
transactions of the
american mathematical society
Volume 286. Number 2, December 1984

EXACT SEQUENCES IN STABLE HOMOTOPY PAIR THEORY
BY

K. A. HARDIE AND A. V. JANSEN1

Abstract. A cylinder-web diagram with associated diagonal sequences is described
in stable homotopy pair theory. The diagram may be used to compute stable
homotopy pair groups and also stable track groups of two-cell complexes. For the
stable Hopf class r\ the stable homotopy pair groups Gk(n, n) (k < 8) are computed
together with some of the additive structure of the stable homotopy ring of the
complex projective plane.

0. Introduction. Let a e Gr, ß e Gm denote stable classes of maps between spheres
and let

mk = DiThim\s" + k U aen + r+k+1, S" Ußen + m + 1]
n-»oo

denote the corresponding stable track group. The groups irr have been studied by N.
Yamamoto [13] in the case a = ß = p =t 2 and by J. Mukai [8, 9] in the case
a = ß = 2. In these papers rather extensive computations are given, but they use
special information concerning the stable homotopy of Moore spaces. Here we
develop a technique for computation which relies on the (stable) Puppe and
dual-Puppe sequences passing through irk but which attempts to resolve the prob-
lems of group extension through the additional information contained in a cylinder-
web diagram. Besides the rectangular mesh of Puppe and dual-Puppe sequences the
cylinder-web diagram has three diagonal sequences (Theorem 3.3) that pass through
the stable homotopy pair groups Gk(a, ß). These groups are the natural "home" for
(stable) Toda brackets of the form (ß, y, a) in the sense that the brackets live here
with zero indeterminacy.

In §6 the technique is applied to compute, for the stable Hopf class r¡, the stable
homotopy pair groups Gk(r\, tj) (k < 8) and the stable track groups trk (k < 8) of
the complex projective plane. It is interesting that besides knowledge of the stable
homotopy groups of spheres, including composition and secondary composition
operations, the method also requires information concerning the third order com-
position (quaternary Toda brackets). The computation presented as an illustration
encountered a difficulty at ir9; however, it seems reasonable to expect that a better
understanding of the quaternary bracket will enable it to be continued.
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804 K. A. HARDIE AND A. V. JANSEN

1. Preliminaries. Let/: X -» Y, g: E -» B be pointed continuous maps (i.e. /»a/r5 in
the sense of Eckmann and Hilton [1]). We recall that the morphism set ir(f,g) in the
category HPC of homotopy pairs and homotopy pair classes [3, 4] is obtained from
the set of tracks from/to g by factoring out by the equivalence relation:

JCJI
B

*o

(The square referred to on the right is the composite in the obvious sense of the three
internal squares.) The equivalence class of the element in ir(f, g) will be denoted
{<t>, 4>, h,} unless A, is a constant homotopy in which case {<£,!//} will be used.

If AT is a space, *X, X* and X, respectively, will denote the inclusion of the
basepoint * into X, the projection of X onto * and the identity map from X to X.
Similarly, it will be convenient to use the notation X\f, *X\f, f\Y,(/, *) and (*./),
respectively, for the commutative squares:

x f

f. I

->y

i and
-y

I
Following Puppe [10] we denote by Pf: Y -* Cf the inclusion of codomain(/) into

cofibre(/). We recall from [4] that P becomes an endofunctor of HPC if we set
P{<t>, t//, h,} = {x, </>}, where x = C(\f/, </>. h,): Cf -» Cg is the map defined by the
rule [10, (9)]. It was proved in [4] that P3 is naturally isomorphic to 2 in HPC and
that the Puppe operator P: ir(f, g) -» ir(Pf, Pg) eventually stabilizes. Let Qf:
Cf -» IX be the map that shrinks to * the subset Y of Cas described in [10, p. 308].
With morphisms defined as suggested [10, p. 312], Q becomes an endofunctor of
HPC, naturally isomorphic to P2. We denote by Gk(f, g) the stable group corre-
sponding to 77(2*7, g)- As shown in [3], ir(f, g) is an invariant of the homotopy
classes of/and g. Hence Gk(f, g) is an invariant of the stable homotopy classes of/
and g.

2. The stable cylinder-web diagram. Consider the following Diagram (2.1) of
homotopy sets and induced functions. In the diagram, ./is the function induced by
precomposition with the map /, and g. is the function induced by postcomposition
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STABLE HOMOTOPY PAIR THEORY 805

with the map g. The horizontal sequences are all exact, being portions of the Puppe
sequences of / at E, B or Cg. In the stable range, i.e. when 2 is bijective, the vertical
sequences are exact, being instances of (stable) dual-Puppe sequences of g. Since all
horizontal arrows are induced by precomposition and all vertical arrows are induced
by postcomposition, the rectangles not of the types indicated by (A), (B) and (C) are
all commutative. Naturality of the Puppe sequence and naturality of the suspension
operator ensures that the rectangles of type (C) are commutative.

[izx,   B]

Pg.

•_ÍQXtICf,  b]   -^HL(ry,  B] -¿L

Pg. Pg.

-»¡[IX,   B]

Pg.

[I2X,   C   ]    -IQf, [ICf,   Cg] -^££» [ZY,   C   ] -lH-„ [IX,   Cg]   ,

: 'log.
[IX,   E]  —

g.

IX,   B] "|

Pg.

[IX,   Cg]j

(A)

»Qf [Cf '

Qg.

E]  .

(B)

,pf

»Of

• Qf

[Cf,   B]

Pg.

*[Cf,   Cg]

.Pf

i "1.Qg.

» [Y,  E]   -

g-

.   [Y,   B]   -

:c)
.£

:"1.Qg.

-»   [X,   E]

g»

-»  [x,   B]

.pf
Pg.

.[Y,   Cg] .£
Pg.

[X,   Cg]

Diagram 2.1
2.2.  Remark. There is a natural homeomorphism X:  ~ZCf -» C2/ inducing a

diagram (for each space E)

[22X, E]

[22X, E]

Q-Lf P"Zf
[2y, £]

(D)
■ZQf IP! [sy, e]

[C2/, £]

i .\

[2C,.E]
in which the right-hand square is commutative, but in which the left-hand square
(D) is anticommutative through interchange of suspension coordinates in 22A".
Hence identifying via X, the rectangles (B) are commutative and the rectangles (A)
are anticommutative. We define

\n:-Z"Cf-*CVf   by   Xj-X.X.-Xj.SX,.».
One may now observe in Diagram 2.1 that objects and arrows separated by three
diagonal shifts in a direction of positive slope are identical. (Two such arrows have
been highlighted.) We have therefore another example of what has been described as
a cylinder-web diagram [2, 3, 5]. The suspension operator provides a morphism of
Diagram 2.1 into the corresponding diagram in which each arrow induced by a map
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806 K. A. HARDIE AND A. V. JANSEN

is replaced by the arrow induced by the suspension of that map. Taking direct limit
with respect to suspension yields the stable cylinder-web diagram.

1 ¿ i 1
Qf Pf t

~G„^(X,E)      ->       G„(Cf,E)       ->       G„(v,£)       _       G„(A\£)->

ig- lg- i«. ig-
QJ ,        >        pf I

^Gn^(X,B)      -       Gn(q.B)        ->        G„(Y,B)       -.       Ç,( *, B)-

l-"8- iPg- iPg iPg.
Qf pf I

-*G„+l(X,Cf)      -       G„(Cf,Cg)       -       G„(Y.Cg)       -       C.(-Ï.C,)-
108- 108- log log

~GK(X.E)        ->      G¡,_,(C, E)      ->      G„_,(y,£)      -     <;„_,(*.£)-.

i J, i J,
Diagram 2.3

2.4. Remark. The objects and arrows of 2.3 are invariants of the stable homotopy
class of the map /: X -* Y. In the case of stable homotopy classes from A' to Y which
do not have representative maps from X to Y, Diagram 2.3 is still obtained as a
direct limit over a cofinal subset. Hence/and g may be permitted to be virtual maps.

3. The diagonal sequences. The domain and codomain operators d: ir(f, g) -*
[X, E] and c: m(f, g) -* [Y, B] are defined by the rules d{<¡>, \p, h,} = {^J and
c{<b, ip, h,} = {<*>}. Recalling [4, §5] that 2{<¡>, +, h,} = {2(/>, 2^, SA,}, it follows
that c and d are compatible with 2 and hence define stable operators c: Gn(f, g) -»
Gn(X, E) and d: Gn(f, g) - G„(Y, B). Further, recalling [5, §4] that the operator
A = A(/, g): [Y, E) - <n(f, g) is defined by the rule L{h} = {gh, hf}, it is also
clear that A is compatible with 2, giving rise to an operator A: Gn(Y, E) -» G„(f, g).
Note that when the operators P and Q are bijective (as they are in the stable range
[4]) the following composites are defined:

(3.1) P-^PSV, Pg^.X-1): [2"C>, B] - [2"/, g],

(3.2) ß-fc(ß27,ßg)(.X;0:[Z"+1*,CK] -> [2"/, g).
In the course of the proof of Theorem 3.3 it will be shown that (3.1) and (3.2) are
compatible with 2 so that stable operators

A': G„(Cf, B) -* G„(f, g)   and   A": Gn+1(X,Cg) - <?„(/, g)
are also defined. A stable operator x- Gr(f, g) -» Gr(Cf,Cg) is obtained if we set
X = X-^.X^P: W(2m/, 2"g) - [2-C,, 2"Cg].

To check the compatibility with 2, observe commutativity in the following
diagram:

»(2"/,2<f)
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STABLE HOMOTOPY PAIR THEORY 807

To verify the commutativity in (A), it is sufficient to consider m = n = 0 and to
verify the desired equality directly from the definition of the P operator going back
to [10, (9)].

Finally we shall need to refer to the diagonal composites

ß = g..Qf:Gn+x(X,E)^Gn(Cf,B),
ß' = Pg..f:Gn + l(Y, B) - Gn+l(X,Cg)

and

ß" = Qg..Pf:Gn+i(Cf,Cg) - G„(Y, E).
3.3. Theorem. The following sequences are exact:

(3.4) ••• -<?.+,(/, f)-ÍG.+,(Jr,£)'c.(Cy,A)^G(,(/,f) -•■•,

(3.5) ••■  ^Gn + ï(f,g)^Gn+x(Y,B)^Gn + x{X,Cg)^Gn(f,g)^ ■■•,

(3.6) ■■-  -Gn+1(/,g)-Gn+1(C/,CÄ)-G„(Y,£)-G„(/,g)- ■■■.

Proof. The sequence (3.4) is a stable version of the exact sequence [5, 4.3]

• • • - i7(2n+1/, g) X [2"+1*, £] - [2"C/; 2?] - »(2-/, g) - ■ • ■ ,

where 8 (for « > 0) is given by the following composition:

[2"C/; B] - [C2V, Ä] - »(2"/, * 2?) *-* »(2-/, g)
I_«_I

The argument for compatibihty of 6 with suspension is similar to that given above
for the operator x- To check that P_1A(P2"/, PgX-X^^k} = 8{k), first observe
that A(/, g){h} = {(£|g)(A, AX/IY)}, so that

P^(P^,Pg){.X'1){k}=p-1{(B\Pg){kX'1,kX1){P^f\C^f))

= •B\g.P-*{{k\-¿, k\-Hl)(PVf\Cr,)}.

It is now sufficient to note that (.X,)c{(itX*1, ^X"n1XP27|C-2v)} = {k}.
The sequence (3.5) has essentially been given in [4, 8.1]. However, this derivation

is inconvenient for the purpose of recognition of the arrows. We sketch briefly an
alternative. One may begin with the sequence

•••  -»w((2-y)*,*B)->tr((2"X)*,g)-»
(3.7)

W(2"/,g)-[2"Y, *]-••.

The exactness can be verified directly, essentially dualising the proof of [5, Proposi-
tion 4.3]. In the form (3.7) the compatibihty of the arrows with 2 is obvious. The
bijection

x:W((2"Y)*,*7i)-[2''+1Y,7i]
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808 K. A. HARDIE AND A. V. JANSEN

permits the sequence to continue, and, in the stable range,

x:7r((2"X)*,g)-,[2" + 1Z,Cg]
is a bijection, achieving recognition of one of the objects. It remains to verify the
description of the arrow (3.2). Given k: '2n+1X -» Cg, we have

6-^(02"/, Qg){.X-n1){k} = Q-l[{Cg\Qg)(k\-H\k\-¿)(Q2"fW+lX)}
= (.27|(2"^)*)ö-1{(Cg|ßg)(A:X-;,A:X-„1)}.

Since dQ = cP it is sufficient to observe that (.Xn)d{(Cg\Qg)(kX-n\ kX'1)} = {k}.
The sequence (3.6) is a stable version of the "main diagonal" sequence [5, 4.7].

However, the exactness is more easily established via a lemma on interlocking exact
sequences [12, (1), p. 97]. Consider the following diagram in which sequences (3.4),
(3.6) and two sequences from 2.3 interlock:

(3.8)

Gn(Cf,   E)

Gn(Cf,   B) Gn(Cf   V Gn-1(Y'   E)

Pg.

The commutativity of the triangles is easily checked and it is straightforward to
verify that the rectangles (B) are commutative for n even, and anticommutative for n
odd. To check the commutativity of the rectangles (A) let h: 1>"Cf -» £. Then

A(.P/){A}«A(2"/,s){/,2»/>/}= {(A2"P/|s)(2"/|A2"P/)}
and, since (2"P/)(2n/) is nullhomotopic the homotopy pair class,

2"*
II   -

2"*
27

2"Y
hirpf

E
II£ 2 "A       -»

427 3/
2"Y      -

P2"/
C2"/27 i -i hZ"Pf l g

2"Y        -^ £ -        B
h-Z."Pf g

represents A (. Pf ) {A}, where the homotopy k, can be chosen so that

' 2"x      -*        *   \

2"y    -    c,v.

ghK

{P2"/|C2V}.

£
ig
B
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STABLE HOMOTOPY PAIR THEORY 809

Hence

PA(.P/){A} = {(75|Pg)(gAX-„1,gAX;1)(P27|C2V)}

= A(P27\Pg){gAX;1},

establishing the desired equality. Since it is straightforward to check that (3.6) is
differential at each object, an application of the lemma [12, (1), p. 97] completes the
proof of Theorem 3.3.

There are many ways of displaying the cylinder-web diagram together with its
diagonal sequences. The following conveniently separates the diagonal sequences
(the labels of the horizontal and vertical arrows as shown in Diagram 2.3 have been
suppressed):

Gn+2 (Y'B) -* Gn+2 (X'B) -* Gn+1 (Cf 'B) —' Gn+1 (Y'B) ~* Gn+1 (X'B)

^Gn+1(f^»

Gn+1(f'9>

1/
Gn+1 (Y,E) --''Gn+1 (X,E) -^Gn(Cf ,E) -i»Gn(Y,E) —-^Gn<X,E)'' á.

I

,Gn+1(f,g)| Gn(f,g)

/•

Gn+1 (Y,B) -^Gn+1 (X,B) -► Gn(Cf ,B) -► Gn<Y,B)- Gn<X,B)

Diagram 3.9

It is intended that the relationship between the cylinder-web diagram and the
diagrams of the type considered by C. T. C. Wall [12, p. 100] will be examined in a
subsequent paper.

4. The stable Toda bracket. Let /: X -» Y, A: 2rY -> £, g: £ -» B be maps, and
suppose that, for some n, null-homotopies m, and n, of 2"(A2r/) and 2"(gA) exist.
The composite square

(4.1)

V**f2r+"Ar      -»       1r+nY

Wl-,7
4      S        in
* -♦ 2"£

i
2 "Ti

2"8
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810 K A. HARDIE AND A. V. JANSEN

represents an element of Gr(X*, * B), and applying x we obtain an element of
Gr+1(X, B). The set of elements obtained in this way for all choices of m, and n, is
denoted

(4-2) <{g},{A},{/}>cGr+1(*,7i).

The definition is consistent with the definition of the stable Toda bracket as given in
[7, p. 136].

4.3. Theorem. Suppose that 2"(gA) = * and 2"(A2r/) = *. Then:
(a) for each element r G ({g}, { A}, (/}> c Gr+1(X, B), we have

A'(.(y)T=-A(A)eGr(/,g);

(b)A{h} = OinGr(f,g)ifandonlyifOe({g},{h},{f}).
Proof. Let tG ({g},{A},{/}). Then -t has a representative of the form

Xa G [2r+n+1A', 2"B] where a is a composite square of the form:
2r+"A'      _ *

2-7 I       mjj i
2"A2'+ny     ->      2"£

«i,/
l S I 2"g
* ->      2"7i

Hence -&'(.Qf)r has a representative

*(.2'+"ßf)x« = 8X((.2r+nf\CZr+nX)*)a)
= ♦2"7i|2''g..2''+7|(2r+',^)*(a) = A{2"A},

the last step by the argument in the proof of [5, Theorem 5.3]. For part (b), observe
that by [12, (2), p. 97] commutativity of the diagram

would yield a Mayer-Vietoris sequence
•V( Qf)

^Gr+1(f,g)^Gr+x(X,E)<BGr+x(Y,B)-+Gr+l(X,B)   -+   Gr(f, g) -
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STABLE HOMOTOPY PAIR THEORY 811

in which the kernel of the arrow A'(.Qf) is precisely the indeterminacy of
({8}>{h}'if})- The reader may now easily check that the triangles (A) are
commutative for r even and anticommutative for r odd, and further that the
remaining triangles and rectangles of (4.4) are commutative.

Now let y = (A) g Gr(Y, E) denote the stable homotopy class of A. The stable
homotopy type of Ch is an invariant of y. Accordingly we shall denote by Cy a space
Ch for some A in y and refer (with some abuse) to stable classes Py = {PA}g
G0(£, CY) and Qy = {Qh} g G_r_x(Cy, Y). Moreover, if a = {/} g G0(X, Y) and
ß = {g} G G0(E, B) are as above, we define

(4.5) Coextya =
2r+nX \2r+"Y

2"/i

2"£ /

null-homotopies
m,of2"(A27),
for some n

(4.6) Ext j8 = {x

\

2r+ny

2"£

*
I

2 "S
/

null-homotopies n, j
of2"(gA),for
some n

We have the following

4.7. Lemma, (i) (ß, y, a) = ExtrßCoextya c Gr+l(X, B).
(ii) Extyß = (.PyY'ß c G0(Cy, B).
(iii)Coextya = (Qy.y1** c Gr+l(X,Cy).

Proof. Part (i) follows immediately from the definitions. Part (ii) is an easy
consequence of the fact that x(*(2"£)|2"A) = Py and (ni) is a consequence of the
equality x(2"AK2r+"Y)*)= Qy.

Using the definition of (4.2) one may derive various standard properties of the
stable Toda bracket. Particularly useful for the solution of group-extension problems
that arise in computation is the following stable version of [11, Proposition 1.9]. A
special case is given in [7, Lemma 1.2].

4.8. Proposition. If ßy = 0 and ya = 0 then (ß.)Exlay = -(.Qa)(ß, y, a) as a
cosetof(ß.)(.Qa)Gr+l(X,E).

Proof. Since x(2r+I/|(2''+îAr)*) ■» Qa, the desired result is a consequence of the
following equality in HPC:

I.r+sX=

2r+Y

2r+íy-

2r+jy-

>ir+,x —

2r+îy- 2SÄ
■2SE     f    -

2' +

Vf + I

2r+îA--

'/
2JA

2J/i
-»2*£

2*g

-2J75

Ï-2sß

•25£- -2JB

Proposition 4.8 is frequently used in the case ß = n.
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812 K. A. HARDIE AND A V. JANSEN

4.9. Corollary. If ny = 0 and ya — 0 then n Exta y = -(.Qa)(n, y, a) as a coset
ofn(.Qa)Gr+l(X,E).

By a dual argument one may prove the following

4.10. Proposition. If ßy = 0 and ny = 0 then n Coext^ y = -(Pß.)(ß, y, n) as a
coset of n(Pß.)Gr+1(Y,B).

5. The stable Puppe sequence of tj. In §§5 and 6 the preceding theory will be
applied to compute some stable homotopy of the cofibre of the stable Hopf class tj.
If we choose/ = g: S3 = X = £ -» S2 = Y = B to be the Hopf map, then

Gr(Cf, B) =  lim \sr+n+2 U „ er + " + \ S" + 2\ = Wr+2(r,)
«-♦00

and

Gr(X,Cg)=  lim [s,+"+3,S"+2U,e-+4]-»»+1(i|)
n-* oc

in a standard notation [8]. The stable Puppe sequence of tj becomes as follows:

•i p Q        v P Q       i
G_, «- G_2<-tt0(tj) <- G0<- G_, <-w,(tj) «- G, «- G0 «-

As essentially observed in [7, p. 141] the groups wr(rj) (r < 22) can be counted. We
use the notation for stable elements given in [11] and denote by ext a an element at
random in the coset Ext^ a.

5.1. Proposition.

it = 0 k=\ k = 2 k = 3       k = A
rrk(i})= Z 0 Z Z4 + Z3        0

Generators Q ext 2 "Q a\Q

k = 5 * = 6 k = 1 k = 8
Z8 + Z3 Z2 Z16 + Z3 + Z5 Z4

ext v ext a, v2(2 "C«2ÖaiÖ ext i»2

k - 9 A: = 10 A = 11 * - 12
Z16 + Zi + Z5 Z3 ZB + z2 + z, + z7 z3

ext 2a ext o2 ext o, /3,(2 ext i)t exl v1 a'Q a¡Q ext /?.

Proof. The computation via the Puppe sequence, given knowledge of the groups
Gk (k < 19) as in [11], is quite straightforward except in cases where a problem of
group extension arises. The first such case is ^(tj). From the sequence

"sW->G< 6

z2 + z2 z2

and knowing that i\o = v + e and v2t\ = 0 [11] it follows that wg(r/) is an extension
of Z2 by Z2. It is claimed that ee(2,i,2,i)) from which Corollary 4.9 yields that
eQ G 2 ext v2, so that "n%(r\) * Z4, generated by ext i>2. To see that e G (2, v2, t/>
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stable homotopy pair theory 813

observe,  firstly that ee(i»2,2,t|)  [11, p.  189] and,  secondly, that the cosets
(v2,2, tj),  (v,2v,r\), (2v,v,t))  and  (2, v2, tj)  overlap and all have the same
indeterminacy, namely G7 ° tj. The other cases in which extension problems arise are
as follows:

■Q                     P
G9-' w9( tj )-► G7

Z2 + Z2 + Z2

p3    n   7/e

z16 + z3 + z5

Here v2Q = 7jef2 = 0 and w9(ij) is an extension of Z2 by Z8 + Z3 + Z5. It is claimed
that (ie (8,2a, tj) from which Corollary 4.9 yields (iße 8 Ext 2a, settling the
group extension. To see that \i G (8,2a, tj) observe that /x g (8a, 2, tj) [11, p. 189],
and that (8o, 2, tj) c (8,2a, tj> [7, Proposition 1 (iii)]:

Q                      p
Gxx-^nU)->G9

¿>q   i    ^q   i    »^7 2 2 2

? a' a, p3 n ije
We have tj2ju = 4f and p3tj = tjetj = 0 so that 7rn(Tj) is an extension of Z4 + Z9 4- Z7
by Z2 + Z2. Since f G (2, tje, tj) [11, p. 91, Lemma 9.1], we have K,Q g 2 Ext tje, so
that 7tu(t}) « Z9 + Z7 + Zg + Z2, with the last two summands generated by ext rje
and ext p3, respectively.

5.2. Remark. The groups w*(tj) may be computed through the dual Puppe
sequence of ij in a dual manner. Precisely the same extension problems arise and
they are resolved via 4.10 so that wr(7j) «= w*(tj).

6. Computation of irk. In this section the cylinder-web diagram together with 4.3
will be used to compute

w*- G*(C„,C„)= LimíS'"+A:U,)í>''+'í + 2,S',UÉ"'+2]        (k < 8)
n-» oo

and, concurrently, Gk(r¡, tj) (k < 8). The diagram begins as indicated below (further
to the right all the groups are trivial):

Note that all vertical arrows in the same row have the same label (either tj. or Q.)
and all horizontal arrows in the same column have the same label (namely .P, .Q or
.tj). The diagonal sequence

y
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814 K. A. HARDIE AND A. V JANSEN

has not been shown and the arrows x» Gk(i), tj) -* irk have also been suppressed.
The symmetry of the diagram gives rise to a very desirable simplification:

6.1. Lemma. The arrows ß are all trivial.

Proof. The commutation property [11, (3.4), p. 33] implies that tj. = ±.tj hence
ß = (.Q)(r\.) = ±(.ex»u) = o.

As a consequence of 6.1 the diagonal A' - d - ß sequence becomes a collection of
short exact sequences

(6.2)
A' d

0 -» ^(tj) -► G*_2(tj, tj) - Gk 0.

A similar (dual) argument shows that the arrows /?' are all trivial so that embedded
in the cylinder-web diagram are subdiagrams as follows:

^w*(l)
A'

(6.3)
lGk_2(r\,r))

0'
Clearly the short exact sequences split whenever . P or Q. is an isomorphism. From
the nature of the nonsplit extensions it is also easy to see that a diagram

(6.4)

¿■2" *-2"

is only possible in the case G = Z2„ + Z2.. The results of the computation are
contained in the following theorems.

6.5. Theorem.

G*(l.-7) =
k < -2

0

k = 1
z2 + z4 + z3

A: = -2
Z

k = 2

k = -1
0

k = 3
z^ + zs + z,+ z3

k = 0
z + z
k = 4

k=S k=6 k=l A = 8
Z16 + Zi + Zi    Z4 + Z2     Z16 + Z16 + Z3 + Z3 + Z5 + Zs     Z2 + Z2 + Z3

6.6. Theorem.

k < -2
0

A = 1

A = -2
Z

A = -1
0

it = 0
z + z

k = 2                                A: = 3 A: = 4
Z2 + Z3                          Z                      Z^ + Z< + Z3 + Z¡ 0

A = 5                         A = 6                               A = 7 A = 8
z16 + z4 + z3 + z3 + z5 z4 + z2 z16 + z16 + z3 + z3 + z5 + z5 z4 + z3
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Proof of 6.5 and 6.6. Since 7t0(tj) = Z, the sequence (6.3) with k = 0 yields
G_2(T)' V) — 0, and the diagonal sequence 0 = G_3 -* G_2(tj, tj) -* ir_2 -* 0 implies
ir_2 = Z. Again, (6.3) with k = 1 clearly yields G.,(tj, tj) = 0 and clearly G_,(tj, tj)
» 7T_,. With k = 2, (6.3) is 0 -» Z -» G0(tj, tj) -» Z -» 0, necessarily split. More-
over, G0(tj. tj) = 7T0 as in the previous case. With k = 3, (6.2) becomes Z4 + Z3 >-+
Gi(tj, tj) -» Z2. As has been discussed in [5, Proposition 6.3], the extension is split
and the image of A is an element of order 4. It follows that mx, the cokernel of A, is
isomorphic with Z2 + Z3 [5, Corollary 6.4]. With k = 4, (6.2) becomes 0 >-> G2(tj, tj)
-» Z2 and hence G2(tj, tj) = Z2. Moreover, A: G, -* G2(tj, tj) is surjective (since .rj:
G, -» G2 factors through A) and hence tt2 is isomorphic with the kernel of A:
G0 -» G,(tj, tj) which is Z. With k = 5, .P: w5(tj) -» G3 ■ Zg + Z3 is an isomor-
phism, and hence (6.3) implies (6.2) splits yielding G3(rj, tj) = Z8 + Z8 + Z3 + Z3.
Since A: G2 -» G3(tj, tj) is non tri vial, we have 7r3 = cokernel A = Z8 + Z4 + Z3 +
Z3. With k = 6, (6.2) becomes Z2 >-» G4(tj, tj) -» 0, hence G4(tj, tj) = Z2. Since
v2 = (tj, v, tj) g G6, 4.3 implies that A: G3 -* G4(tj, tj) is surjective. Since also A:
G2 -» G3(tj, tj) is nontrivial the exactness of the A - x - ß" sequence implies that
7T4 = 0. Since G5 = 0, (6.2) with k = 1 implies G5(tj, tj) = 7t7(tj) = Z16 + Z3 + Z5.
The Puppe sequence passing through tt5 is

-» ^*M — W5 -* 775*(tj) -»

which raises the extension problem:

0 z16 + z3 + z5
Po   Pa2   Pet!

z4 + z3 0
006x12»»    coext a,

Let C denote the identity class of the cofibre of tj.

6.7. Lemma. 0 g (4C,, coext2j>, tj> c w7*(tj).

Proof. Since C, = ext P we have

(4C„,coext2i',Tj> = <ext4P,coext2»\Tj) = (4P, tj, -2v, tj),

by the definition of the quaternary bracket [6, p. 174]. Since (tj,2>», tj) has zero
indeterminacy and 0 g (2tj, v, tj) c {r\,2v, tj), we have (tj,2v, tj) = 0. Also 0 g
(2P,2t¡,2v), which has the same indeterminacy as (4P, tj, 2v) so that Oe
(2P, 2tj, 2v). It follows that (4P, tj, -2v, tj) is well defined. Moreover, we have

0 e (4P, i?, -2, v o tj) c (4P, tj, -2k, tj)

by [6, Proposition 2.9(h)]. Lemma 6.7 implies that 0 G 4ext (coext2v) so that
ir5 = Z16 + Z4 + Z3 + Z3 + Z5. If ^ = 8 then (6.3) becomes

G6(v,v)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



816 K. A. HARDIE AND A  V. JANSEN

in which the vertical arrows are nontrivial. The split extension is the only one
possible. Moreover, since G4 = G5 = 0, we have that x» G6(-q, tj) -» w6 is an isomor-
phism. If k = 9, the corner groups of (6.3) are each Z16 -\- Z3 + Z¡ and the
2-primary components yield an instance of (6.4). It follows that G7(rj, tj) = Z16 +
Z16 + Z3 + Zj + Z5 + Z5. Since 0 g (tj, p, vr\) c (tj, v2, tj), an application of 4.3
yields that A: G6 -» G7(rj, tj) is trivial, and since G5 = 0 the A — x _ ß" sequence
yields 7r7 -= G7(tj, tj). Moreover, ß": 7rg -» G6 is epic from which it follows that Q.:
% ~* ""A1)) = ^4 is epic- Since also ir10(rj) = Z3 = {ßxQ} and since tj.: 7t9(tj) -»
w10(rj) is trivial, we have tt8 = Z4 + Z3 and G8(tj, tj) = Z2 + Z2 + Z3. Attempting
to determine w9, we have wf.C)) = Z8 + Z2 -f Z9 + Z7, w*(tj) = Z16 + Z3 + Z5 and
a short exact sequence

*i*(i?) ~ t9-» w9*(tj).

Since the 2-primary component of w9*(tj) is generated by coext 2a, the extension
problem will be solved if we determine (16C,,, coext 2a, tj) c ^(rj). In this case the
brackets (16P, tj, 2a) and (16, rj,2a) each have nontrivial indeterminacy so that in
the sense of [6, p. 174] the quaternary bracket (16P, tj, 2a, tj) is not well defined. It
is reasonable to expect that with a deeper understanding of the quaternary bracket
this difficulty can be overcome.
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