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Abstract —This paper presents a novel approach to the simulation and

sensitivity analysis of multiplexing networks. All computations are per-

formed efficiently utilizing the concept of forward and reverse analysis

which is elegant and effective in cascaded circuit analysis. Formulas are

derived for such responses as input or output reflection coefficient, com-

mon port and channel output port return losses, insertion loss, gain slope,

and group delay. Exact sensitivities w.r.t. all variables of interest, inchrdhg

frequency, are evahsated. The fundamental assumption is that the transmis-

sion matrices for the individual components of the network and their

sensitivities w.r.t. possible variables inside them are available. An explicit

algorithm is provided describing the details of the computational aspects of

our theory. The formulas are applied to the optimal design of practical

contignons or noncontiguous band multiplexer consisting of multicavity

filters distributed along a wavegnide manifold. An example of optimizing a

practical 12 channel, 12-(XIZ contiguous band multiplexer without dummy

channels, which is the state-of-the-art structure used as the output muki-

plexer in satellite transponders, is presented.

I. INTRODUCTION

T HE DESIGN OF contiguous band multiplexer con-

sisting of multicoupled cavity filters was a problem of

significant theoretical interest for several years [1], [2];

however, the manufacturing of such structures with more

than five channels did not appear to be feasible. Recently,

the subject has turned into an important development area

in microwave engineering practice due to reports by lead-

ing manufacturers of successful production of 12-channel

contiguous band multiplexer for satellite applications

[3]-[6]. The- employment of optimization techniques to

determine the best multiplexer parameters has been an

indispensable part of the design procedures reported [4]–[9].

The use of a powerful gradient-based minimax optimiza-

tion technique [8], [9] has reduced significantly the CPU

time required in the design procedure.

The imp~ementation of a gradient-based optimization

technique in multiplexer design requires, as a vital step, a

robust and efficient algorithm for simulation and sensitiv-

ity analysis. In this paper, we present a new and elegant

approach to the simulation of such responses as common

port and channel output port return losses, insertion loss,
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and group delay between source and channel output ports

and their first-order sensitivities w.r.t. all network parame-

ters and frequency. Our approach can be applied to any

network in the general category of multiplexing or branched

cascaded structures [10]. Each basic component of the

structure is either a 2-port model or a 3-port junction and

can contain variables or be constant. The fundamental

requirement for the approach is that the transmission

matrix description of all basic components and their de-

rivatives, if they contain variables, are provided. This infor-

mation is utilized in a systematic and efficient scheme

which leads to the evaluation of various responses of the

network at all ports of interest. An important feature of

our approach is that the network structure is fully ex-

ploited and an effective cascaded analysis method, namely,

the forward and reverse analysis method [11], [12], is

extended and applied. Components of various complexity

are permitted and nonideal effects such as losses and

dispersion can be directly taken into account. The ap-

proach handles contiguous and noncontiguous band de-

signs in a unified manner.

The presentation is organized in the following way. In

Section II, we describe the basic cascaded analysis ap-

proach as applied to a general branched cascaded circuit.

Formulas for Thevenin equivalents, reflection ,coefficients

and branch output voltages as well as their first- and

second-order sensitivities w.r.t. design variables and

frequency at any reference plane are developed. In Section

111, we consider multiplexer consisting of multicavity filters

distributed along a waveguide manifold. Transmission

matrices and sensitivity expressions for typical components

in a multiplexer, which are required by our approach, are

tabulated. Response and sensitivity formulas, applicable in

the multiplexer design, are also listed. In Section IV, an

algorithm based on the theory discussed in Sections H and

III is presented. Finally, in Section V, we consider a

practical 12-channel 12-GHz multiplexer and apply our

theory to optimize such a structure, taking into account

many nonideal effects, using a gradient-based optimization

procedure.

II. BRANCHED CASCADED NETWORKS

A multiplexer falls into the category of a general class of

networks, namely, branched cascaded structures as shown

in Fig. 1. For such structures, we develop a novel proce-

dure to calculate the reflection coefficients at the common
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Fig. 1. The branched cascaded network under consideration.

~1, .lZ, ~,& are arbitrarily defined 3-port yrnctlons. Bl, B2, ~, BN are
branches or channels which may each be represented in reduced cascade

form and SI, S2,. . . . SN represent the subsections between junctions.
Principal concepts of reference planes, transmission matrices, and typi-

cal ports are illustrated.

port and branch output ports as well as branch output

voltages. Simultaneously, first- and second-order deriva-

tives are evaluated. The approach is based on the computa-

tion of Thevenin source and impedance equivalents and

their first- and second-order sensitivities w.r.t. design

parameters and frequency at the ports of interest.

A. Models of Basic Components

Although the basic components of a branched cascaded

circuit are 2-port elements or 3-port junctions, internally

they can be complicated subnetworks characterized by

admittance, impedance, or hybrid matrices. An example of

such a subnetwork is the multicoupled cavity filter de-

scribed by an impedance matrix and containing many

design variables. As a prerequisite step towards using our

theory, the transmission matrix for each 2-port element

should be deduced either by a reduction procedure or by

direct measurements. Also, if variables exist in a subnet-

work, the derivative of the corresponding transmission

matrix should be provided. For the 3-port junctions, how-

ever, a 3-port description in the form of an arbitrary

hybrid matrix, is sufficient.

B. Reference Planes

Consider the branched cascaded network of Fig. 1, which

consists of N sections. A typical section, e.g., the k th one,

has a junction, n(k) cascaded elements of branch k, and a

subsection along the main cascade, as shown in Fig. 2. All

reference planes in the entire network are defined uni-

formly and numbered consecutively beginning from the

main cascade termination, which is designated reference

plane 1. The source port is at reference plane 2N + 2. The

termination of the k th branch is called reference plane

T(k) and the branch main cascade connection (branch

input port) is reference plane u(k), k =1, 2,0 ... N, where

~(l) =2N+3

u(k) =r(k)+ n(k), k=l,2,.. .,N

~(k) =u(k–1)+1, k=2,3,. ... N. (1)
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Fig. 2. Detail of the k th section of a branched cascaded circuit showing

reference planes along the branch where T = T(k) and u = U(k).

Fig 3. A 3-port junction in which ports 1 and 2 are considered along a

main cascade and port 3 represents a channel or branch of the main

cascade

C. Reduction of Junctions to 2-Port Representations

Bandler et al. [11], [12] introduced the concept of for-

ward and reverse analysis for cascaded networks. To sim-

plify the structure under consideration to a cascade of

2-ports for which the forward and reverse analysis is appli-

cable, the 3-port junctions are reduced to 2-port represen-

tations.

Consider the 3-port junction shown in Fig. 3. To carry

the analysis through the junction along the main cascade,
we terminate port 3, e.g., by calculating the equivalent

admittance seen at this port given by Y? = ( – 13)/ Vg and

represent the transmission matrix between ports 1 and 2 by

A. The analysis can also be carried through the junction

into the branch by terminating port 2, e.g., calculating

Yz = ( – 12)/V2 and denoting the transmission matrix be-

tween ports 1 and 3 by D.
As an example, suppose the 3-port junction is char-

acterized by a hybrid matrix H such that

(2)
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where H = [h,j]~xg. Then A = [a,, ]zxz can be found from reference reference
Plane i rdane I

(lIj= (–l)J-l[hiJ -hi3h3j/(Y3+h33)].
‘3) ,~::~=~:-~o

For various forms of hybrid matrices H, the 2-port

representation A or D is evaluated in a similar manner

using elements of II and the equivalent termination at port

3 or 2. “’~ “’~

D. Cascaded Analysis
D

Y;
D

1!

Having reduced the junctions to 2-port representations, ,
! 1

(a)
the network structure between any two reference planes is

transformed to a simple cascade of two-ports. Assuming

that’ the transmission matrices for all 2-ports are given, we

define the equivalent transmission matrix between refer-

ence planes i and j by “1 H

where

(4)

(5)

In a forward (reverse) analysis, Q,J is computed by

initializing row vectors e: and e: (column vectors el and

ez ) at reference plane i(j) and successively premultiplying

(postmultiplying) each transmission matrix by the resulting

row (column) vector until reference plane j(i) is reached.

el and ez are unit vectors given by [1 O]~ and [0 1] ~,

respectively.

Let r) be a generic notation that can be used to represent

any design variable in the network. Sensitivities of Q,j

w.r. t. any variable @ located between reference planes i

and j are evaluated as

(6)

where 1+ is an index set whose elements identify the

transmission matrices containing @ and ilQ/~ / d+ is the

result of a forward or reverse analysis between reference

planes i and j with the lth matrix replaced by its deriva-

tive w.r.t. ~. Second-order sensitivities can be derived in a

similar manner as

(7)

where I+ and Iti are index sets, not necessarily disjoint,

identif ymg those matrices which are functions of o and U.

Also, we define 6’2Q~~/( 13+do) as the second-order sensi-

tivity of Q,l as if @ and a ,exist only in the lth and mth

matrices, respectively.

E. Thevenin Equivalent Circuits and Basic Responses

To calculate the input reflection coefficient at the com-

mon port, the output reflection coefficients at the branch

output ports, as well as the branch output voltages and

their sensitivities in a unified manner, we employ Thevenin

‘L

F1

II

—..- --0-- *----- -uf’rent’

2reference
plane, I Qli— —

- -Z,*
q+1

plane j

(b)

Fig. 4. Thevenin and Norton equivalents at reference planes i and j,

where reference plane i is towards the source w.r.t. reference plane j. (a)
Reference plane j is in the main cascade. (b) Reference plane j is in a
branch.

equivalents at the ports of interest evaluated by the method

of forward and reverse analysis [11]. Denoting the Thevenin

equivalent voltages and impedances at reference planes i

and j by V;, Z&, Vi, and Z&, we have

and

B,] -t Z;Dij
z~ =

A,j + Z;C,l

(8)

(9)

where reference plane i is located towards the source w.r.t.

j, as shown in Fig. 4. The sensitivities are obtained as

(lo)

and

(11)
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where subscript @ denotes d/13@.

If the reflection coefficient at the kth branch output

port and its sensitivities are to be calculated, then (9) and

(11) are specialized to

and

(B)+ -( A)@Z;+l
(2;+’), = ~

(12)

(13)

where A- A2~+z ,+1, B= Bz~~z ,+1, and r = ~(k). This

is simply due to the fact that the~e is no impedance to the

left of reference plane 2N + 2, i.e., Z~N+ 2 = O. The corre-

sponding output reflection coefficient is defined as

(14)

where R ~ is the load resistance at the k th channel output.
clearly, (13) is utilized in the evaluation of ( p~)~ as

~pk)+= (Z;+q+(l-pk)

z;+l+~: “
(15)

Channel output voltage is also computed by utilizing the

Thevenin equivalent voltage source and impedance at the

branch output port. At the k th channel, we have

(16)

assuming a normalized excitation at the source port. This

can be explained easily by noticing that Vk is evaluated

using a voltage divider once V.+ 1 is known. Using (8) and

taking into account that V~N+ 2 = 1 and Z~N+ 2 = O, we

have V:+ 1= l/A. Also

[

(A)+ + (Z+)
(Vk)@=-R~Vk —

A 1R;+z;+l“ (17)

The second-order sensitivity of Vk w.r.t. @ and u, i.e.,

d2V ‘/(80 do ), is obtained via evaluation of

d ‘Z;+ 1/( tl~ da ). Substituting o for @in (13) and differen-

tiating w.r.t. Q, gives

(Z:+l),Q

(B),u-z;+l(A)+u -( A)@(z;+l)o -( Z;+l)a(A)@
.

A

(18)

where double subscript ~u denotes d 2/( d+ ~LJ ).

Now, replacing @ by u in (17) and differentiating w.r.t.

~, we have

[

(Vk)+(vk). _Rkvk ~(ff)w4#A
(v’)+. = Vk L

A*

1(Z;+l),@(R:+ Z;+l)-(Z;+l)U(Z: +l), ~19)
+

(R; +Z;+1)2 “

Norton equivalent admittances and current sources are

calculated similarly to the Thevenin equivalents. Denoting

the Norton equivalent currents and admittances at refer-

ence planes i and j by I;, Y~, I;, and Y~, we have

and

(20)

I~=Ij=O. (21)

Also

(22)

As special cases of (20), the equivalent admittances Y3

and Y2 required in the reduction of junctions to 2-port

representations are calculated as

Y$ = y;(k) = %k),~(k)

A’
k=l,2,. . . , N (23)

o(k), r(k)

and, for a short-circuit main cascade termination

y;= y;k _ ‘2kx1

B’
k=l,2,. ... N. (24)

2k,l

The common-port reflection coefficient is also computed

using the Norton equivalent (at the source reference plane)

as

2R~D2N+2,,
~o=l– B . (25)

2N+2,1

Its sensitivity is given by

(p0)@=2R~
(B)+D-(D)$B

Bz
(26)

where B G B2Nb2,1 and D E D2Nh2,1.

III. ANALYSIS OF SPECIFIC MULTIPLEXER

STRUCTURES

While the approach developed in Section II is general, as

a special case, the design of multiplexer consisting of

coupled cavity filters distributed along a waveguide mani-

fold is considered here in more detail. Contiguous or

noncontiguous band multiplexer are treated in a similar

manner. Fig. 5, which is a special case for the structure in

Fig. 1, illustrates a typical circuit equivalent for a multi-

plexer. A branch consists of a coupled-cavity filter, to-

gether with input–output transformers, and an impedance

inverter. A subsection is the waveguide section separating

two adj scent filters, and the junction is the equivalent

circuit model for the physical junction between channel

filters and the manifold. The main cascade is short cir-

cuited and the responses of interest are common-port

return loss, channel output return loss, insertion or trans-
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Fig. 5. Equivalent circuit of a contiguous band multiplexer, Each chan-
nel has a multicoupled cavity filter with input and output transformers
as well as an impedance mverter. The main cascade is a waveguide
manifold with a short-circuit termination. Branches are connected to the
main cascade through nonideaf series junctions.

ducer loss, gain slope and group delay between common-

port and channel output ports.

To apply the general method of Section II, the subnet-

works, namely, channel filters, waveguide spacings, and

junctions, should be represented by 2-port transmission

matrices. Recently, a comprehensive set of formulas for

reduction of multicavit y filters to 2-port equivalents which

also provides sensitivities w.r.t. variables of interest in the

filter structure, has been presented [13]. The formulas

evaluate short-circuit admittance parameters and their

sensitivities w.r.t. all couplings as well as frequency for the

unterminated filter model and take many nonideal effects

such as losses, stray couplings, and dispersion into account.

Evaluation of transmission matrices from short-circuit ad-

mittance matrices is straightforward. Here we describe the

essential information in [13] which is appropriate to this

paper.

The symmetrical impedance matrix for a narrow-band

lumped model of an unterminated filter is given by

Z=j(sl+fl’f)+rl (27)

where 1 denotes an n x n identity matrix and s is the

normalized frequency variable given by

(28)

tiO and Au being the synchronously tuned cavity resonant

frequency and the bandwidth parameter. We assume uni-

form dissipation for all cavities indicated by parameter r

where

6.)0

r=AuQf
(29)

Qf representing the unloaded Q-factor. In (27), M is the

coupling matrix whose (i, j) element represents the nor-

malized coupling between the i th and jth cavities and the
diagonal entries M,, represent the deviations from synchro-

nous tuning. Dispersion effects on the filter are modeled by

a frequency-dependent M matrix. It is easy to prove [13]

that to calculate the short-circuit admittance parameters

and their sensitivities w.r.t. all couplings and frequency, we

TABLE I
EXAMPLES OF TRANSMISSION MATRICES FOR SUBNETWORKS

IN THE MULTIPLEXER OF FIG. 5

TransmissionMatrix
Subnetwork

Expression Notation

[1
.n20

output transformer A
n~,l

o~
nz

multi-coupled 1

[

–q” -1

1
A

cavity tiltert
—

‘% q; - P,qn -P,

[1
1

input transformer — o A
I:nl %

o %

series junction Y+Y 1
terminated at port 3 1

[

.

1

A
by Y$, (Y =Yc+ Y3) Y gyy+yt Y+Y*. .

series junction
terminated at port 2 1

[

Y+Y 1
c

1
D

by Yz, (Y= Ya+YJ Y YfYa+ Ye) +Y*Ye Y+Y*

waveguide spacingti

[; 1

jZOeine A
md

f m(%)is the ith element of vector p(q) which is the solution of zp = ei (Zq = e.),
where Z = j(sl + M) + rl and s = (@Ao)(doO - wj~) fw a filter with couplimg
matrix M centered at w and having a bandwidth parameter AO and a uniform cavity
dissipatirm parameter r,

tt a waveguide section has a characteristic impsdance ZOand 8 = B?, B = 2n/Ag, where f
is the section length and&is the guide wavelength.

only need the solution vectors p and q of two systems of

equations, namely,

Zp = el (30)

and

Zq = en (31)

where el=[l O.. .O]TandeH=[O. ..O 1]~.

In Table I, the transmission matrices for the individual

components of the multiplexer structure shown in Fig. 5,

have been listed. The series 3-port junctions are reduced to

2-port equivalents using the method described in Section

II. Table II lists the sensitivities of transmission matrices in

Table I w.r.t. relevant parameters and frequency.

In Table III, various frequency responses of interest in a

multiplexer structure and their sensitivities w.r.t. design

parameter @ have been summarized. It is clear that the

evaluation of reflection coefficients at the common-port

and channel output ports ( p“ and p~), channel output

voltages ( Vk ) and the first- and second-order sensitivities

(8P0 apk 61vkdvk i12vk—— ——and—
13rp’f?c$’d+ ’au d~du )

as described in Section II, is sufficient to compute all

responses and sensitivities tabulated.
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TABLE II

FIRST-ORDER SENSITIVITIES OF THE TRANSMISSION
MATRICES IN TABLE I

Subnetwork Identification Sensitlvlty of tbe
Transmission Matrix

output transformer dA

d n2 [1
10

0 .+
nz

multi.coupled
cavity filter 8A

a~ti
1 (p q~+ q@A +
2q1 a

J:

[

qaqb o

q, P,qaqb + q“PaPb–q,(Paqb+ Pb’%) PaP~1

% ;(pTqA’[ :“ :1)P1rl Tq+ci” P P - ‘@PTq P P

input transformer 8A

q

1

[1

_—
2 0

%
01

series junction
terminated at :,+(Y3
p0rt3~

(Y3)@K1

(Y3 + Yc)m K1 + (Y)u K2

series junction
terminated at ~,@cY2 (Y2)$ L1
port 2 ~ J+

.3D— (Y2 + YJO L1 + (Y,). L2
da

+ (YC)o L3

wavegwde spacing [1
.sinEIjZocmS

dA

z
~ jcustl

y
- sine

[1

- sine j Zomstl

aA— t(p) j mso
au .—

Z.
- sine

{
2 ifazb

t c=
1 ifa=b

IV. ALGORITHM FOR CALCULATION OF THEVENIN

EQUIVALENTS AND THEIR SENSITIVITIES

The following algorithm can be used to obtain Thevenin

equivalents at output ports and their sensitivities w.r.t. any

variable. The algorithm assumes that the transmission

matrices for all 2-port elements and the hybrid matrices for

all iunctions. as well as their sensitivities. are ziven. The. ,“

TABLE III
VARIOUS FREQUENCY RESPONSESAND THEIR SENSITIVITIES

Response Expressionfor
Tw Fommla Sensitivity w r t @

return 10ss
(commonpmt or -2o Iogldpl [1

PocRe—
channel output p+rt) P

transducer loss r

inwa-tion 10sst

gain slope t

-’o’”glo(*) (vk)
[1

Cf?e -
“k

[
Iv’1(s, + f+

1

(vk)
-20 Ioglo [1Cse -Q

% v’

group delay t

(Vk)o

[1 [
(vk)& (v?+ (@)m

me — cR?— —
Vk Vk - (w 1

-1”[%1 [*--I
– Im

20

c=–=

t betweencommonport andchannel k output port

reverse analysis along the main cascade is initialized by ez

for a short-circuit termination or el for an open-circuit

termination. Correspondingly, the resulting analysis is rep-

resented by g vectors (as in the algorithm) or p vectors as

defined by (5).

Step 1

Step 1.1

Comment

Step 1.2

Comment

Step 1.3

Comment

Step 1.4

Comment

For k=l,2,. . . , N, set o and r to u(k) and

T(k), respectively, and execute Steps 1.1 to 1.7.

Calculate Q,,,+ ~ by reverse analysis for i = r +
1,7+2,. . . , u. Calculate Qol by forward analy-

sisforj =u, u–l,. ... ~+l.

Cascaded analysis is performed on the kth

branch. The reverse (forward) analysis starts

from the branch output (input) port and is

carried to the branch input (output) port.

P + Q~,~+lA,el.
CO~culate Y: using (23).

The equivalent admittance of the k th branch,

looking from the branch input port, is com-

puted. This admittance is utilized in the 2-port

representation of the k th junction.

Calculate dpo,/d@ using (6) and dY~\i@

from (22) for all the variable ~’s in the k th

branch.

Sensitivities of the branch equivalent admit-

tance w.r.t. all variables in the branch are

calculated. In evaluating 6’Y3~/do, we use a

special case for (22) which corresponds to Y3~

given in (23).

Calculate A ~~ using (3). Calculate f3A ~~/ ih$

for all the variable ~’s in the k th junction and

the k th branch.

The 2-port representation of the k th junction,

when terminating its port 3, is computed. The
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Step 1.5

Comment

Step 1.6

Comment

Step 1.7

Comment

Step 2

Comment

Step 3

Step 3.1

Comment

Step 3.2

Comment

sensitivities of the resulting transmission matrix

are readily obtained.

Calculate q2k,1by reverse analysis and Y;

from (24).

The equivalent admittance at port 2 of the kth

junction, looking towards the main cascade

termination, is calculated after a reverse analy-

sis from reference plane 1 to reference plane

2k.

Calculate dg2~,1/&j using (6) and 13Y~/13@

using (22) for all variables @ in section k’, k’ <

k and in the k th spacing.

The sensitivities of the equivalent admittance

Y}, w.r.t. all variables geometrically located to

the right of junction k, are computed. In

evaluating dYJ/ d+, we use a special case for

(22) which corresponds to Y:, given in (24).

Calculate D2~ using the method described in

Section II. Calculate dDz~/&$ for all the vari-

able $‘s in the k th junction and spacing, as

well as in all k’ sections, k’ < k.

The 2-port representation of junction k when

terminating its port 2 is computed. The sensi-

tivities of the resulting transmission matrix

w.r.t. all variables, included in or located to the

right of the junction, are computed.

Calculate q2N+~,1by extending the reverse

analysis, already performed up to reference

plane 2N in Step 1.5, to reference plane 2N + 2.

Note that A ~~ has been evaluated in Step 1.4.

Calculate *2~+2,1/a4 using *2N,,/d4 (0

belongs to the set of all variables to the right of

section N and the Nth spacing), which has

been evaluated in Step 1.6, and dA ~~/ih$ (@

belongs to the set of all variables in the Nth

branch and Nth junction), which has been

evaluated in Step 1.4.

The reverse analysis from the main cascade

termination is carried back to the source port.

The corresponding sensitivities are also calcu-

lated. These results are used to calculate the

common-port reflection coefficient and its

sensitivities w.r.t. all variables in the entire

network.

For k= N, N–l,. ,, ,1, set u and ~ to u(k)

and ~(k), respectively, and execute Steps 3.1 to

3.3.

Calculate Q2~+ ~,z~+ ~ by forward analysis.

The forward analysis is carried along the main

cascade from the source port to the input port

of junction k.

Q27v+2,7+1 6 Qm+z,w#%kQa,,+~.
Calculate dQ2~+2,,+ ~/il@ using (6) for all the

variable @‘s in the entire multiplexer.

A cascaded analysis from the source port is

carried through the k th junction into the k th

branch. The sensitivities w.r.t. all variables are

computed.

Step 3.3 Calculate V;+ 1 and Z:+ 1 using (8) and (9).

Also, calculate N$+ l/@ and dZ;+ 1/ d$ using

(10) and (11) for all variables @ in the entire

multiplexer.

Comment Thevenin equivalents and their sensitivities are

computed for the k th branch output port.

V. EXAMPLE

A wide range of possible multiplexer optimization prob-

lems can be formulated and solved by appropriately defin-

ing specifications on various frequency responses of inter-

est. The sensitivities are used in conjunction with the

gradient-based mininmx algorithm of Hald and Madsen

[14] to ensure the fastest possible solutions.

As an example, we have used our simulation and sensi-

tivity y formulas to optimize a 12-channel, 12-GHz multi-

plexer without dummy channels. Waveguide spacings,

input and output transformer ratios, cavity resonant fre-

quencies, as well as intercavity couplings are used as opti-

mization variables.

The details of the problem are as follows. There are

twelve 6th-order multicavity filters mounted on the wave-

guide manifold. The transmission matrix deduced from the

commonly used impedance matrix description of these

filters has been formulated in Table I. An optimization on

a singly terminated filter was performed to obtain the

starting values for the nonzero couplings M12, M23,

ikf~d, M~e, M4~, M~e, and the same values were assumed for

all filters. The unloaded Q-factor is estimated at 12 000

and dispersion effects consistent with the models in use at

ComDev Ltd. [15] are included. In selecting the starting

values of waveguide spacings, for each section the half-guide

wavelength evaluated at the center frequency of the corre-

sponding channel filter, as suggested in the literature [1],

was used. The model for the nonideal junctions, i.e., the

equivalent admittances Y. and YCof Fig. 5, which have also

been assumed in the transmission matrix description of

junctions as appearing in Table I, are consistent with the

models suggested by Chen et al. [2] following the formulas

by Marcuvitz [16]. Fig. 6 shows the common-port return

loss and channel insertion-loss responses at the starting

point for the optimization of the whole structure.

The specific optimization problem considered in this

example was to satisfy a lower specification of 20 dB on

the common-port return loss over the entire frequency

band of interest for the multiplexer. From Table III, it is

clear that the evaluation of common-port return loss and

its sensitivities w.r.t. the generic optimization variable @ is

straightforward once the common-port reflection coeffi-

cient p“ and its sensitivities ( p“ ) ~ are known. We will

describe the particular variables considered in this example

later. Recalling (25) and (26) and the definition of qtjin

(5), p“ and (p”)@ are evaluated from q2N+2,1 and its

sensitivities. Finally, by referring to the algorithm and
. . . .

6’specifically Step 2 m tkns case? qz N+ z,1, qz N+ z,1iaq are

calculated.

The optimization was performed in several stages with

the judicious addition of new variables at each stage to
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Fig. 6. Common-port return-loss and channel output port insertion-loss responses of the 12-channel multiplexer before

optimization.
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Fig. 7. Common-port return-loss and channel output port insertion-loss responses of the 12-channel multiplexer with

optimized spacings, input–output transformer ratios, cavity resonances, and coupling parameters.

improve the overall response or the response over some

specific portions of the total frequency band. In particular,

the first stage was the optimization w.r.t. only waveguide

spacings, i.e., 12 variables, and the last stage involved 60

variables, namely, 12 section lengths, 14 variables for each

of channels 1 and 12 (all six possible intercavity couplings,

six cavity resonant frequencies, input and output trans-

former ratios), and four variables for each of channels 2, 8,

9, 10, and 11 (input and output transformer ratios, reso-

nant frequency of the first cavity, and coupling MIZ). In

selection of the frequency points, uniformly distributed

points, 10 MHz apart over the whole 500-MHz band, are

taken in the early stages. However, a simple interpolation

technique effectively treating sample points 1 MHz apart is

introduced in the final stages of the optimization. The total

CPU time on the Cyber 170/815 system was about ten

minutes. The results of the final optimization are shown in

Fig. 7. Equi-ripple return-loss response satisfying the re-

quirements over the entire communication band has been

achieved.

The results presented in this paper verify a highly effi-

cient, state-of-the-art computer program package for simu-

lation, sensitivity analysis, and optimization of multi-

plexer called MXSOS2. That package was developed by
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Opti@zations Systems Associates [17] for ComDev Ltd.

[15]. MXSOS2 was tested in close cooperation with mem-

bers of ComDev Ltd., directly involved in multiplexer

design and postproduction tuning [8].

VI. CONCLUSIONS

We have presented a new approach to simulation and

sensitivity analysis of multiplexing networks. By utilizing

our formulas of Thevenin equivalents and their sensitivities

w.r.t. network parameters as well as frequency, various

frequency responses, and their sensitivities at arbitrarily

chosen reference planes are evaluated. The method pre-

sented has been utilized in the optimal design of a state-of-

the-art 12-channel contiguous band multiplexer. Attractive

and fast computer results obtained using a gradient-based

optimization ‘technique justify our treatment of sensitivity

evaluation as an integral part of the analysis. All the

sensitivity formulas presented in this paper can be verified

independently. Actual implementation of our approach,

however, requires only an understanding of the definitions

of the responses, formulas for which are available in Table

III. For more theoretically oriented researchers or en-

gineers, our method of dealing with the sensitivities (Sec-

tion II) is straightforward and should be applicable to

almost any complex linear circuit structure in the frequency

domain.
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