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Introduction. Ehrenfeucht and Feferman [l ] have recently shown

that every r.e. (recursively enumerable) set is representable in every

consistent axiomatizable extension (T) of Robinson's system R (see

[2, p. 53]). In this paper we extend the above result and show that

any such theory (T) has the stronger property that for any two dis-

joint r.e. sets A, B there is a formula J"(x) which represents A and

whose negation F'(x) (i.e. ~F(x)) represents B.

The proof of Ehrenfeucht and Feferman uses Myhill's result [3]

that every creative set is universal. Our proof analogously uses the

recent result first proved by Muchnik [4], and independently by

Smullyan [5]—that every effectively inseparable pair of r.e. sets is

doubly universal (cf. Theorem A, §3).

1. Terminology. We let ( J") be any theory in standard formalization

(cf. Tarski [2]). For any number w we let ñ (written "An" in Tarski)

be the numeral associated with w. For any formula J"(x) we let Ft

be the set of all numbers w such that F(n) is provable in (T) and we

let FR be the set of all w such that F(n) is refutable in (T)—i.e. such

that F'(n) is provable in (T). (For a consistent theory (T), the sets

Ft, Fr are, of course, disjoint.) Let A, B be disjoint number sets. We

say that F (i.e. F(x)) represents A iff A =Ft. We say that F separates

A from B within (T), or that F separates the pair (A, B) in (T),

iff AC.Ft and BQFR. (This means that F, F' respectively represent

supersets of A, B.) And we say that F exactly separates the pair (A, B)
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within (T) iff F represents A and F' represents B—i.e. iff A = FT and

B = Fr. In [5] (T) is called a Rosser theory iff every disjoint pair of

r.e. sets is separable in (T), and an exact Rosser theory iff every such

pair is exactly separable in (T). It is obvious that every extension of

a Rosser theory is again a Rosser theory.

2. A preliminary lemma. A function/(x) is called definable in (T)

iff there is a formula F(x, y) such that for every pair of numbers m, n

the following conditions hold:

(i)  lif(m)=n then \-F(m, n),1

(ii)  If f(m)9in then \-F'(m, n),

(iii)  If/(ra) =« then \-(Vy)(F(m, y)Z)y = n).

Lemma 1. Let (T) be a consistent theory in which f(x) is definable and

in which A is exactly separable from B. Then f~x(A) is exactly separable

from f~l(B) within (T).2

Proof. Let F(x, y) be a formula which defines/(x) ; let G(x) exactly

separate (A, B) in (T); let H(x) be the formula (3y)(F(x, y)AG(y)).

We show that H exactly separates/-1^) from/~x(5) within (T).

Let n be any number and let m=f(n).

(i) Suppose nEf~1(A). Then mEA. Then \-G(m) (since G repre-

sents A ). Also \-F(ñ,m) (since F defines/). Hence \-F(ñ, m)/\G(m).

Hence \-(By)(F(ñ, y)AG(y))— i.e. \-H(n).

(ii) Conversely, suppose \-H(n)—i.e. }-(By)(F(ñ, y)AG(y)).

Since F defines/ then Y-F(ñ, y)Z)y — m. Hence \-(F(ñ, y) AG (y))

Z)(y = mAG(y)). And since \- (By)(F(ñ, y)AG(y)), we have

\-('3y)(y = mAG(y)). Hence \-G(m). Then mEA. So «£/_1(^4).

By (i) and (ii), H represents/-1^).

(iii) Suppose m£/_1(5). Then mEB. Then \-G'(m). Then \-y

= mZ)G'(y). And since \—F(ñ, y)Z)y = m, we have }—F(ñ, y)~DG'(y).

Hence h-~(.r7(«, y)AG(y)); hence \-(>Jy)~(F(ñ, y)AG(y)). Thus

I-(3y)(F(ñ, y)AG(y))~i.e. \-H'(ñ).
(iv) Conversely, suppose \-H'(ñ)—i.e. \-~(3y)(F(ñ, y)AG(y)).

Then \-(Vy)(F(ñ, y)DG'(y)), and so \-F(ñ, m)Z)G'(m). Also

\-F(ñ, in). Hence \-G'(m), so mEB and w£/_1(B).

By (iii) and (iv), H' represents B. This completes the proof.

3. Doubly universal sets. A pair (77!, 772) of number sets is called

doubly universal iff for every disjoint pair (A, B) of r.e. sets, there is

a 1-1 recursive function/(x) such that A =f~l(U{) and B=f~1(Ui).

1 For any formula X, we use the notation " \— X" to mean that X is provable (valid)

in (T).

2 By/-1L4) we of course mean the set of all numbers n such that/(«) £ A.
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(This means that for every number w: »G-4—/(»)G£/i and wG-B

From Lemma 1 immediately follows:

Theorem 1. If (T) is a consistent theory in which every recursive

function* is definable and in which at least one doubly universal pair is

exactly separable, (T) is an exact Rosser theory (i.e. every disjoint pair

of r.e. sets is then exactly separable in (T)).

4. Effectively inseparable sets. We consider the Post-Kleene enu-

meration coi, co2, ■ ■ ■ , a),, • • • of all r.e. sets.4 A disjoint pair (.4, B)

of number sets is called effectively inseparable (henceforth abbreviated

"E.I.") iff there is a recursive function 5(x, y) such that for any

numbers i, j such that w¡, coy are disjoint supersets of A, B respec-

tively, the number 5(i, j) is outside both wt- and wy.

The following theorem was proved in [4] and [5] (cf. introduction).

Theorem A. Every effectively inseparable pair of r.e. sets is doubly

universal.

From Theorem 1 and Theorem A immediately follows:

Theorem 2. If (T) is a consistent theory in which every recursive

function is definable and in which some E.I. pair of r.e. sets is exactly

separable, then (T) is an exact Rosser theory.

We now need :

Lemma 2. If some E.I. pair of sets is separable in (T) and if (T) is

axiomatizable then some E.I. pair of r.e. sets is exactly separable in (T).

Proof. Let (.¡4, B) be an E.I. pair of sets which is separated by

F(x) in (T). Thus AÇFT and BQFR. Since (A,B) is E.I. then obvi-
ously the larger pair (FT, FR) is E.I. And since (T) is axiomatizable

then Ft and Fr are both r.e. sets. And of course, F exactly separates

(Ft, Fr) in (T). So (Ft, Fr) is an E.I. pair of r.e. sets which is exactly

separable in (T).

From Theorem 2 and Lemma 2 we now have

Theorem 3. If (T) is a consistent axiomatizable theory in which all

recursive functions are definable and in which some E.I. pair of sets is

separable, then (T) is an exact Rosser theory.

3 Or even every 1-1 recursive function of one argument.

4 That is, we consider the Kleene predicate Ti(z, x, y) (cf. [ó, p. 281 ]) and define

o¡¡ to be the set of all numbers n satisfying the condition: ( 3y)Ti{i, n, y).
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Our next theorem is an immediate consequence of Theorem 3 and

the well known fact that there exists an E.I. pair of r.e. sets.

Theorem 4. Every consistent axiomatizable Rosser theory in which all

recursive functions are definable is an exact Rosser theory.

5. Applications. We now consider any consistent extension (T) of

Robinson's system R—or, in fact, any consistent theory (7") in which

all recursive functions are definable5 and in which there is a binary

formula x^y with the properties:

(i)  For all n: |—x^«D(x = 0Vx = IV ■ • ■ Vx = w),

(ii)  For all «: I— x:S«V» = x.

Any such theory (T) is a Rosser theory. For let A, B be disjoint

r.e. sets; let/(x), g(x) be recursive functions which respectively enu-

merate A and B; let f(x), g(x) be respectively defined in (T) by

F(x, y), G(x, y). Then by an obvious generalization of the well known

argument of Rosser, the pair (A, B) is separated in (T) by the for-

mula:

(3x)(F(x, y) A (Vz)(a ¿0~ G(z, y))).

We thus have:

Theorem 5. If (T) is any consistent axiomatizable extension of R

(or if ( T) is any axiomatizable theory obeying the above conditions) then

(T) is an exact Rosser theory—i.e. for every disjoint pair (A, B) of r.e.

sets there is a formula of (T) which represents A and whose negation

represents B.
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5 The definability of all recursive functions in every consistent extension of R was

established in [2]. Actually we only need the definability of all recursive functions of

one argument.
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