 whereasag tun is exponentially
small.

Remark:Comparison ofJ1 andJ2 shows that

Gagosc5~11ag tun!agosc,

FIG. 27. Pictograms of left and right connection isomorphisms.

FIG. 28. Connection paths involved in the construction of the Jost connection operator.
J. Math. Phys., Vol. 38, No. 12, December 1997
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whereG is the Stokes automorphism~which transforms the left symbol of a function into the right
symbol of the same function!. This result is just a special case of theorem 3.1 in Ref. 11~one
immediately sees on Fig. 29 that the intersection numberg tun•gosc is 11!. By the same theorem,
one has

Gag tun5ag tun,

so that it is easy to compute the median symbolJmed5G1/2J25G21/2J1,

Jmed511agosc~11ag tun!1/2511agosc1
1

2
agoscag tun1••• .

4. The double well oscillator

Let us consider a double well potentialV for a generic value of the energy~Fig. 30!. The
corresponding Stokes pattern is singular, because the tunnel segment@q2 ;q3# carries a bounded
Stokes line.

Being interested in the behavior of the solutions of the Schro¨dinger equation at infinity on the
real axis, and since the half-linesL5] 2`;q1] andL85@q4 ;1`@ are Stokes lines, we have to use
either the right or the left resummation process. Splitting the singular picture above thus yields
two generic Stokes patterns drawn on Figs. 31 and 32.

On each of these pictures, the Stokes regionR, resp.,R8 near2`, resp.,1` has been chosen
to be that one which contains the real axis. Actually, this choice is of no consequence if one
only interested in computing the Jost connection operator, i.e. the operator connecting reces
symbols at2` and dominant symbols at1`.

Reading the corresponding part of the pictogram ofC R8R
1 , resp.,C R8R

2 we thus find that the
right, resp., left Jost connection operator is given by

J 15l211l121l221l111n1 ,

FIG. 29. The oscillator and tunnel cycles.

FIG. 30. A double well oscillator and its singular Stokes pattern.
J. Math. Phys., Vol. 38, No. 12, December 1997
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resp.,

J 25l211l121l221l111n2 ,

where the paths of analytic continuations are those shown on Fig. 33.
Introducing the oscillator cyclesg l , g r and the tunnel cycleg of Figs. 34, 35, we have

g l5l11l21
21 , g r5l11l12

21 , g5n1l11
21 ,

and noticing that

l22l11
21 52g r2g l

~the minus sign in front ofg r and g l indicates that the opposite orientation has been cho
Whereas the composition of pathsl i is denoted multiplicatively, as a composition of operato
the cycles make up a commutative group which we denote additively.!, we get

J 15~~11ag l !~11a2gr !1ag lag!l21 ,

J 25~~11ag l !~11a2gr !1a2grag!l21 .

Let us define a Jost basis (f,f* ) as follows

~1! f is the Borel sum, for large negativeq, of a WKB expansionw well normalized at2`;
~2! f* is the right or left sum, for large positiveq, of l21w.

FIG. 31. Right splitting of the singular pattern.

FIG. 32. Left splitting of the singular pattern.
J. Math. Phys., Vol. 38, No. 12, December 1997
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What makes such a choice convenient is the fact thatl21 does not cross the tunnel segment~the
only bounded Stokes line in this case!, so that the right and left sums ofl21w coincide modulo
W 1` ~they do not exactly coincide because the positive real axis is a Stokes line!.

With these conventions, the right, resp., left Jost symbol reads as

J15~11ag l !~11a2gr !1ag lag,

J25~11ag l !~11a2gr !1a2grag.

Notice that the action periods of the oscillator cyclesg l ,g r are positive real, whereas the actio
period of the tunnel cycleg is positive imaginary, so that the ‘‘tunnel’’ contribution in the abo
expressions is exponentially small, as expected.

C. The principal part of the Jost symbol

The above results are easily generalized to any polynomial potential function. Assumin
the energy is so chosen that the real axis crosses at least one well, it can be readily seen
corresponding pictogram that each of the oscillator cyclesg i appearing in the~right, left or
median! Jost symbol has index 0, so that this symbol reads as

FIG. 33. Connection paths for the double well oscillator.

FIG. 34. The oscillator cycles~index l , resp.,r stands for left, resp., right!.
J. Math. Phys., Vol. 38, No. 12, December 1997
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where the ‘‘principal part’’ involves all the oscillator cyclesg1 ,...,gk , whereas the exponentiall
small correction is the contribution of cyclesg with T vg.0 ~such as ‘‘tunnel cycles,’’ or cycles
tied to complex turning points!.

III. SOLVING THE CONNECTION PROBLEM FOR CRITICAL ENERGIES

A. Rescaling E near a critical value

Studying the spectrum of the Schro¨dinger equation requires understanding how WKB exp
sions depend onE.

For non critical energies, i.e. as long as all turning points remain simple, this dependenc
course analytic. Even better, it is regular in the sense of Ref. 12, and this means that al
operations on functions such as substitution, etc. can be performed without spoiling the resu
properties. Therefore the results of Sec. I not only apply whenE in equation~0! is a given
constant: one can also substitute toE any resurgent expansion,

E5E01E1\1E2\21...,

and make the corresponding substitution in the WKB expansions~the resulting Stokes lines ar
those of theE5E0 case!.

This nice behaviour may break down in the critical cases, i.e. when confluence of tu
points occurs. More precisely, well normalized WKB expansions will be singular for those v
of the energy for which the normalization pathl ~used for defining the ‘‘good normalization’’: cf
Sec. I A! is ‘‘pinched’’ by the confluence of some turning points. Of course near a given cri
energyEcrit it is always possible to choose a basis of WKB expansions such that their norm
tion paths are not pinched, so that their dependence onE is again regular in the above sense. B
among all paths of analytic continuation in theq-plane which are involved in solving the conne
tion problem, some will be pinched, so that regular dependence onE is not preserved by the
connection isomorphisms.

The aim of the present section is to solve the connection problem in such critical c
Allowing E in equation~0! to be a resurgent expansion in\ as indicated above, we shall assum
it to be ‘‘infinitely close’’ to a quadratic critical value of the potential, i.e.E5Ecrit10(\), where
Ecrit5V(qcrit), qcrit being a quadratic critical point ofV ~i.e., a double zero ofEcrit2V). It will
turn out that no generality is lost by assuming the 0~\! term to be linear, i.e.

E5Ecrit1Er\.

In fact, treatingEr as a free parameter~the ‘‘rescaled’’ energy!, our solution of the connection
problem will be built~via explicit special functions! from ‘‘simple’’ WKB expansions which will
depend regularly on the rescaled energyEr throughout the whole complex plane, allowing a
further resurgent substitutionsEr5Er(\).

The following terminology will be used throughout this section. By the rescaled Schro¨dinger
equation we mean the Schro¨dinger equation withE replaced byEcrit1Er\.

FIG. 35. The tunnel cycle.
J. Math. Phys., Vol. 38, No. 12, December 1997
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By a rescaled WKB expansion we mean any formal solution of the rescaled Schro¨dinger
equation.

We shall start with so-called simple rescaled WKB expansions~‘‘simple’’ refers to the simple
dependence on\. Non simple expansions will be met in Sec. III C, Thm. III.3.1.!, i.e. expansions
of the form

w~q!5~w0~q!1w1~q!\1w2~q!\21...!e~ i /\!Scrit~q!,

whereScrit(q) is a primitive of

pcrit~q!5~Ecrit2V~q!!1/2.

Such rescaled WKB expansions can be obtained from the usual ones by mere substituE
5Ecrit1Er\, provided the normalization path of our ‘‘usual’’ WKB expansion is not pinched
the confluence of turning points.

Lemma III.1.1:The leading coefficientw0 of a simple rescaled WKB expansion reads as

w05pcrit
21/2eiEr t,

where the ‘‘time coordinate’’t5t(q) satisfies

dt5
dq

2pcrit

~the latter equation characterizest up to an additive constant, ‘‘the origin of time;’’ rewriting it a
pcrit51/2(dq/dt) shows why it deserves being called a ‘‘time’’!.

Proof: Just solve the rescaled Schro¨dinger equation.
One may also look at the effect of the rescaling on a~usual! WKB expansion~assuming its

normalization path is not pinched!. RescalingS(q,E)5*q0

q p(q8,E)dq8 gives

S~q,Ecrit1Er\!5S~q,Ecrit!1\Er

]S

]E
~q,Ecrit!10~\2!,

with

]S

]E
~q,Ecrit!5E

q0

q dq8

2pcrit~q8!
5t.

h

B. The monodromy exponent „s… of a double turning point

We analyze here the behaviour of WKB expansions near a double turning point.
For E close toEcrit ~but different from it! the double turning point splits into two simple one

and drawing a cut between them splits locallyĊ2 ~the Riemann surface ofp! into two copies of a
cut disc, glued along the cut. Let us choose one of these copies, i.e. one determination ofp, and
let g be a cycle in that cut disc, encircling the cut anticlockwise; we can draw it as close to th
as we like, so that forE5Ecrit it becomes a circle of arbitrary small radius. We callg the
vanishing cycle associated to the chosen determination ofp. Given any WKB expansion with tha
determination ofp, analytic continuation alongg multiplies it by e2ips, where

s5s~E,\!5
1

2p\
Vg~E,\2!2

1

2
,

J. Math. Phys., Vol. 38, No. 12, December 1997
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Vg~E,\2!5E
g
P~q,E,\2!dq5vg~E!10~\2!

~cf. the notations of subsection I A!.
We calls the monodromy exponent of the double turning point~for the chosen determinatio

of p!. Notice that choosing the opposite determination ofp would result in changing the sign o
Vg ~this amounts to reversing the orientation of the vanishing cycle!, so that the two possible
determinations ofp define two monodromy exponentss1 , s2 , related bys11s2521.

Now comes the main point:
all the above~resurgent! expansions in\ depend regularly onE nearEcrit ~this comes from the fac
that the vanishing cycle is not pinched by the confluence of the turning points; in particularvg is
holomorphic atE5Ecrit!.

This property allows us to perform the substitutionE5Ecrit1Er\, thus obtaining the rescale
monodromy exponent~a resurgent series in\, depending regularly onEr in the whole complex
plane!. To the lowest order in\, it reads as

sresc~Er ,\!52
1

2
1

ErTg

2p
10~\!,

whereTg is a non zero constant, the ‘‘time period’’ of the vanishing cycleg, defined by

Tg5
dvg

dE
~Ecrit!5E

g

dq

2pcrit

~an integral easily computable by the residue formula, sincepcrit has a simple zero atqcrit!.
N.B.- In the sequel the same notations will be used for the monodromy exponent, wheth

rescaled or not.
Computation of rescaled monodromy exponents:Our aim here is to describe a simple alg

rithm for computing rescaled monodromy exponents to all orders in\.
Considering a simple rescaled WKB expansionw in a neighborhood of a double turning poin

qcrit , let us denote by (i /\)Y its logarithmic derivative; thenY(q,Er ,\) is a formal solution of the
following rescaled Riccati equation:

Y22 i\
d

dq
Y5pcrit

2 1\Er .

Setting

Y~q,Er ,\!5Y0~q!1 (
k>1

Yk~q,Er !\
k,

one gets theYk’s by iteration;

Y05pcrit ,

Y15
1

2Y0
S Er1 i

d

dq
Y0D ,

for n>1, Y~n11!5
1

2Y0
S i

d

dq
Yn2 (

1<k<n
YkY~n2k!D .

We deduce the behaviour of theYk’s in a neighborhood ofqcrit : for k>1:
J. Math. Phys., Vol. 38, No. 12, December 1997
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Yk is Hpolar of order at most 2k21 on qcrit ,
polynomial with respect toEr of degree at mostk.

As a consequence we get that locally in a neighborhood ofqcrit ,

d

dq
ln~w!5

i

\
Y5

s~\,Er !

q2qcrit
1k~q,Er ,\!,

with k uniform in a neighborhood ofqcrit , without a simple pole, whereas the monodrom
exponents of w reads as

s~\,Er !5s0~Er !1s1~Er !\1s2~Er !\
21...,

with sk(Er) polynomial with respect toEr of order at mostk11.
Observing now that the rescaled Schro¨dinger equation~or the corresponding rescaled Ricca

equation! is invariant under the involution (Er ,\)→(2Er ,2\), and furthermores0(2Er)
52s0(Er)21, we deduce that

s~2Er ,2\!52s~Er ,\!21.

Putting pieces together this means that

~1! s0(Er)11/2 is an odd polynomial of order 1.
~2! for k>1, s2k21(Er) is an even polynomial of order at most 2k.
~3! for k>1, s2k(Er) is an odd polynomial of order at most 2k11.

C. The elementary connection operator

The pattern of Stokes lines in the critical case is obtained by writingE5Ecrit : it does not
depend on the rescaled energyEr .

Whereas each simple turning point is tied to three Stokes lines, each double turning p
tied to four Stokes lines. With the same notations as in section II, the elementary conn
isomorphismC L :5C R8R across any unbounded Stokes lineL ~coming from infinity! is given by
its restrictions:

C LuWKBL~R!5L1dL and C LuWKBL~R!5L,

whereL means analytic continuation acrossL, and

dL :WKBL~R!→WKBL~R8!

is the elementary connection operator acrossL.
In the case of a simple turning point, nothing has to be changed in the description o

elementary connection operator given in section II~Prop. II.1.1!.
Consider now the case of a double turning point~Fig. 36!.
Let w rescbe a simple rescaled WKB expansion defined in a neighborhood of a simple S

line L fading into a double turning pointqcrit . Assumew resc to be dominant onL. The following
proposition describes how the elementary connection operator attached toL acts onw resc.

Theorem III.3.1: Denoting bys5s(Er ,\) the ~rescaled! monodromy exponent ofw resc at
qcrit ~cf. Sec. III B!, one has

dLw resc5
A2p

G~2s!
\s11/2dL

redw resc,
J. Math. Phys., Vol. 38, No. 12, December 1997

 07 Apr 2005 to 140.105.16.2. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



fs.

or.

ted

he
del
e
ining
-
-

.

6151Delabaere, Dillinger, and Pham: Exact semiclassical expansions

Downloaded
whered L
redw resc is another simple rescaled WKB expansion~depending regularly onEr! whose

action exponentScrit
! (q) is deduced from the action exponentScrit(q) of wcrit by the symmetry of

centerScrit(qcrit) ~the value of the action at the turning point!.
The important feature of this theorem~the proof of which is given in Ref. 12; see also Re

33, 34, 35, 36! is the fact that the connection operatordL spoils ~or may spoil! two properties of
our rescaled WKB expansions:
–the factor\s11/2 spoils the simple character of WKB expansions.
–the denominatorG(2s) may spoil ~when s0 is a natural integer! the invertibility property of
WKB expansions; this failure of invertibility will play a crucial role in sectionV, when we shall
examine the quantization condition.

The numerical factorA2p is there just for later convenience.
Definition III.3.1: The operatord L

red is called the ‘‘reduced’’ elementary connection operat
How to computed L

redw resc: the ‘‘exact matching’’ method:The idea is to start from a non
critical valueE of the energy~close toEcrit!, for which the connection operator can be compu
as in section II; factoring outA2p/G(2s)\s11/2 ~expanded by means of Stirling’s formula! yields
a WKB expansion which turns out to depend regularly onE nearEcrit ~this fact, which is proved
in Ref. 12, provides us with a rigorous interpretation of the formal computations below!; from it,
d L

redw resc is obtained by the rescalingE5Ecrit1Er\.
Notice that generic values ofE nearEcrit are of two kinds, corresponding, respectively, to t

two Stokes patterns of Fig. 9~the harmonic oscillator can be viewed as the universal local mo
for the splitting of a double turning point!: in one of these patterns our given ‘‘critical’’ Stokes lin
L splits in two, attached to either turning points; in the other pattern it does not split, rema
tied to one turning point only. This second way of choosingE is the most convenient for com
puting the connection operator, because we only have one Stokes lineL to cross, so that Propo
sition II.1.1 directly applies, yieldingdL as the analytic continuation operator along a loopl q ~with
base pointq! around the relevant simple turning point.

Let us illustrate this strategy by exhibiting the leading term ofd L
redw resc ~examples of compu-

tations to higher order in\ will be given in section IV!. Let

w~q,E!5p~q,E!21/2e~ i /\!S~q,E!~110~\!!

be the WKB expansion~depending regularly onE! from which w resc is obtained by rescaling
Analytic continuation along the loopl q multiplies p21/2 by 2 i , and acts onS as the symmetry of
centreDS where

DS~E!5E
l q0

p~q8,E!dq8.

FIG. 36. Stokes lines and elementary connection operator acrossL.
J. Math. Phys., Vol. 38, No. 12, December 1997
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WhenE tends toEcrit this term is singular, because the loopl q0
is pinched by the confluence o

turning points: more precisely, denoting byg the corresponding vanishing cycle, oriented in su
a way thatRvg.0 ~our generic choice ofE ensures thatRvgÞ0, otherwise the two turning
points would be tied by a bounded Stokes line!, one has

DS~E!52vg~E!
ln vg~E!

2p i
1hol~E!,

where the function hol(E) is holomorphic forE nearEcrit . Now it turns out that factoring out
A2p/G(2s)\s11/2 just cancels out the singular part: more precisely, noticing that with the ab
choices2s'vg/2p\2 1

2 has a positive real part which goes to infinity as\→0 ~for fixed E!,
Stirling’s formula gives

A2p

G~2s!
\s11/25~2\s!s11/2e2s~110~\!!5S vg

2p D 2vg /2p\

evg /2p\~110~\!!.

Factoring out this expression indLw52 ip21/2ei /\(2S1DS)(110(\)) thus amounts to replacing
the singular termDS(E) by the ‘‘renormalized’’ expression

D renS~E!5DS~E!2
\

i
lnS A2p

G~2s!
\s11/2D'DS~E!1

vg~E!

2p i F ln
vg~E!

2p
21G

FIG. 37. Crossing a double turning point.

FIG. 38. Basic relations between the ‘‘connection paths’’ across a double turning point.
J. Math. Phys., Vol. 38, No. 12, December 1997
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~the quantities inside the logarithms have positive real parts, and ln must be understood
principal determination of the logarithm, which is real on the positive real axis!, which is holo-
morphic indeed forE'Ecrit . SubstitutingEcrit1Er\ for E in the renormalized expression thu
gives the leading term ofd L

redw resc, as stated in the following lemma.
Lemma III.3.1:With the above notations one has

d L
redw resc52 ipcrit

21/2eiEr t* e~ i /\!Scrit* ~q!~110~\!!,

where the time coordinatet* of dL
redw rescis deduced from the time coordinatet of w resc~cf. Lemma

III.1.1! by

t* 1t5 lim
E→Ecrit

F E
l q0

dq8

2p~q8,E!
1

Tg

2p i
ln

vg~E!

2p G ,

whereTg stands for the time period of the vanishing cycle~cf. Sec. III B!. h

Remark: The higher order terms in\ can be computed by the same strategy, using
expanded Stirling formula.

D. Local relations between connection operators

Relations between elementary connection operators:Among the four Stokes regions inciden
to a double turning pointqcrit , let R andR8 be two ‘‘opposite’’ ones, as on Fig. 37.

FIG. 39. Pictorial representation of the connection operator~3.1!.

FIG. 40. Redrawing of relation~3.2!.
J. Math. Phys., Vol. 38, No. 12, December 1997
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Assuming that all four Stokes lines incident toqcrit are unbounded, letw resc be a simple
rescaled WKB expansion, dominant onL1 ~say!. Then, using the same notations as in Sec. II, o
has

C R8R~w resc!5dL2
dL1

~w resc!1L2L1~w resc!1L2dL1
~w resc!

~crossL1 thenL2!, but also

C R8R~w resc!5L22L21~w resc!1 d̄L22
L21~w resc!

~crossL21 thenL22!. Comparing both formulas yields

L2dL1
~w resc!5 d̄L22

L21~w resc!, ~3.1!

dL2
dL1

~w resc!1L2L1~w resc!5L22L21~w resc!. ~3.2!

Representing elementary connection operatorsdL , d̄L by the same pictograms as in Sec.
Fig. 3, we can transcribe these equations pictorially as on Fig. 38 by considering connection
~see Ref. 12, Sec. 2.3 for a precise definition!.

It will be convenient to have a common pictorial representation for both sides of~3.1!, as
shown on Fig. 39. On this picture, the arrow ‘‘threaded through the~double! turning point’’ can be
understood as representing the connection operator from WKBL in

, the space of WKB symbols

FIG. 41. The connection operator across a double turning point.

FIG. 42. Singular and split Stokes patterns ofV(q)5q21q4 for the critical energyE50.
J. Math. Phys., Vol. 38, No. 12, December 1997
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which are recessive on the ‘‘ingoing’’ Stokes lineL in ~hereL21!, to WKBLout the space of WKB
symbols which are dominant on the ‘‘outgoing’’ Stokes lineLout ~hereL2!.

Using that convention, relation~3.2! can be drawn as shown on Fig. 40. The connection
operatorC R8R can be drawn as shown on Fig. 41.

Application: The Jost connection operator through the bottom of a simple well:Let our
critical energy correspond globally to a strict minimum of the real valued potential functionV, say
at q50 @V(q).V(0) for qÞ0; of course we assumeV9(0)Þ0#.

Proposition III.4.1:In this situation the right and left Jost connection operators are equal, and
given by

Proof: This easily follows from the above considerations, taking forL in the negative real axis
and forLout the positive real axis. h

FIG. 43. Pictograms for connection operators through a double turning point.

FIG. 44. The bottom of a cubic well and its Stokes pattern.
J. Math. Phys., Vol. 38, No. 12, December 1997
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Notice that since 0 is a strict minimum ofV bothL in andLout are unbounded Stokes lines. B
it is not necessary to assume that the two other~complex conjugate! Stokes lines tied to 0 are als
unbounded. Consider for instance the case whenV is even, and has a pair of complex conjuga
zeros on the imaginary axis, e.g.V(q)5q21q4. The Stokes pattern has two complex conjug
bounded Stokes linesL, L̄ ~cf. Fig. 42, middle!. Replacing this singular pattern by its right and le
split patterns~Fig. 42, right and left!, one immediately sees that as far as the Jost connec
operator is concerned one can completely forget about the Stokes lines tied to the other
points.

E. Composing connection operators

Let R andR8 be two Stokes regions. We shall assume here that the Stokes pattern is
~no bounded Stokes lines!, so that

C R8R5C R8R
1

5C R8R
2

~the case when the Stokes pattern is singular can be reduced to this one by the ‘‘splitting
rithm’’ sketched in Sec. II B, yielding two different right and left connection isomorphismsC R8R

1

andC R8R
2 !.

Here again~for the same reasons as in Sec. II! there exists a ‘‘canonical way’’ of computing
the connection isomorphism betweenR andR8, as described by the following algorithm.
• Consider one simple~resp., double! turning point and the three~resp., four! unbounded Stokes
lines linked to this turning point. These Stokes lines split the complex plane into three~resp., four!
connected regions. Shade those regions which contain neitherR nor R8.
• Do the same for all turning points. We thus get a finite ordered sequence of~distinct! turning
points q1 ,q2 ,...,qn and a finite ordered sequence of~distinct! Stokes regions R
5R1 ,R2 ,...,Rn115R8 such that for any couple of successive Stokes regionsRi ,Ri 11 ,
–eitherRi , Ri 11 are separated by a unique Stokes lineLi linked to qi .
–or Ri , Ri 11 lie opposite with respect to a double turning pointqi .
• Then draw a pathl running successively throughR1 , R2 ,...,Rn11 ; if Ri , Ri 11 are mutually

FIG. 45. Split pattern and canonical sequence.

FIG. 46. Pictogram of the right connection operator.
J. Math. Phys., Vol. 38, No. 12, December 1997
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‘‘opposite’’ with respect to a double turning pointqi , we shall drawl through that turning point
qi , and interpret the crossing ofqi as the connection isomorphism described in Sec. III D~Fig.
41!.
• The global connection isomorphismC R8R is described by a pictogram analogous to those of S
II, simply obtained by pasting together the elementary pictograms described hereafter: wh
Stokes regionsRi , Ri 11 are separated by a~unbounded! Stokes line, the pictographic represe
tation for C Ri 11,Ri

can be taken to be the same as in Sec. II A 1~fig. 3!, irrespective of the simple
or double character of the concerned turning point; whenRi , Ri 11 lie ‘‘opposite’’ with respect to
a double turning point we shall use the conventions shown on Fig. 43.

F. Metastable equilibrium: The bottom of a cubic well

The splitting algorithm forC R8R
1 , with R andR8 as on Fig. 44, yields the split pattern draw

on Fig. 45 with the canonical sequence obtained by an algorithm~Sec. III E!. This leads imme-
diately to the pictogram of the connection operatorC R8R

1 ~Fig. 46!.
The pictogram drawn on fig. 46~right! shows that the right Jost connection operatorJ 1 reads

as

J 15l1m,

wherel andm are the ‘‘connection paths’’ represented on Fig. 47.
Similarly, fig. 46 ~left! shows that the left Jost connection operatorJ 2 reads as

J 25l,

wherel is the same connection path as before.

G. Two-state equilibrium: The bottom of a double well

Consider the case of Fig. 48. The splitting algorithm yields the generic Stokes pattern
on Fig. 49 and the corresponding canonical sequences related to a choice of two Stokes reR
andR8.

FIG. 47. Connection paths at the bottom of a cubic well.

FIG. 48. The bottom of a double well and its Stokes pattern.
J. Math. Phys., Vol. 38, No. 12, December 1997
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FIG. 49. Right splitting and left splitting.

FIG. 50. Pictogram forC R8R
1 . Pictogram forC R8R

2 .

FIG. 51. Connection paths at the bottom of a double well.

FIG. 52. The top of a double well and its Stokes pattern.

FIG. 53. Canonical sequence.
J. Math. Phys., Vol. 38, No. 12, December 1997
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Let us describe for example the isomorphismsC R8R
6 restricted to the subspace WKB2` of

those WKB expansions which are recessive on the Stokes line coming from2`. Translating the
previous canonical sequences leads immediately to the pictograms drawn in Fig. 50.

Using these pictograms we see that the right, resp., left Jost connection operator is given b

J 65l1n6 .

Herel andn1 are the ‘‘connection paths’’ represented on Fig. 51, andn2 is the path deduced
from n1 by complex conjugation.

As a consequence, notice that

G~l1n2!5l1n1 mod. WKB1` ,

where the equality holds only modulo the space of recessive symbols at1`, because the pathsl
andn6 end along the real axis which is a Stokes line.

H. The top of a double well

Consider the top of a double well. The corresponding Stokes pattern is non singular~Fig. 52!.
Figure 53 shows the canonical sequence related to the choice of the two Stokes regionsR andR8.

Here again we shall focus on the isomorphismC R8R restricted to the subspace WKB2` of
those WKB expansions which are recessive on the Stokes line coming from2`. Translating the
previous canonical sequence leads immediately to the pictograms drawn in Fig. 54.

It follows from the pictogram ofC R8R that the Jost connection operator is given by a sum of
four connection paths:

J 5l211l121m11m2 ,

drawn on Fig. 55.

FIG. 54. Pictogram forC R8R .

FIG. 55. Connection paths at the top of a double well.
J. Math. Phys., Vol. 38, No. 12, December 1997
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Notice that this collection of connection paths is globally stable under complex conjuga
this property is a consequence of the fact that the symbols corresponding to these four con
paths are Borel resummable.

IV. COMPUTING JOST SYMBOLS FOR CRITICAL ENERGIES

The aim of this section is to give formulae for Jost symbols in critical cases, exhibiting
singular behaviour in a way which will be useful in the next section.

Recall that the definition of the Jost function depends on the choice of a ‘‘Jost basis’’ (f,f* ),
wherefPW 2` ~cf. Sec. I B 3!. The first elementf of that basis can be taken for large negati
q to be the Borel sum of a well normalized WKB expansionw ~well normalized at2` along the
left end of the real axis, when the latter is classically forbidden!. The second elementf. can be
chosen to be the~right, left or median! sum, for large positiveq, of some WKB symbol deduced
from w in a natural way, e.g. analytic continuation along some path ofĊ2 , when possible~in
critical casesĊ2 is not always connected!!. With such choices off., the only difference with the
generic case is the more complicated form of the Voros multipliersag of the ‘‘connection cycles’’
g going through double turning points~what we mean by a ‘‘connection cycle’’ is any connectio
path ending at the same place where it started, with the same determination of the mome!.
Such Voros multipliers read as

ag5S P
A2p

G~2s!
\s11/2D areg

g ,

where the product runs over all the double turning points involved~s being their monodromy
exponents!; areg

g is a simple resurgent expansion,

areg
g 5~a01a1\1a2\21...!ei /hvg~aiPC!,

which can be exactly computed by the ‘‘exact matching method’’ explained in subsection
starting from a non critical valueE of the energy~close toEcrit!, the problem can be reduced t
computing the Voros multiplier of a cycle of the type considered in section II, and factoring
the singular factors, via the~expanded! Stirling formula.

Let us illustrate the above ideas on the examples of the previous section.

A. The bottom of a cubic well

The basic ingredients for constructing Jost symbols will be the monodromy exponents of the
double turning point, and the Voros multipliera@L# of the connection cycle@L# drawn on Fig. 56,
right ~denoting byL the bounded Stokes line between the two turning points,@L# is the ‘‘con-
nection cycle associated withL, ’’ in the terminology of Ref. 12!.

Whenever~as is the case here! a double turning pointqcrit corresponds to the bottom of a wel
we shall use for defining its monodromy exponent that determination ofp such that
limq→qcrit

(p/(q2qcrit)) is positive imaginary. The monodromy exponent is a resurgent po

FIG. 56. Connection cycles at the bottom of a cubic well.
J. Math. Phys., Vol. 38, No. 12, December 1997
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expansion in\, with real coefficients~this can be easily deduced from the algorithm described
Sec. III B!, depending regularly on the rescaled energyEr , and starting like this:

s52
1

2
1

T0

2p
Er10~\!,

whereT0 ~a positive real number! is the time period of the corresponding ‘‘vanishing oscillat
cycle’’ g0 .

The Voros multipliera@L# is also real, and reads as

~4.1!

whereuL ~a positive real number! is 1/i times the action integral along the tunnel cycle, where
a(\,Er) is a simple resurgent expansion depending regularly onEr ; c is a positive constant with
the dimension of an action, which we call the critical action multiplier; using the ‘‘exact matc
method’’ explained in subsection III C~looking at leading terms only!, we find the following
formula for c:

c5 lim

E→
.

Ecrit

S vg0~E!

2p
e2p i @T~E!/T0#D , ~4.2!

where vg0(E)5*g0(E)pdq is the action integral along the ‘‘vanishing oscillator cycle’’g0(E),
whereasT(E)5*g(E)dq/2p is the ~positive imaginary! time period of the tunnel cycleg(E);
notice that whenE→Ecrit one hasvg0(E);T0(E2Ecrit), whereasT(E) tends to infinity like
(T0/2p i )ln vg0(E) , so that the above limit is a finite number.

Example:We consider the general cubic oscillator,

V~q!52q31aq,

wherea is assumed to be real positive. Rescaling the energy near the bottom of this cubi
(E5(2/3))a3/21Er\), one gets

a@L#5
A2p

G~s11! S c

\ D s11/2

e2uL\a~a,Er ,\!,

where

uL~a!5
8

5
31/4a5/4,

whereas

c~a!560uL~a!

is the ‘‘critical action multiplier.’’ The ‘‘quasi-homogeneity’’ property of the~rescaled! Schrö-
dinger equation allows us to write
J. Math. Phys., Vol. 38, No. 12, December 1997
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s~a,Er ,\!5sS 1,
Er

a1/4,
\

a5/4D and a~a,Er ,\!5aS 1,
Er

a1/4,
\

a5/4D .

Now the ‘‘exact matching method’’ leads to the following results~see Ref. 12, Sec. 5!:

s~1,Er ,\!1
1

2
5

33/4

6
Er1S 7

576
33/41

5

192
31/4Er

2D\1S 455

18432
31/4Er1

385

55296
33/4Er

3D\2

1S 119119

10616832
31/41

95095

5308416
33/4Er

21
85085

10616832
31/4Er

4D\31O~\4!,

while a(1,Er ,\):5exp(2D(1,Er ,\)) with

D~1,Er ,\!5S 77

1152
33/41

47

384
31/4Er

2D\1S 15911

110592
31/4Er1

11947

331776
33/4Er

3D\21O~\3!.

Computation of Jost symbols:Let us now come back to the connection pathsl andm of Fig.
46, from which the right and left connection operators were built~Sec. III E 1!. They are related
by l5aLm, whereL is the connection cycle represented on Fig. 56~left!. By relation~3.2! of
Sec. III D ~fig. 40!, aL is related toa@L# by

aL1@L#5aLa@L#512e22ips.

This allows us to rewrite the right and left connection operators as follows:

J 15l1m5S 12e22ips

a@L#
11D m,

J 25l5
12e22ips

a@L#
m.

To define the Jost functionJ we shall choose the following Jost basis (f,f!):
~1! let f be the Borel sum, for large negativeq, of a WKB expansionw well normalized at

2`;
~2! let f! be the right sum, for large positiveq, of mw.
Proposition IV.1.1:With the above conventions the right, left and median symbols of the

function, respectively, read as

J15
12e22ips

a@L# 11, ~4.3!1

J25~11a@L#!
~12e22ips!

a@L# , ~4.3!2

Jmed5~11a@L#!1/2S ~12e22ips!

a@L# 1
~11a@L#!1/221

a@L# D . ~4.3!med

Proof: The formula forJ1 is an immediate consequence of the formula forJ 1. Computation
of J2 requires more care, because the pathm intersects the tunnel cycle@L# with a non zero index,
so that the left symbol off! is not equal to its right symbolmw. By Theorem 2.5.1 of Ref. 12
~using the fact that this intersection index is equal to11!, we find that the Stokes automorphis
acts in the following way:

Gmw5~11a@L#!mw mod WKB1` ,
J. Math. Phys., Vol. 38, No. 12, December 1997
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whereas

Ga@L#5a@L#,

so that modulo WKB1` the left symbol off! is equal to (11a@L#)21mw, and formula (4.3)2

immediately follows.
Another way of proving it consists in deducingJ2 from J1 by J25G21J1, noticing that

Ge2ips5~11a@L#!e2ips ~4.4!

~this again follows from Theorem 2.5.1 of Ref. 12, remembering that2e2ips is ag0, the Voros
multiplier of the vanishing cycleg0!.

Similarly, formula (4.3)med is easily proved by computingJmed5G1/2J2 ~or G21/2J1!. h

B. The bottom of a double well

The basic ingredients will now be the monodromy exponentss1 , s2 of the two well bottoms,
and the Voros multipliera@L#, where@L# is the connection cycle associated to the bounded Sto
line L shown on Fig. 57.

As was the case in subsection IV A, the monodromy exponents are resurgent expansio
real coefficients, depending regularly on the rescaled energyEr ,

s152
1

2
1

T1

2p
Er10~\!, s252

1

2
1

T2

2p
Er10~\!,

whereT1 ~resp.,T2! is a positive number, the time period of the bottom of the first~resp., second!
well.

By the same reasoning as in subsection IV A, one finds that the Voros multipliera@L# has the
following form:

a@L#5
2p

G~s111!G~s211! S c

\ D ~s11s211!

e2uL /\a~\,Er !, ~4.5!

whereuL ~a positive real number! is 1/i times the action integral along the tunnel cycle, where
a(\,Er) is a simple resurgent expansion depending regularly onEr ; c is a positive constant with
the dimension of an action, the critical action multiplier, defined by

c5 lim

E→
.

Ecrit

F S vg1~E!

2p
D T1 /~T11T2!S vg2~E!

2p
D T2 /~T11T2!

e2p i @T~E!/~T11T2!#G , ~4.6!

FIG. 57. The ‘‘connection cycle’’@L# for the bottom of a double well.
J. Math. Phys., Vol. 38, No. 12, December 1997
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wherevg i (E) ( i 51,2) is the action integral along the ‘‘vanishing oscillator cycle’’g i(E), whereas
T(E)5*g(E)dq/2p is the ~pure imaginary! time period of the tunnel cycleg(E) @here again the
factor in front of the exponential vanishes asE→Ecrit , in such a way as to cancel the divergen
of T(E)#.

Example:Considering the symmetrical quartic oscillator,

V~q!5q42aq2,

for a real positivea and rescaling the energy near the bottom of this double well (E52a2/4
1Er\), one getss15s2 :5s and

a@L#5
2p

G2~s11! S c

\ D 2s11

e2uL /\a~a,Er ,\!,

where

uL~a!5
2&

3
a3/2,

whereas

c~a!56uL~a!

is the ‘‘critical action multiplier.’’ Now the~rescaled! Schrödinger equation presents a ‘‘quas
homogeneity’’ property which allows to write

s~a,Er ,\!5sS 1,
Er

a1/2,
\

a3/2D and a~a,Er ,\!5aS 1,
Er

a1/2,
\

a3/2D .

Applying the ‘‘exact matching method’’ we get~see Ref. 12, Sec. 5!:

s~1,Er ,\!1
1

2
5

1

2&
S Er1S 1

4
1

3Er
2

8 D\1S 25Er

32
1

35Er
3

64 D
3\21S 175

256
1

735Er
2

256
1

1155Er
4

1024 D\31O~\4! D ,

anda(1,Er ,\):5exp(2D(1,Er ,\)) with

D~1,Er ,\!5
1

8&
S S 19

3
1

17Er
2

2 D\1S 187Er

4
1

227Er
3

16 D\21O~\3! D .

Computation of Jost symbols:Let us now come back to the Jost connection operatorsJ 6: in
Sec. III E 2 they were expressed in terms of the connection pathsl, n1 , n2 , the last two of which
are invertible operators; remembering that these two are complex conjugate to each oth
noticing that they are related by

n15e2ip~s11s2!n2 ,

it is convenient to factor out inJ 6 the real connection path,

n05e2 ip~s11s2!n15eip~s11s2!n2 .
J. Math. Phys., Vol. 38, No. 12, December 1997
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Proposition IV.2.1:One has

J 65S 2
4 sin~ps1!sin~ps2!

a@L#
1e6 ip~s11s2!D n0 .

Proof: Denoting byL the connection cycle represented on Fig. 58, we obviously havl
5aLn1 , so that

J 15~15aL!n1 .

But the basic relations of Sec. III D~fig. 40! easily yield

aL1@L#5aLa@L#5~12e22ips1!~12e22ips2!,

from which the proposition immediately follows. h

Besides being real, the invertible connection pathn0 enjoys the nice property of being ‘‘in
variant under the Stokes automorphismG, modulo exponentially decreasing functions at1`. ’’

Lemma IV.2.1:

Gn05n0 mod WKB1` .

Proof: By Theorem 2.5.1 in Ref. 12 one has

Gn15~11a@L#!n1 , mod WKB1` ,

Gn25~11a@L#!21n2 , mod WKB1` ,

whereas

Ga@L#5a@L#,

Ge2ips15~11a@L#!e2ips1,

Ge2ips25~11a@L#!e2ips2.
h

To define the Jost functionJ we shall choose the following Jost basis (f,f!).

~1! Let f be the Borel sum, for large negativeq, of a WKB expansionw well normalized at2`;
~2! let f! be, for large positiveq, the right or left sum ofn0w.

By the above lemma, choosing forf! the right or left sum ofn0w makes no difference in the
definition of the Jost functionJ, and Proposition IV.2.1 can be re-expressed by saying that
right and left symbols of this function read as

FIG. 58. The connection cycleL for the bottom of a double well.
J. Math. Phys., Vol. 38, No. 12, December 1997
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J652
4 sin~ps1!sin~ps2!

a@L#
1e6 ip~s11s2!.

(4.7)6

Addenum: The median symbol of the Jost function:With the above conventions the Jo
function is real, so that its right and left symbols are complex conjugate to each other. If one
to keep track of reality properties it is convenient to replace right and left symbols by the m
symbol, defined by

Jmed5G1/2J25G21/2J1.

Lemma IV.2.2:One has

Jmed52
4 sin~ps1!sin~ps2!

a@L# 1
2 cos~p~s11s2!!

11~11a@L#!1/2 .

4.7med

Proof: Given that the automorphismG leavesa@L# invariant, and multiplieseips1 andeips2 by
(11a@L#), the lemma follows by a straightforward computation. h

C. The top of a double well

Consider now the situation of Sec. III F 3. All symbols in that case are Borel resummable
the Jost connection operator is the sum of the four connection paths shown on Fig. 55. T
these four are invertible, namelyl21 and l12 , and this allows us to define the followin
connection cycles:
the right oscillator cycleg r5m1l12

21 ;
the left oscillator cycleg l5m1l21

21 ;
~cf. Fig. 59!, which we call that way because they follow, respectively, the right and left
component of the~critical! classical trajectory in the (p,q)-plane; notice that these cycles are
oriented that the corresponding ‘‘critical action integrals,’’

v r5*gr
pcrit~q!dq,

v l5*g l
pcrit~q!dq ~pcrit5~Ecrit2V~q!!1/2!,

are positive real numbers.
Notice also that the corresponding~critical! Voros multipliers are related to each other by

FIG. 59. The right and left oscillator cycles at the top of a double well.
J. Math. Phys., Vol. 38, No. 12, December 1997
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agr5ag le~ i /\!~vr2v l !.

To prove it, notice thatg r5g l1l21l12
21 , check that the cycleg5l21l12

21 is homologous to a
large circle~cf. Fig. 60!, and apply the residue theorem at infinity.

Besides these two oscillator cycles it is also natural to introduce their complex conju
defined by

g r5m2l21
21 , g l5m2l12

21 .

By the basic relations of Sec. III D~fig. 40!, they are related to the previous ones by

agragr5ag lag l511eU,

whereU is a real resurgent expansion in\, depending regularly onEr , defined by

U5
1

i\
Vg0

~Ecrit1Er\!S 5Er

T0

i
10~\! D ,

whereg0 is the vanishing cycle around the double turning point, associated to that determin
of p for which (dvg0 /dE)(Ecrit)5T0 is positive imaginary~when using the basic relations of Se
III D one should remember that the monodromy exponent of the double turning points
5 iU /2p21/2!.

Proposition IV.3.1:One has

agr5
A2peU/4

GS 1

2
1 i

U

2p D S c

\ D i ~U/2p!

eivr /\a~\,Er ! ~4.8!

~and a similar equation forag l, with v r replaced byv l!, wherea(\,Er)5110(\) is a simple
resurgent function depending regularly onEr ; the ‘‘critical action multiplier’’ c ~a positive real
number with the dimension of an action! is defined by

c5 lim
.

E→Ecrit

S vg0~E!

2p i
e2p i @T~E!/T0#D , ~4.9!

FIG. 60. The cycleg5l21l12
21 ~top!, and a homologous one~bottom!.
J. Math. Phys., Vol. 38, No. 12, December 1997
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whereT(E) is the~positive real! time period of the real trajectory forE real.Ecrit ; recall thatT0

is positive imaginary, and thatvg0(E);T0•(E2Ecrit .)
Proof: This again follows from Proposition III.3.1. The ‘‘exact matching method’’ of S

III C gives the announced expression forc by matching leading terms only, and the full expansi
of a(\,Er) by matching higher order terms.

Example:Considering the symmetrical quartic oscillator

V~q!5q42aq2,

wherea is real positive, we get

agr5ag l5
A2peU/4

GF1

2
1 i ~U/2p!G S c

\ D i ~U/2p!

eiv/\a~a,Er ,\!.

The periodsv r5v l :5v(a) are proportional toa3/2,

v~a!5
2

3
a3/2,

while the ‘‘critical action multiplier’’ c is given by

c~a!512v~a!.

Now the ‘‘quasi-homogeneity’’ property of the~rescaled! Schrödinger equation induces th
equalities

U~a,Er ,\!5US 1,
Er

a1/2,
\

a3/2D and a~a,Er ,\!5aS 1,
Er

a1/2,
\

a3/2D .

The ‘‘exact matching method’’ leads to the following results, as proved in Ref. 12, Sec. 5:

U~1,Er ,\!5pS Er1S 3

8
2

3Er
2

8 D\1S 2
85Er

64
1

35Er
3

64 D
3\21S 2

1995

1024
1

2625Er
2

512
2

1155Er
4

1024 D\31O~\4! D ,

while a(1,Er ,\):5exp(iD(1,Er ,\)/2p) with

D~1,Er ,\!5
p

16 S S 2
67

3
117Er

2D\1S 671Er

8
2

227Er
3

8 D\21O~\3! D .

Computation of Jost symbols:Let us now come back to the Jost connection operator,

J 5l211l121m11m2 .

Factoring outl21 yields

J 5~11ei /\~v l2vr !1ag l1a ḡ r !l21 .

Factoring outl12 yields
J. Math. Phys., Vol. 38, No. 12, December 1997
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J 5~e~ i /\!~vr2v l !111agr1a ḡ l !l12 .

If one likes to keep track of the reality property ofJ , it is more convenient to factorize the re
connection cyclel0 defined by

l05e~ i /\!@~v l2vr !/2#l215e~ i /\!@~vr2v l !/2#l12 .

Taking Proposition IV.3.1 into account, one thus gets the following result.
Proposition IV.3.2:One hasJ 5Jl0 , whereJ is the real valued, Borel resummable symb

J52 cos
v r2v l

2\
1a~\,Er !e

U/4F A2p

GS 1

2
1 i

U

2p D S c

\ D i ~U/2p!

e~ i /\!@vr1v l /2#1complex conj.G .

h

Taking the Borel sum ofl0w for our generator ofW mod. W 1` , we obtain the correspondin
Jost function as the Borel sum of the above symbol.

V. BOUND STATE SPECTRUM AND RESONANCES

From the symbol of the Jost function we shall now derive information on the zeros of
function, which are the bound state or resonance energies~cf. Sec. I B 3!. Our main tool will be
the implicit function theorem, and more precisely its resurgent version presented in Refs. 3
22.

A. Quantization of simple oscillators

1. The generic case

Consider now a range of generic energies such that the real axis crosses only one we
Fig. 61 ~‘‘stable case’’!, or in Fig. 24~‘‘metastable case,’’ where tunnelling occurs!.

We shall denote byg0 the corresponding ‘‘oscillator cycle’’ and byvg0
5*g0

pdq its period
~a positive real number, increasing withE!.

Proposition V.1.1:In any such energy range there is a uniquely defined analytic chang
variable~this idea of ‘‘changing the energy variable’’ was suggested to us by Colin de Verdi`re!,

E°V~E!5vg0
~E!1O~\!,

such that in this new variableV the zeros of the Jost function are given by the ‘‘exact Boh
Sommerfeld quantization rule,’’

FIG. 61. A simple oscillator~generic, stable case!.
J. Math. Phys., Vol. 38, No. 12, December 1997
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V5~n1 1
2!2p\,

wheren runs over all natural integers such that the corresponding values ofE stay in the energy
range considered.

In the stable case this change of variable is real analytic, and increasing. In the metastab
it is almost so, up to exponentially small imaginary corrections.

Proof: The idea is to rewrite the Jost function under the form

J511e~ i /\!V,

whereV5V(E,\) is an analytic function with the above properties, depending analytically on
small parameter\, such that

dV

dE
5

dvg0

dE
1O~\!.

We shall explain the construction in detail in the special case of the cubic barrier, from w
the idea of the general construction will be clear~this case is more instructive than the stable ca
because of tunnelling effects!. The construction will be made on symbols, which we could cho
to be the right or left symbols. Here we shall work with the median symbols, which will pro
us with more readable information on the imaginary part of the energy levels~resonance widths!.
As we have seen in Sec. II B 3, the median symbol of the Jost function reads as

Jmed511ag0~11ag!1/2,

whereg05gosc, g5g tun. Settingu51/i *gpdq~a positive real number, decreasing withE!, one
has

ag05ag0
e~ i /\!vg0, ag5age2u/\,

whereag0
andag are resurgent series with regular dependence onE, of the form 110(\). Setting

Vmed5vg1
\

i S ln ag0
1

1

2
ln~11ag! D ,

one gets a resurgent symbol with regular dependence onE, such that

Jmed511e~ i /\!Vmed
.

Defining V as the median resummation of this symbol, we therefore get the announced for
the Jost function, and there only remains to prove that the functionV(E) has a non zero deriva
tive, a fact which is easily checked on its symbol. Let us do it in detail here, so as to precis
the reality properties of the functions involved. One has

dVmed

dE
5

dvg0

dE
1

\

i S d

dE
ln ag0

2« D ,

where
J. Math. Phys., Vol. 38, No. 12, December 1997
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e5
1

2

d

dE
ln~11ag!5

1

2
~11ag!21

d

dE
ag;2

1

2

du

dE
e2u\,

is a strictly positive, exponentially small quantity. Sincedvg0
/dE is a positive real, appreciably

large quantity~the time periodTg0 of the oscillator cycle!, this ends the proof of the proposition.h

Furthermore it easily follows from formula~1.3! in subsection I A that for any well cycleg0

the term lnag0 is pure imaginary, so that the imaginary part ofdVmed/dE is just 2\e. Since
median resummation commutes with complex conjugation, we thus see that

T
dV

dE
52e,

so thatdV/dE is a complex number close toTg0
, slightly below the positive real axis. It follows

that the resonance energies are slightly above the real axis, as could be expected from p
considerations~recall that with our conventions the time dependence of the wave function
e( i /\)Et!.

2. Stable equilibrium

Let now the energy be close to an absolute~quadratic! minimum of the potential function.
Rescaling the energy as explained in Section III, let

s52
1

2
1

T0

2p
Er10~\!

be the monodromy exponent of the well bottom.
For every natural integern the equation

s~Er ,\!5n ~5.1!

obviously has a unique formal power series solution,

En~\!5
2p

T0
S n1

1

2D1En,1\1En,2\
21••• ~5.2!

~the Rayleigh–Schro¨dinger series!.
Theorem V.1.1: The Rayleigh–Schro¨dinger series is Borel resummable, and its Borel s

~defined whenn is not too large compared with 1/\! gives then-th energy level.
Proof: Let (f,f!) be some Jost basis such that
~1! f is the Borel sum, for large negativeq, of a simple WKB expansion well normalized a

2`;
~2! f! is the right or left~or median! sum, for large positiveq, of another simple WKB

expansion, well normalized along some path which crosses no bounded Stokes line.
Then it immediately follows from Proposition III.4.1 that the corresponding Jost symb

Borel resummable. By Theorem III.3.1 it reads as

J5
A2p

G~2s!
\~s11/2!c~Er ,\!, ~5.3!

wherec(Er ,\) is an invertible resurgent power series in\, depending regularly onEr .
J. Math. Phys., Vol. 38, No. 12, December 1997
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Since the monodromy exponents5s(Er ,\) is also a resurgent power series in\ depending
regularly onEr , the formal operation of substituting any resurgent power series toEr in the right
hand side of~5.3! can be interpreted as an operation on true functions: all one has to do is re
all formal objects by their right sum~or by their left sum, if one prefers!. Since c(Er ,\) is
invertible, the only way to get the zero functionJ50 is to chooseEr5Er

n(\) in such a way that
s(Er ,\)5n, a natural integer. Formally speaking this determines the series~5.2! unambiguously,
and by the implicit resurgent function theorem this series is indeed resurgent.

We can thus conclude that the right~say! sum of the Rayleigh–Schro¨dinger series~5.2! is the
n-th zero of the Jost function. But since the same reasoning holds for the left sum, it the
follows that the Rayleigh–Schro¨dinger series is Borel resummable. h

Remark:From the fact that the symbol~5.3! is Borel resummable one should not infer th
each individual factor in the right-hand side of~5.3! is Borel resummable. This holds only in th
simple pattern case~Ref. 12, Sec. 2.5.1!, because in that cases is Borel resummable. In the
singular pattern case it is easily checked thats is not Borel resummable: more precisely, b
Theorem 2.5.1 of Ref. 12 one has

Ge2ips5~11a@L#!22e2ips,

where @L# is the connection cycle associated to the bounded Stokes lineL of Fig. 42 ~or its

complex conjugateL̄, yielding the same Voros multipliera@ L̄ #5a@L#!. Taking logarithms of both
sides, one gets

Gs5s2
1

ip
ln~11a@L#!, ~5.4!

showing thats is not Borel resummable.
But since the cycle@L# ‘‘goes through’’ the double turning point, similar arguments as th

of section IV show thata@L# contains a@A2p/G(2s)#\ (s11/2) factor, which vanishes when th
Rayleigh–Schro¨dinger series is substituted toEr . This explains the apparent ‘‘paradox’’ that th
solution of equation~5.1! is Borel resummable, although the equation itself is not.

Computation of the Rayleigh–Schrödinger series:For every givennPN, the implicit equa-
tion s(\,Er)5n can be formally solved by the following algorithm~in the same spirit see als
Ref. 38!:

We construct the formal series

En~\!5 (
k>0

En,k\
k,

jointly with the formal seriesY(q,Er ,\) introduced in Sec. III B~computation of the monodromy
exponent!, by demanding that the residue ofiY at the double turning pointqcrit should equaln.

The first coupleY1(q,Er), En,0 is given by the equation

Y15
1

2Y0
S En,01 i

d

dq
Y0D ,

whereiY1 is required to have residuen at qcrit . Then for everyl>1 the coupleYl 11(q,Er), En,l

is given by the equation

Y~ l 11!5
1

2Y0
S En,l1 i

d

dq
Yn2 (

1<k< l
YkY~ l 2k! D ,

whereiYl 11 is required to have residue 0 atqcrit .
J. Math. Phys., Vol. 38, No. 12, December 1997
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Of course it is enough to work with the Laurent expansions of theYl ’s. For everyl>1, since
Yl has a pole of order~at most! (2l 21) in qcrit , computingEn,l requires computing the (2l
11) first terms of the Laurent expansions of each of theYk’s, 1<k< l .

It follows from this analysis that eachEn,l5El(n) is a polynomial inn, of degree~at most!
( l 11), with real coefficients~and even rational coefficients if the Taylor expansion ofpcrit at qcrit

has rational coefficients!.
Besides, relations(2Er ,2\)11/252s(Er ,\)21/2 implies that the expansionEn(\)

5E(n,\) satisfies the functional relation

E~m2 1
2 ,\!52E~2m2 1

2 ,2\!,

so that for everyl>0,

El~m2 1
2!5Pl~m!,

wherePl is an odd~resp., even! polynomial of degree~at most! ( l 11) if l is even~resp., odd!.
Example: The simple anharmonic oscillator:We consider after Bender and Wu2 the following

simple anharmonic oscillatorV(q)51/4(q21q4). The preceding algorithm implemented und
Maple yields the following result where we have setm5n11/2:

En5m1S 3

2
m21

3

8D\2S 17

4
m31

67

16
m D\21S 375

16
m41

1707

32
m21

1539

256 D\3

2S 10689

64
m51

89165

128
m31

305141

1024
m D\41O~\5!.

Coming back to then variable, this gives

En5S n1
1

2D1S 3

2
n21

3

2
n1

3

4D\2S 17

4
n31

51

8
n21

59

8
n1

21

8 D\2

1S 375

16
n41

375

8
n31

177

2
n21

1041

16
n1

333

16 D\3

2S 10689

64
n51

53445

128
n41

71305

64
n31

80235

64
n21

111697

128
n1

30885

128 D\41O~\5!.

The casen50 corresponds to the case of the ground state, already computed by Bender an2

In the same article Bender and Wu have estimated numerically the asymptotic growth
sequence ofE0,k for largek,

E0,k;~21!k11S 6

p3D 1/2

GS k1
1

2D3k,

a result proven afterwards by Harrel and Simon39 ~see also Refs. 40, 13!.
Let us show how resurgence theory yields another rigorous proof of this result, and

generally of the following largek asymptotic formula for then-th energy level,

En,k;~21!k11S 6

p3D 1/2

12n
G~n1k1 1/2!

G~n11!
3k.

The idea is to analyze the singularities of the Borel transform of the monodromy exponents, and
then use Ecalle’s ‘‘alien calculus’’ to deduce from it the singularities of the Borel transform
J. Math. Phys., Vol. 38, No. 12, December 1997
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En . Using again Theorem 2.5.1 of Ref. 12 it is easily checked that the Borel transform ofs has
singularities in two directions only: the positive real direction, where they are described by
mula ~5.4!, and the negative real direction, where they are given by a similar formula,

G~p!s5s1
1

ip
ln~11aL!, ~5.48!

where the connection cycleL bears the same relationship with@L# of fig. 42 as the cycle of fig.
58 does with that of fig. 57: one thus has

aLa@L#5e2ips21,

with

a@L#5
A2p

G~2s! S 4

\ D 2~s11/2!

e2uL /\~11O~\!!

~hereuL51/3!. Translating equation~5.48! in terms of alien derivatives~cf. for instance Ref. 12!
yields

Ḋ2 luL
s5

~21! l 11

ip l
~aL! l~ l 51,2,...!.

Taking alien derivatives of equations(En ,\)5n,

Ḋ2 luL
s~Er ,\!uEr5En

1~Ḋ2 luL
En!

]

]Er
s~Er ,\!uEr5En

50,

we thus get in particular~for l 51!,

Ḋ2uL
En52

1

ip

aL

]

]Er
s~Er ,\!

uEr5En
52

1

ip

A2p

G~n11! S 4eip

\ D ~n11/2!

euL /\~11O~\!!. ~5.5!

In other words the Borel transform ofEn has its closest singularity at2uL ~recall that it has no
singularity along the positive real axis, by the above remark!, and the nature of this singularity ca
be read on formula~5.5!; from this ‘‘resurgence formula’’ in the sense of Ecalle we immediat
get what Berry and Howls24,25 call a ‘‘resurgence formula in the sense of Dingle:’’

En,k;2
1

2ip

~21!k11GS n1k1
1

2D
uL

n1k11/2

1

ip

A2p

G~n11!
4~n11/2!,

a formula equivalent to the announced one. Remark here that this strategy could be explo
double wells, thus giving an answer to a question of Simon.40

The knowledge on the asymptotic growth of theEn,k’s yields a precise numerical computatio
by ‘‘resummation to the least term.’’ Actually many formal and numerical procedure for res
mation are available, see for instance Ref. 42. In this way it would be interesting to compa
numerical computations based on Pade´ approximants,41,40 with the powerful hyperasymptotic
methods of Refs. 25 and 26.
J. Math. Phys., Vol. 38, No. 12, December 1997
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3. Resonance energies near a metastable equilibrium

Looking now near the bottom of a ‘‘cubic well’’~subsections III F and IV A!, we expect the
zeros of the Jost function to be complex, and interpretable as resonance energies.

Working with left symbols will make the formulas look very similar to those of the previ
subsection: using formula~4.1! for the Voros multipliera@L#, it is easily seen on formula (4.3)2

~using Euler’s reflection formula! that the left Jost symbolJ2 equals 1/G(2s) times an invertible
factor. The quantization condition for left symbols therefore reads as

s~\,Er !5n ~a natural integer!, ~5.6!

exactly as in Sec. V A 2, and for the same reason it admits a unique formal solution,

En
2~\!5

2p

T0
S n1

1

2D1En,1\1En,2\
21... ~5.7!

~the Rayleigh–Schro¨dinger series! which is resurgent, and whose left-sum is a zero of the J
function. Since this zero reads (2p/T0)(n11/2)10(\), it can be interpreted as the rescal
energy of then-th resonance level.

Now the big difference with Sec. V A 2 is the fact that this~real valued! resurgent series is no
Borel resummable~if it were, its Borel sum would be real, contradicting physical expectatio!.
To understand the mathematical reason for that difference, notice that by equation~4.4! one has

Gs5s1
1

2ip
ln~11a@L#!,

a formula looking like formula~5.4!, with the important difference thata@L# no longer vanishes for
s5n, because formula~4.1! for a@L# now contains a 1/G(s11) factor instead of a 1/G(2s) factor
~the connection cycle@L# of fig. 56 crosses the double turning point on the opposite sh
compared to that of fig. 42!.

Another way of understanding this is to compare the result of the above computation
what we would get by solving equationJ150. Using equation~4.3!1, the vanishing of the right
Jost symbolJ1 is easily seen to be equivalent to the equation

2
A2p

G~2s!
e2 ip~s11/2!5e~\,Er !, ~5.8!

where

~5.9!

Since e is exponentially small this condition can be satisfied only fors.n, a natural integer.
Noticing that the left-hand side of~5.8!, considered as a function ofs, has a simple zero ats
5n, with coefficient2 iA2pn!, we have

]

]Er
@ left-hand side of~5.8!#u

\50
Er5En

2
~\!

52 iA2pn!
T0

2p
Þ0,

thus warranting the existence of a unique formal solution of equation~5.8!, of the form
J. Math. Phys., Vol. 38, No. 12, December 1997

 07 Apr 2005 to 140.105.16.2. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



l
o of
.
ol
art of
logous
-

-

.

6176 Delabaere, Dillinger, and Pham: Exact semiclassical expansions

Downloaded
En
1~\!5En

2~\!1(
>1

En
~k!~\!en

k , ~5.10!

with

en5S c

\ D n11/2

e2uL /\,

whereasEn
(k)(\) is a polynomial of degree (k21) in ln \ @this polynomial dependence on ln\

stems from the fact that the power series expansion of (c/\)s11/2 with respect toEr has a ln\
factor in every term of positive degree#, with integral power series of\ as its coefficients; in
particular,En

(1)(0)5( i /A2pn)(2p/T0).
Remembering that both sides of equation~5.8! depend regularly onEr , the implicit resurgent

function theorem~in its extended form shown in appendix 2! allows us to conclude that the forma
expansion~5.9! is a ‘‘regular’’ resurgent symbol, and that the right-sum of this symbol is a zer
the Jost functionJ, which is nothing of course but the rescaled energy of then-th resonance level

In other words,En
2 @eq. ~5.7!# andEn

1 @eq. ~5.10!# are, respectively, the left and right symb
of the~rescaled! n-th resonance level. More readable information on the real and imaginary p
the energy can be seen on the median symbol, which can be computed in completely ana
fashion, solving the equationJmed50: using formula (4.3)med one easily checks that the ‘‘me
dian’’ quantization condition can be written in the same form as eq.~5.8!, with e replaced by

yielding for En
med an expression similar to~5.10!,

En
med~\!5En

2~\!1 (
k>1

En
med~k!~\!en

k , ~5.11!

with En
med(k)(\) a polynomial of degree (k21) in ln \ with an integral power series of\ as its

coefficients; in particular,En
(1)(0)5( i /2A2pn!)(2p/T0), yielding the principal part of the reso

nance width.
Example:We consider the cubic oscillatorV(q)52q31q. According to the results of Sec

IV A, Example, we get

E0
2~\!531/42

11

48
\2

155

2304
33/4\22

39709

331776
)\31O~\4!,

e05S 96
31/4

\ D 1/2

e2~8/5!~31/4/\!,

E0
~1!~\!5

i&

Ap
S 31/42

169

192
\1O~\2! D

E0
~2!~\!52

31/4

p S ~ ip1g!~11O~\!!1 lnS 96
31/4

\ D ~11O~\!! D ,

whereg is the Euler’s constant, whereas
J. Math. Phys., Vol. 38, No. 12, December 1997
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E0
med~1!~\!5

i&

2Ap
S 31/42

169

192
\1O~\2! D ,

E0
med~2!~\!52

31/4

4p S ~2ip1g!~11O~\!!1 lnS 96
31/4

\ D ~11O~\!! D .

B. Quantization of double oscillators „proof of the Zinn-Justin conjecture …

Let us go back to the results of Sec. IV B which described the right, left and median
symbols for a double absolute minimum~two quadratic wells at the same level, separated b
‘‘tunnel’’ !: finding bound states amounts to equating to zero these Jost symbols; using E
reflection formula and formula~4.5! for the Voros multipliera@L#, one easily see that the quant
zation condition for right and left symbols are complex conjugated and read as

2p

G~2s1!G~2s2!

1

e6 ip~s11s2! 5e~\,Er !,

(5.126)

where651 for the right symbols and652 for the left symbols, whereas

~5.13!

One shall recover the reality properties of the energy by working with median symbols
quantization condition near a two-fold absolute minimum is therefore equivalent to the equ

1

cosp~s11s2!

2p

G~2s1!G~2s2!
5emed~\,Er !, ~5.14!

with

~5.15!

i.e.

«med~\,Er !

S c

\ D ~s11s211!

e2uL /\a

5 (
n50

` ~21!nGS n1
1

2
D

ApG~n12!
S 2pS c

\ D ~s11s211!

e2uL /\a

G~s111!G~s211!
D n

.

Generically the monodromy exponentss1 ands2 differ: since« ~or «med! is exponentially small,
each bottom of well will contribute, in the principal part of the spectral symbols, a factor an
gous to the simple absolute minimum case, corresponding tos1;n or s2;n, wheren is a natural
integer. Choosing one of them, say
J. Math. Phys., Vol. 38, No. 12, December 1997
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s152
1

2
1

T0

2p
Er10~\!;n,

we thus define a sequence of simple formal real resurgent functions (En
(0)(\))nPN ,

En
~0!~\!5

2p

T0
S n1

1

2D1En,1
~0!\1En,2

~0!\21...,

which we call the principal values of energy levels in the corresponding well~the Rayleigh–
Schrödinger series!.

For the spectral symbols to vanish exactly we must add to those principal values su
exponentially small corrections, yielding the ‘‘multi-instanton expansions.’’ Special attention
to be taken near those values of the potential where boths1 ands2 are similar to natural integer
for some values of the energy, leading to the so-called ‘‘avoided crossing phenomena’’~cf. Ref.
18!. For the sake of simplicity we shall focus only on the symmetrical double well.

Symmetrical double well:In that case the monodromy exponents are equal,s15s25s. Equa-
tion (5.126) then factorizes to give the Zinn-Justin formula,43–45,13,14

A2p

G~2s!

1

e6 ips 5e~\,Er !,

(5.166)

where

~5.17!

whereas sgn56. The same factorization occurs with equation~5.14! as well, leading to the
following equality for median symbols:

1

Acos 2ps

A2p

G~2s!
5emed~\,Er !, ~5.18!

with

emed~\,Er !5sgnA«med~\,Er !,

that is

~5.19!

i.e.
J. Math. Phys., Vol. 38, No. 12, December 1997
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emed~\,Er !

sgnS c

\ D ~s11/2!

e2uL/2\a1/2

512
1

8

2p~c/\!~2s11!e2uL /\a

G2~s11!
1

7

128 S 2p~c/\!~2s11!e2uL /\a

G2~s11! D 2

1... .

Equations (5.166) and ~5.18! are quite similar to equation~5.8! and can be solved in the sam
way: noticing that

]

]Er
@ left-hand side of~5.166!#uEr5E

n
~0!~\!5

]

]Er
@ left-hand side of~5.18!#uEr5E

n
~0!~\!

and

]

]Er
@ left-hand side of~5.16! or ~5.18!#u

\50
Er5En

~0!
~\!

52A2pn!
T0

2p
Þ0,

we thus deduce the existence of a unique formal solution of equation~5.16!, of the form~see also
Ref. 13!

En
6~\!5En

~0!~\!1 (
k>1

En
~6k!~\!en

k ,
(5.206)

whereEn
1 ~resp.,En

2! stands for right~resp., left! symbols, with

en5sgnS c

\ D n11/2

e2uL/2\, ~5.21!

and similarly the existence of a unique formal solution of equation~5.18!, of the form

En
med~\!5En

~0!~\!1 (
k>1

En
~med k!~\!en

k . ~5.22!

TheEn
(6k)(\) andEn

(med k)(\) are polynomials of degree (k21) in ln \ with integral power series
of \ as its coefficients. As a remark notice the reality of the seriesEn

(61)(\); furthermore the
following equality holds:

En
~11!~\!5En

~21!~\!5En
~med 1!~\!

~this result, which follows from the above computation, can be also directly deduced b
analysis of the resurgence structure!, and in particular,

En
~61!~0!5En

~med 1!~0!52
1

A2pn!

2p

T0
.

Now the regularity onEr of both equations~5.16! and ~5.18! allows us to conclude that th
formal expansion (5.206) and ~5.22! are regular resurgent symbols, as a consequence o
~extended! implicit resurgent function theorem~cf. appendix 2!. The right-sum-resp., left-sum
resp., median-sum- of the formal expansion (5.201)-resp., (5.202), resp.,~5.22!-is the rescaled
energy of then-th bound state level. Remark here that the choice of the sign sgn in~5.21!
determines the parity of the corresponding eigenfunction. We have thus proved a conjec
Zinn-Justin.43–45,13,14

Numerical example:Let us consider the following quartic oscillatorV(q):
J. Math. Phys., Vol. 38, No. 12, December 1997
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V~q!5q42q2.

Following the results of Sec. IV B, example, we get

En
~0!~\!5~2n11!&2~3n213n11!\2

&

8
~34n3151n2135n19!\2

2S 375

16
n41

375

8
n31

99

2
n21

417

16
n1

89

16D\31O~\4!,

and

en5sgnS 4&

\ D n11/2

e2&/3\,

while for instance,

E0
~61!~\!52

2

Ap
S 12

71&

48
\ D1O~\2!

and

E0
~12!~\!5

&

p S ip1g1 lnS 4&

\ D D1O~\!.

APPENDIX: RESURGENT FUNCTIONS DEFINED BY IMPLICIT EQUATIONS

1. Implicit equations in rings of formal power series

Given a~commutative! ring R, one denotes byR@@X1 ,...,Xn## the ring of formal power series
in n indeterminatesX1 ,...,Xn , with coefficients inR. This ring is naturally ‘‘filtered’’ by the
‘‘order’’ of its elements, the order of a formal power series being defined as the smallest deg
its constituent monomials; in particular the elements of order 0 are those with non van
constant term; those of strictly positive order will be called the small elements.

A sequence (gn)n50,1,2,... of elements ofR@@X1 ,...,Xn## is said to converge formally to an
elementgPR@@X1 ,...,Xn## if lim n→`ord(g2gn)5`. In that caseg is of course unique. The
following obvious statement is a formal version of the Cauchy convergence criterion:

for a sequence (gn)n50,1,2,... to converge formally inR@@X1 ...,Xn##, it is necessary and
sufficient that limn→`ord(gn112gn)5`.

The invertible elements ofR@@X1 ,...,Xn## are those elements of order 0 whose constant t
is invertible inR. In particular whenR is a field~e.g.,R5R or C! the invertible elements are a
elements of order 0~except 0, which by convention has arbitrary order but is of course
invertible!. In the applications we have in mind the ringR of coefficients will either be a field, or
a ring of formal power series over a field: e.g., we can writeC@@X,Y##5R@@Y## with R
5C@@X##; in such a case one should carefully distinguish the filtration inR@@Y## ~whereX is
considered as a ‘‘constant’’! from the so-called total filtration~where ord X5ord Y51!.

An important example of formal convergence is provided by the operation of substitut
small element to the indeterminateY of a ring of formal power series: letR be a ring of formal
power series~say, inn indeterminatesX1 ,...,Xn!, and let f PR@@Y##, whereY is another inde-
terminate; then any small elementuPR can be substituted toY in f , yielding an element ofR
which will be denoted byf (u)PR.
J. Math. Phys., Vol. 38, No. 12, December 1997
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Example:For any smalluPR, the inverse of 12u in R can be obtained by substitutingu to
Y in the formal power seriesf 511Y1Y21...PR@@Y##.

With the same hypothesis onR, we have the following~see Refs. 37, 22!.
Implicit function theorem: Let f 5 f 01 f 1Y1 f 2Y21...PR@@Y## be such thatf 0 is small,

and f 1 is invertible. Then there exists a unique small elementuPR such thatf (u)50.
Proof: The equationf (Y)50 can be rewritten as a ‘‘fixed point problem,’’

Y52
f 0

f 1
2

f 2

f 1
Y21...,

which can be solved formally by iteration~formal convergence inR being insured by the hypoth
esis thatf 0 is small!. h

Example A.1.1:Consider the implicit equation forEr ,

s~\,Er !5n,

whose formal solution is the Rayleigh–Schro¨dinger series~cf. Sec. V A 2!. SettingR5C@@\##]
~or R@@\##!, and changing the unknownEr to Y5Er2(n11/2)(T0/2p), we are exactly under the
hypotheses of the implicit function theorem.

Example A.1.2:More generally, consider the quantization condition~5.8! of Sec. V A 3.
Settinge5(c/\)n11/2/e2u/\ ~here we denote for short bye what was denoted in Sec. V A 3 b
en!, define the new unknownY by

Er5ERS1eY,

whereERSPR5C@@\## is the Rayleigh–Schro¨dinger series. Expandings(\,Er) in powers ofeY,

s~\,Er !5n1 1
2 1a1~\!eY1a2~\!e2Y21...,

one gets an expansion,

S c

\ D s11/2

e2u/\5ee~a1eY1a2e2Y21...!ln~c/\!

5eS 11a1e lnS c

\ DY1S a2e2 lnS c

\ D1
a1

2

2!
e2 ln2S c

\ D DY21...D
5e~11a!,aP ẽ YR@@e,ẽ,Y##,

where we have used the notation

ẽ5e ln
c

\
.

Treating\, e, ẽ as independent variables~which they are, from a formal algebraic point of view!,
one easily checks that the quantization condition satisfies the hypotheses of the implicit fu
theorem, yielding a unique formal solution,
J. Math. Phys., Vol. 38, No. 12, December 1997
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YPeR@@e,ẽ ##5eC@@\,e,ẽ ##.

Taking the relation betweene and ẽ into account, one can expand this solution as a formal po
series ine,

Y5e(
k50

`

Yk~\, ln \!ek, ~!!

whereYk is a formal power series in (\, ln \), polynomial of degree<k in ln \.

2. Resurgent version of the above results

Resurgent power series in\ make up a subringR,C@@\##. Similarly, we shall denote by
R(u) the subring ofC@@\,u1 ,...,un## consisting of the resurgent power series in\ which depend
regularly on the parameteru5(u1 ,...,un) ~in a neighbourhood of 0PCn!.

The property of being resurgent~resp., resurgent with regular dependence onu! is stable by
all formal operations considered in the Appendix, Sec. 1, i.e.
~1! Invertibility: The inverse of a formally invertible resurgent series is again resurgent~and
regular dependence on parameters is preserved!.
~2! Substitution:Let f 5 f (\,u,y)PR(u,y) ; then the operation of substituting toy a small element
of R(u) yields an elementf (\,u,y(\,u))PR(u) .
~3! Implicit function theorem:Let f 5 f (\,u,y)PR(u,y) be such thatf uu5y50 is small, and
] f /]yuu50 is invertible. Then the equationf (\,u,y)50 has a unique small solutiony5y(\,u)
PR(u) .

Furthermore, all the above operations are compatible with~right, left, median! resummation,
yielding the corresponding operations on true functions of\,u,y ~for small enough\,u,y!.

Example A.2.1:The Rayleigh–Schro¨dinger series~cf. Example A.1.1! is resurgent.
Extensions of the above results:Everything which has just been said about resurgent po

series still holds true for the more general notion of ‘‘formal resurgent function’’~cf. Ref. 12 Sec.
0.2!, allowing us to build resurgent objects of a more general nature. For instance, starting f
resurgent power series in\ depending regularly on a parameterl, and performing the substitution
l5 ln \, we get a formal resurgent function which is a formal power series in\ and ln\; the set
of all power series in\ and ln\ obtained in this way is a subring of the ring of all formal resurge
functions, which we shall hereafter denote byR̃.

Still more general than ‘‘formal resurgent functions’’ are resurgent symbols~cf. Ref. 12, Sec.
0.4!, which are essentially formal combinations of exponentials with coefficients in some rin
resurgent series.

Example A.2.2:Consider again Example A.1.2.
• When the parameterse, ẽ are treated as independent variables, the quantization conditi

easily seen to depend regularly on these parameters, so that its solutionY belongs toR(e, ẽ ) .
• Now regular dependence on the parameters allows us to make the suitable substitue

5e(\), ẽ5 ẽ(\) ~tending to zero when\→0!.
First performing the substitutionẽ5e ln(c/\), we can thus considerY as an element ofR̃(e)

@this means not only that each coefficientYk in the expansion~!! belongs toR but that the
dependence on the parametere is regular#.

Finally remembering whate actually stands for, we thus see thatY5Y(\) is a resurgent
symbol. But it is a resurgent symbol of a very peculiar kind, built from an element ofR̃(e) by
substituting a small exponential to the parametere: the important feature to remember is the initi
J. Math. Phys., Vol. 38, No. 12, December 1997
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regular dependence one, which we shall summarize by saying thatY(\) is a regularly built
resurgent symbol. This implies that for every small enough\ not only are all theYk’s in ~!! ~right,
left, and median! resummable, but that replacing all of them by their~right, left or median!-sums
yields a convergent series, whose sum is an exact solution of the~right, left or median! resummed
implicit equation.
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