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Abstract

We consider a generalised Vervaat perpetuity of the form X = Y1W1 + Y2W1W2 + ..., where

Wi ∼ U 1/t and (Yi)i≥0 is an i.i.d sequence of random variables independent from (Wi)i≥0. Based

on a distributional decomposition technique, we propose a novel method for exactly simulating

the generalised Vervaat perpetuity. The general framework relies on the exact simulation of the

truncated Gamma process, which we develop using a marked renewal representation for its paths.

Furthermore, a special case arises when Yi = 1, and X has the generalised Dickman distribution, for

which we present an exact simulation algorithm using the marked renewal approach. In particular,

this new algorithm is much faster than existing algorithms illustrated in Devroye and Fawzi (2010),

Fill and Huber (2010), Chi (2012), and Cloud and Huber (2017) as well as being applicable to the

general payments case. Examples and numerical analysis are provided to demonstrate the accuracy

and effectiveness of our method.
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1 Introduction

A stochastic perpetuity is a random variable which takes the form

X = Y1W1 + Y2W1W2 + Y3W1W2W3 + ... + YnW1W2...Wn + ..., (1.1)
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where the Wi and Yi are i.i.d random variables independent of each other. Perpetuities arise in a

diverse range of fields such as economics (Embrechts et al., 1996), insurance mathematics (Nyrhinen,

2001), astrophysics (Chandrasekhar and Münch, 1950), analytic number theory (De Bruijn, 1951), and

in the analysis of Hoare’s selection algorithm (Mahmoud et al., 1995). We refer to Vervaat (1979) and

Embrechts and Goldie (1994) for a huge variety of references and examples of applications, ranging

from the brightness of the Milky Way to ARCH processes of financial modelling. In the context of

economics, the quantity Yi represents a random cashflow at time i and Wi represents the discount rate

from time i to time i− 1. The random variable X then represents the net present value of the stochastic

cashflows.

When Wi
D
= U1/t, for U ∼ Uni f orm(0, 1), the random variable X is known as a generalised Vervaat

perpetuity. It was shown in Vervaat (1979) that the series converges if and only if E
Ä
log+ |Yi|

ä
< ∞,

and it satisfies the distributional identity

X D
= W(X + Y), (1.2)

where W and Y represent random variables distributed like Wi and Yi respectively. Vervaat perpetuity

has been much studied. Vervaat (1979) showed that the random variable X is infinitely divisible, and

obtained its Lévy Khintchine representation. This is the basis of our simulation framework, and we

further show that under the mild assumption that the Laplace transform of Y exists, X turns out to be

a Lévy process with Lévy measure proportional to 1
y P(Y > y). There is also no loss of generality to

consider only the case when Y > 0, as it can be shown that a two-sided perpetuity can be split into

the difference of two one-sided perpetuities. Goldie and Grübel (1996) and Grübel and Rösler (1996)

studied the tails of these perpetuities. Random variables of this type also appear as the limit of shot

noise processes (Takács, 1954, 1955).

In this paper, we are interested in exactly simulating a generalised Vervaat perpetuity. Much atten-

tion has been given in the literature to the special case when Yi = 1 almost surely, in which case X has

the generalised Dickman distribution (Dickman, 1930; Arratia, 1998). Even so, explicit expressions for

the distribution of X are difficult to obtain. The first simulation method is based on a density approx-

imation given in Devroye (2001). Later, Fill and Huber (2010) and Devroye and Fawzi (2010) using a

dominated coupling from the past procedure for Markov chains. Cloud and Huber (2017) proposed
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an improvement by running both an upper and lower bound on the Markov chain. Chi (2012) sugges-

ted an alternative approach based on a rejection sampling procedure. However, these algorithms are

efficient only for the Dickman distribution, where the parameter t = 1, and their speed slows down

considerably when t gets larger than 1.

We develop a faster and more efficient simulation algorithm for the generalised Dickman distri-

bution with parameter t. Since it is viewed here as a Lévy process over the range of parameters t,

with Lévy measure ν(dy) = 1
y 1{y<1}dy, we thus call it the Dickman process. The paths of the Dick-

man process can be characterised by a marked renewal process where the renewal intervals are the

hitting times of level 1, and the jumps are the overshoots at this time. By simulating its path along

each hitting time of level 1, we obtain a simulation algorithm for the Dickman process. Similar to our

method, the approach in Chi (2012) also utilises the truncated density of the perpetuity. However, the

advantage of our algorithm is that it is based on a marked renewal process, which not only provides a

pathwise probabilistic interpretation of the corresponding Lévy process, it also means that the incre-

mental random variables we need to simulate are i.i.d. pairs, allowing us to employ vectorisation to

reduce total computation time. This is not the case for the algorithm suggested in Chi (2012), where

the incremental variables depend on the previous ones. We provide comparisons of the simulation

speed of our algorithm with the algorithms suggested by Devroye and Fawzi (2010), Fill and Huber

(2010), Chi (2012), and Cloud and Huber (2017). We found that our method outperforms the other

algorithms and even more substantially when t is large.

Blanchet and Sigman (2011) proposed a modification of the dominated coupling from the past al-

gorithm to sample from generalised Vervaat perpetuities. The algorithm imposes similar regularity

conditions as ours on the density of Yi. However, it also requires Yi to have a heavy tail. In this

paper, we develop a framework for simulating from generalised Vervaat perpetuities. In particular,

we prove a distributional decomposition result, which states that a generalised Vervaat perpetuity X

can be represented as the sum of a Gamma or truncated Gamma process and independent compound

Poisson processes. Thus, it can be sampled by generating each of these components separately and

adding them up. The condition we need is

lim
y↓0

P(Y < y)
y

< ∞, (1.3)
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which holds for a wide range of distributions, such as the Gamma (shape parameter larger than 1),

Pareto, Weibull (light tailed), Beta, and Normal distributions as well as all discrete distributions (to

avoid technicalities 0 is not a possible value). Whenever a density exists, it should possess a finite

derivative at 0.

Using the marked renewal representation, we develop an exact simulation algorithm for the trun-

cated Gamma process, which we define to be the Lévy process with Lévy measure ν(dy) = e−µy

y 1{y<b}dy

for some truncation level b. The truncated Gamma process can be obtained from the Gamma process

by restricting the size of its jumps to be bounded from above by b. It is also a generalised Vervaat

perpetuity with Yi ∼ V ∧ 1, where V ∼ Exp(µ). This algorithm is important, as it forms the basis of

other algorithms for more general distributions of Yi. We provide specific examples to demonstrate

the methodology, and numerical results and graphical illustrations are given for the cases when Yi has

a Gamma distribution, and when Yi has a Normal distribution.

This paper will be organised as follows. Section 2 gives a representation of the generalised Vervaat

perpetuities as Gamma related processes. We also prove that a two sided perpetuity is the difference

of two positive perpetuities. In Section 3, we study the specific cases of a Dickman process and a trun-

cated Gamma process. The marked renewal path representation is described and the exact simulation

algorithms developed. Numerical analysis and comparison with existing algorithms are provided. In

Section 4, we prove the distributional decomposition result, which enables us to exactly simulate a

generalised Vervaat perpetuity. Numerical examples are also given to demonstrate the accuracy and

efficiency of our algorithms.

2 Generalised Vervaat Perpetuities

We obtain the following distributional decomposition result for a positive perpetuity X > 0.

Theorem 2.1 Consider the generalised Vervaat perpetuity X with Yi > 0. We define the Laplace transforms

f̂ (β) = E(exp(−βX)) and ĝ(β) = E(exp(−βYi)). Then, we have

f̂ (β) = exp
Ç
−t

∫ ∞

0

1− e−βy

y
P(Y > y)dy

å
. (2.1)
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Hence, X D
= Zt, where Zt is a Lévy process with Lévy measure

ν(dy) =
1
y

P(Y > y)dy. (2.2)

Proof. For W = U1/t, the density of W is twt−1. Then from (1.2), we have

f̂ (β) =
∫ 1

0
f̂ (βw)ĝ(βw)twt−1dw, (2.3)

and therefore,

βt f̂ (β) =
∫ β

0
f̂ (w)ĝ(w)twt−1dw.

Differentiating with respect to β on both sides, we have

d
dβ

f̂ (β) = −t
1− ĝ(β)

β
f̂ (β).

Solving the first order differential equation with respect to β, we obtain

f̂ (β) = exp
Ç
−t

∫ β

0

1− ĝ(u)
u

du
å

= exp
Ç
−t

∫ ∞

0

1− e−βy

y
P(Y > y)dy

å
, (2.4)

and the result (2.1) follows. Thus, X D
= Zt, where Zt has Lévy measure defined in (2.2).

We can see that Zt is a Gamma related Lévy process with Lévy measure density proportional to

P(Y > y)y−1. For a two-sided perpetuity where Y takes values in the whole real line, the following

result shows that it is the difference of two positive perpetuities and thus it suffices to study only

positive perpetuities.

Corollary 2.2 Suppose now that P(Y < 0) > 0. Then,

f̂ (β) = exp
Ç
−t
Ç

p
∫ ∞

0

1− e−βy

y
P(Y > y|Y > 0)dy + (1− p)

∫ ∞

0

1− eβy

y
P(Y < −y|Y < 0)dy

åå
,

(2.5)

where p = P(Y > 0).
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Proof. For two sided Y, the Laplace transform of the perpetuity X satisfies the following,

exp
Ç
−t

∫ β

0

1− ĝ(u)
u

du
å

= exp
Ç
−t
Ç∫ β

0

∫ ∞

0

1− e−uy

u
P(Y ∈ dy)du +

∫ β

0

∫ ∞

0

1− euy

u
P(Y ∈ d(−y))du

åå
= exp

Ç
−t
Ç∫ β

0

∫ ∞

0
e−uyP(Y > y)dydu +

∫ β

0

∫ ∞

0
euyP(Y < −y)dydu

åå
= exp

Ç
−t
Ç∫ ∞

0

1− e−βy

y
P(Y > y)dy +

∫ ∞

0

1− eβy

y
P(Y < −y)dy

åå
= exp

Ç
−t
Ç

p
∫ ∞

0

1− e−βy

y
P(Y > y|Y > 0)dy + (1− p)

∫ ∞

0

1− eβy

y
P(Y < −y|Y < 0)dy

åå
,

which is easily seen as the difference of two positive perpetuities, one with Wi
D
= U 1/pt and Yi

D
=

Y|Y > 0, and the other with Wi
D
= U 1/(1−p)t and Yi

D
= −Y|Y < 0.

Our aim is to simulate the generalised Vervaat perpetuity X for a given distribution of Yi. In the

simplest case when Yi = 1 almost surely, X is known as the Vervaat perpetuity and it reduces to the

Dickman process. When Yi ∼ V, where V ∼ Exp(µ), we obtain the Gamma process with parameter

µ, and when Yi ∼ V ∧ 1, we obtain the truncated Gamma process. Making use of a marked renewal

representation for the paths, we develop fast and exact simulation algorithms for these perpetuities.

These cases are important as they form the basis of the other algorithms. We will then give other

examples to demonstrate how our methodology can be adapted to general random variables Yi. Our

method works for any Yi satisfying (1.3) .

3 Generalised Dickman distribution and the Truncated Gamma process

When Y ∼ Exp(µ), we have P(Y > y) = e−µy, and thus

f̂ (β) = exp
Ç
−t

∫ ∞

0
(1− e−βy)

1
y

e−µydy
å

, (3.1)

which is the Laplace transform of a Gamma process with parameter µ. This can be simulated easily

by sampling from the Gamma distribution.
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When Y = 1 almost surely, we have P(Y > y) = 1{y<1}, and thus

f̂ (β) = exp
Ç
−t

∫ 1

0

1− e−βy

y
dy
å

, (3.2)

which is the Laplace transform of a generalised Dickman distribution with parameter t. This is also a

Lévy process Zt with Lévy measure 1
y 1{y<1}, and hence we coin it the Dickman process.

When Y = V ∧ 1, where V ∼ Exp(µ), we have P(Y > y) = e−µy1{y<1}, and thus

f̂ (β) = exp
Ç
−t

∫ 1

0
(1− e−βy)

e−µy

y
dy
å

, (3.3)

which is the Laplace transform of a truncated Gamma process with parameter µ. The truncated

Gamma process refers to the Gamma process with truncated Lévy measure e−µy

y 1{y<1}.

To simulate the Dickman process and the truncated Gamma process, we utilise a marked renewal

process representation of its sample paths. We now describe the sample paths of truncated subordin-

ators using a marked renewal process.

3.1 The marked renewal process

The paths of the truncated subordinator Zt can be characterised by a marked renewal process. First,

we define a sequence of hitting times T1, T2, T3, ..., and denoting Si =
i∑

j=1
Tj, let

Ti := inf{t > Si−1|Zt > ZSi−1 + 1}, i = 2, 3, ..., (3.4)

These T1, T2, ... are treated as the holding times for the renewal process. We further define M1, M2, ...

to be the overshoots at time S1, S2, ..., i.e.

Mi := ZSi − ZSi−1 − 1. (3.5)

Hence, at time Si the process will increase by (1 + Mi) units for all i. Since the process Zt has inde-

pendent and stationary increments, each pair of (Ti, Mi) are independent and identically distributed

with joint density given in Theorem 3.1. In addition, Mi will be bounded by 0 and 1 for all i as the jump

sizes of the process are restricted by 1. The value of the process at time Sn will be ZSn =
n∑

i=1
(1 + Mi).

7



Figure 1: Graphical illustration of a sample path of Zt

T1

1

1
1 + M1

T1 + T2

2 + M1

2 + M1 + M2

3 + M1 + M2

1

T1 + T2 + T3 T1 + ... + Tn+1T1 + ... + Tn

ZSNt

n +
n−1∑
i=1

Mi

n +
n∑

i=1
Mi

t

Zt
(n + 1) +

n∑
i=1

Mi

time

The position of the process Zt at time t can therefore be expressed as the sum of a marked renewal

process with a random variable,

Zt =
Nt∑

i=1

(1 + Mi) +
Ä

Zt − ZSNt

ä
, (3.6)

where Nt =
∞∑

i=1
1{Si≤t} is the renewal process determined via (3.4) such that SNt ≤ t < SNt+1, and we

have

Zt − ZSNt

D
= Zt−SNt

|SNt+1 > t D= Zt|T > t, (3.7)

where the last equality is due to the strong Markov property of Zt.

We illustrate the marked renewal framework graphically in Figure 1. The sum in the first part of

(3.6) represents the position of the truncated process at time SNt just before it reaches t. The second

term in (3.6) represents the final movement of the process within time t−Nt. Thus, Zt can be simulated

by generating pairs of hitting times and overshoots (Ti, Mi), stopping when the sum of Ti that have
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been generated, say SNt+1, becomes larger than the input t. We then generate the final part {Zt|T > t}

and return the entire sum (3.6).

3.2 Hitting times and overshoots

Now, we obtain analytically the first hitting times and overshoots of the truncated Gamma process

and the Dickman process. This is given in the following Theorem 3.1.

Theorem 3.1 Let T be the first hitting time of level 1 of a truncated Gamma process Zt with µ ≥ 0, and M the

overshoot at this time. Then the joint distribution of (T, M) is given by

fT,M(t, m) =

1∫
m

eΓ(0,µ)tµt

Γ(t)
yt−1 e−µ(1+m)

1 + m− y
dy, for µ > 0, (3.8)

where t ∈ (0, ∞), m ∈ (0, 1).

For the Dickman process, the joint density of (T, M) is the limit of (3.8) as µ→ 0,

fT,M(t, m) =

1∫
m

e−γt

Γ(t)
yt−1

1 + m− y
dy, (3.9)

where γ is the Euler–Mascheroni constant, t ∈ (0, ∞), and m ∈ (0, 1).

Proof. Let f (x; t) denote the density of Zt. For µ > 0, the density of Zt restricted to (0, 1) can be

derived though its Laplace transform. We have

f (x; t) = L−1
¶

E
î
e−βZt

ó©
1{0<x<1}

= L−1

exp

Ñ
−t

∞∫
0

Ä
1− e−βs

ä
s−1e−µsds

é
exp

Ñ
t

∞∫
1

Ä
1− e−βs

ä
s−1e−µsds

é 1{0<x<1}

= L−1


Ç

1 +
β

µ

å−t

exp

Ñ
t

∞∫
1

s−1e−µsds

é
∞∑

k=0

(−t)k

k!

Ñ ∞∫
1

e−βss−1e−µsds

é 1{0<x<1}

= L−1

etΓ(0,µ)
Ç

1 +
β

µ

å−t

+ etΓ(0,µ)
Ç

1 +
β

µ

å−t ∞∑
k=1

(−t)k

k!

Ñ ∞∫
1

e−βss−1e−µsds

é 1{0<x<1}

= L−1

{
etΓ(0,µ)

Ç
1 +

β

µ

å−t}
1{0<x<1}

=
eΓ(0,µ)tµt

Γ(t)
xt−1e−µx1{0<x<1}. (3.10)

9



Using the strong Markov property of Lévy processes, we have

P (T ∈ dt, M > m) = lim
ε→0

1
ε

P (Zt−ε ≤ 1, Zt > 1 + m)

= lim
ε→0

1
ε

1∫
0

P(Zt−ε ∈ dy)P(Zε > 1 + m− y)

=

1∫
0

eΓ(0,µ)tµt

Γ(t)
yt−1e−µy

∞∫
1+m−y

z−1e−µzdzdy, (3.11)

Differentiating (3.11) with respect to m, the joint density of (T, M) in (3.8) directly follows. For the

Dickman process, we take the limit as µ → 0. The density of Zt within (0, 1) is obtain by taking limit

of (3.10), i.e.

f (x, t) = lim
µ→0

e[Γ(0,µ)+log(µ)]t

Γ(t)
xt−1e−µx =

e−γt

Γ(t)
xt−1, 0 < x < 1, (3.12)

with γ being the Euler–Mascheroni constant. Hence, associated distribution of (T, M) directly follows

(3.9).

Given that the first passage time of Zt hitting level 1 is greater than t, the distribution of the trun-

cated process Zt is characterised via its density within (0, 1). The details are in Theorem 3.2.

Theorem 3.2 The density of Zt|T > t is given by

fZt|T>t(x; t) =


µt

Γ(t,µ)xt−1e−µx, µ > 0,

txt−1, µ = 0,
(3.13)

where 0 < x < 1.

Proof. We know that

Zt|T > t D= Zt|Zt < 1, (3.14)

since {T > t} is equivalent to {Zt < 1}. The density therefore satisfies

fZt|T>t(x; t) = fZt|Zt<1(x; t) =
f (x; t)

1∫
0

f (x; t)dx

.

Thus, the density immediately follows (3.13) .
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3.3 Exact simulation of the generalised Dickman distribution

Based on the marked renewal framework and choosing suitable acceptance-rejection (A/R) envel-

opes for fT,M(t, m) and fZt|T>t(x; t), we have the following simulation algorithm for the Dickman

process, or equivalently, the generalised Dickman distribution.

Algorithm 3.3 Simulation of Dickman process (Generalised Dickman distribution)

1. Set S = 0, γ = −digamma(1).

2. Generate (T, M) via the following steps:

(a) Generate U1 ∼ U (0, 1), and set T = − 1
0.8 log U1.

(b) Generate Y ∼ Beta(T, 0.5), U2 ∼ U (0, 1), and set

M = Y− 1 + (1−Y) exp (−U2 log(1−Y)) .

(c) Generate V ∼ U (0, 1), and if

V ≤ 1
2.35

Γ(0.5)e−(γ−0.8)T

0.8Γ(T + 0.5)
(− log(1−Y))
(1−Y)−0.5 , (3.15)

then accept (T, M). Otherwise, reject this candidate and go back to Step 2(a).

3. If T > t, continue to Step 4. Otherwise, set S = S + 1 + M, t = t− T, and go back to Step 2.

4. Generate U ∼ U (0, 1) and set X = U
1
t .

5. Return S + X.

Proof. For the joint density fT,M(t, m), we simulate (T, M, Y) jointly from the integral in (3.9),

f (t, m, y) =
e−γtyt−1

Γ(t)
1

1 + m− y
, (3.16)

for t ∈ (0, ∞), 0 < m < y < 1. The A/R envelope chosen is

g(t, m, y) = σe−σt Γ(t + η)

Γ(t)Γ(η)
yt−1(1− y)η−1

1
1+m−y

(− log(1− y))
, (3.17)

where σ = 0.8 and η = 0.5 are chosen numerically via two-dimensional optimisation. Furthermore,

fZt|T>t(x; t) can be simulated directly via inverse transformation resulting in Step 4.
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3.4 Exact simulation of the truncated Gamma process

For the truncated Gamma process, one could generate a Dickman process and apply a final A/R

scheme. However, the algorithm is not very efficient, especially for large µ as the acceptance rate is

exponentially decreasing in µ. Thereby, we propose the following algorithm based on the marked

renewal framework to sample truncated Gamma process.

Algorithm 3.4 Simulation of truncated Gamma process (Marked renewal approach)

1. Set S = 0.

2. Generate (T, M) via the following steps:

(a) Numerically minimise

C(ϑ, δ) =
Γ(δ)e−µ

ϑ(1− δ)e
eΓ(0,µ) exp(Γ(0,µ)+ϑ+log(µ))µexp(Γ(0,µ)+ϑ+log(µ))eϑ exp(Γ(0,µ)+ϑ+log(µ))

Γ(exp (Γ(0, µ) + ϑ + log(µ)) + δ)
, (3.18)

record the optimal value ϑ∗ and δ∗ and set C = C(ϑ∗, δ∗).

(b) Generate U1 ∼ U (0, 1) and set T = − 1
ϑ∗ log(U1).

(c) Generate Y ∼ Beta(T, δ∗), U2 ∼ U (0, 1) and set

M = Y− 1 + (1−Y) exp (−U2 log(1−Y)) .

(d) Generate V1 ∼ U (0, 1). If

V1 ≤
1
C

Γ(δ∗)
ϑ∗

eΓ(0,µ)TµTeϑ∗T

Γ(T + δ∗)

− log(1−Y)
(1−Y)δ∗−1 e−µ(1+M), (3.19)

then accept (T, M). Otherwise, reject this candidate and go back to Step 2(b).

3. If T > t, continue to Step 4. Otherwise, set S = S + 1 + M, t = t− T and go back to Step 2.

4. Generate X via the following steps:

(a) Generate U3 ∼ U (0, 1) and set X = U
1
t

3 .

(b) Generate V2 ∼ U (0, 1). If

V2 ≤ exp(−µX), (3.20)

then accept X. Otherwise, reject this candidate and go back to Step 4(a).
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5. Return S + X.

Proof. For the joint density fT,M(t, m), we simulate (T, M, Y) jointly from the integral in (3.8) ,

f (t, m, y) =
eΓ(0,µ)tµt

Γ(t)
yt−1 e−µ(1+m)

1 + m− y
, (3.21)

where t ∈ (0, ∞), 0 < m < y < 1. We choose the envelope

g(t, m, y) = ϑe−ϑt Γ(t + δ)

Γ(t)Γ(δ)
yt−1(1− y)δ−1

1
1+m−y

[− log(1− y)]
. (3.22)

The ratio of the densities is bounded by

f (t, m, y)
g(t, m, y)

≤ Γ(δ)e−µ

α(1− δ)e
eΓ(0,µ)t∗µt∗eαt∗

Γ(t∗ + δ)
:= C(ϑ, δ), (3.23)

where we obtained by maximising the ratio with respect to t,

t∗ = exp
Å

Γ(0, µ) + α + log(µ) +O
Å 1

t∗

ãã
≈ exp (Γ(0, µ) + α + log(µ)) . (3.24)

We then minimise C(ϑ, δ) with respect to ϑ and δ via two dimensional numerical optimisation. Finally,

{Zt|T > t} can be simulated directly via A/R scheme by choosing an envelop with density g(x; t) =

xt−1

t 1{0<x<1}.

3.5 Numerical Results

In this section, we present some numerical results of the exact simulation methods developed in Al-

gorithm 3.3, 3.4. Numerical validation and tests for our simulation algorithms are all based on the

true mean. The associated errors are reported by the difference, the percentage errors, and root mean

square error (RMSE)1. The detailed numerical results are reported in Table 1. We can see that each

algorithm can achieve a very high level of accuracy, which is reflected by the difference in the theor-

etical mean and associated percentage errors. The simulation time is measured by the elapsed CPU

time in seconds. We can see that both algorithms perform well. In particular, for Algorithm 3.4, the

simulation time to generate the truncated Gamma process is not highly influenced by µ.

1RMSE is calculated by RMSE =
√

SE2 + Bias2
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Table 1: Comparison between the true means and the associated simulation results for Algorithm 3.3,
3.4 based on the parameter setting t = 0.5, 1, 2.5, 3, µ = 0, 0.5, 1, respectively.

Paths True Simulation Difference Error% RMSE Time True Simulation Difference Error% RMSE Time

t = 0.5 µ = 0 t = 2.5 µ = 0
1,000 0.5000 0.4879 -0.0121 -2.47% 0.0155 0.11 2.5000 2.4421 -0.0579 -2.37% 0.0343 0.08
4,000 0.5000 0.5057 0.0057 1.12% 0.0079 0.13 2.5000 2.5148 0.0148 0.59% 0.0178 0.11
16,000 0.5000 0.5011 0.0011 0.22% 0.0040 0.38 2.5000 2.5073 0.0073 0.29% 0.0089 0.36
64,000 0.5000 0.5008 0.0008 0.16% 0.0020 1.09 2.5000 2.4975 -0.0025 -0.10% 0.0044 1.17

256,000 0.5000 0.5002 0.0002 0.05% 0.0010 4.35 2.5000 2.5058 0.0058 0.23% 0.0022 4.43
1,024,000 0.5000 0.5009 0.0009 0.19% 0.0005 16.63 2.5000 2.5003 0.0003 0.01% 0.0011 17.19

t = 1 µ = 0.5 t = 1 µ = 1
1,000 0.7869 0.7890 0.0020 0.25% 0.0183 0.14 0.6321 0.6426 0.0105 1.63% 0.0165 0.19
4,000 0.7869 0.7909 0.0039 0.49% 0.0095 0.28 0.6321 0.6318 -0.0003 -0.04% 0.0081 0.28
16,000 0.7869 0.7809 -0.0060 -0.76% 0.0047 0.66 0.6321 0.6338 0.0017 0.26% 0.0041 0.83
64,000 0.7869 0.7891 0.0021 0.26% 0.0024 2.12 0.6321 0.6304 -0.0017 -0.27% 0.0020 2.18

256,000 0.7869 0.7855 -0.0014 -0.18% 0.0012 8.38 0.6321 0.6324 0.0002 0.03% 0.0010 8.55
1,024,000 0.7869 0.7865 -0.0004 -0.05% 0.0006 33.09 0.6321 0.6327 0.0005 0.08% 0.0005 31.48

t = 3 µ = 0.5 t = 3 µ = 1
1,000 2.3608 2.3699 0.0091 0.38% 0.0326 0.17 1.8964 1.9056 0.0092 0.48% 0.0289 0.16
4,000 2.3608 2.3431 -0.0177 -0.75% 0.0163 0.30 1.8964 1.8995 0.0031 0.16% 0.0139 0.17
16,000 2.3608 2.3731 0.0123 0.51% 0.0083 0.75 1.8964 1.8964 0.0000 0.00% 0.0070 0.50
64,000 2.3608 2.3629 0.0020 0.08% 0.0041 2.12 1.8964 1.8965 0.0002 0.01% 0.0035 1.94

256,000 2.3608 2.3608 0.0000 0.00% 0.0021 8.76 1.8964 1.8977 0.0013 0.06% 0.0018 6.98
1,024,000 2.3608 2.3579 -0.0029 -0.12% 0.0010 32.33 1.8964 1.8960 -0.0003 -0.01% 0.0009 31.60

For the generalised Dickman distribution, we implement a comparison between Algorithm 3.3

against the algorithms suggested by Devroye and Fawzi (2010), Fill and Huber (2010), Chi (2012),

and Cloud and Huber (2017). The detailed numerical results based on different parameter settings

against t are reported in Table 2 and the associated log-log plots for the RMSE against the CPU time

are presented in Figure 2. In addition, we also compared the computation time to generate 100, 000

samples using these five algorithms for different values of t, and details are presented in Table 3. We

can see that sampling based on Algorithm 3.3 is much faster than algorithms in Devroye and Fawzi

(2010), Fill and Huber (2010), Chi (2012), and Cloud and Huber (2017). For instance, when t = 3,

Algorithm 3.3 is 4 times faster than Devroye and Fawzi (2010), 50 times faster than Fill and Huber

(2010), 25 times faster than Chi (2012), and 7 times faster than Cloud and Huber (2017). Compared

with the other algorithms, the main advantage of Algorithm 3.3 is that the incremental random vari-

ables (Ti, Mi)i≥0 are i.i.d pairs, and this means that we can employ vectorisation to reduce total com-

putation time, especially for large values of t. Although the expected simulation time is unbounded

for Algorithm 3.3, the simulation idea based on the marked renewal approach still outperforms the

dominated coupling approach and rejection sampling approach, and even more so when t is large.
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Table 2: Comparison for Algorithm 3.3 and Algorithms suggested in Devroye and Fawzi (2010), Fill
and Huber (2010), Chi (2012), and Cloud and Huber (2017) based on the parameter setting t = 1, 3
respectively.

Paths True Simulation Difference Error% RMSE Time True Simulation Difference Error% RMSE Time

Algorithm 3.3 t = 1 t = 3
1,000 1.0000 0.9813 -0.0187 -1.91% 0.0218 0.07 3.0000 3.0031 0.0031 0.10% 0.0379 0.09
4,000 1.0000 1.0057 0.0057 0.57% 0.0114 0.17 3.0000 3.0030 0.0030 0.10% 0.0192 0.14
16,000 1.0000 1.0043 0.0043 0.43% 0.0056 0.28 3.0000 2.9979 -0.0021 -0.07% 0.0096 0.41
64,000 1.0000 0.9997 -0.0003 -0.03% 0.0028 0.97 3.0000 2.9967 -0.0033 -0.11% 0.0048 1.19

256,000 1.0000 0.9985 -0.0015 -0.15% 0.0014 4.30 3.0000 3.0041 0.0041 0.14% 0.0024 4.51
1,024,000 1.0000 0.9994 -0.0006 -0.06% 0.0007 16.69 3.0000 2.9978 -0.0022 -0.07% 0.0012 18.84
Devroye and Fawzi (2010) t = 1 t = 3

1,000 1.0000 0.9923 -0.0077 -0.77% 0.0221 0.03 3.0000 2.9731 -0.0269 -0.90% 0.0038 0.14
4,000 1.0000 0.9977 -0.0023 -0.22% 0.0113 0.13 3.0000 3.0006 0.0006 0.02% 0.0192 0.61
16,000 1.0000 1.0011 0.0011 0.11% 0.0056 0.57 3.0000 2.9935 -0.0065 -0.21% 0.0097 2.00
64,000 1.0000 1.0057 0.0057 0.56% 0.0028 1.95 3.0000 2.9951 -0.0049 -0.16% 0.0048 5.54

256,000 1.0000 1.0034 0.0034 0.33% 0.0014 7.99 3.0000 3.0014 0.0014 0.04% 0.0024 23.93
1,024,000 1.0000 0.9993 -0.0007 -0.07% 0.0007 37.51 3.0000 3.0014 0.0014 0.04% 0.0012 101.61

Fill and Huber (2010) t = 1 t = 3
1,000 1.0000 0.9851 -0.0149 -1.50% 0.0027 0.10 3.0000 2.9516 -0.0484 -1.64% 0.0398 1.31
4,000 1.0000 0.9977 -0.0023 -0.23% 0.0113 0.28 3.0000 2.9444 -0.0556 -1.88% 0.0195 4.56
16,000 1.0000 1.0004 0.0004 0.04% 0.0056 1.09 3.0000 3.0175 0.0175 0.58% 0.0099 18.69
64,000 1.0000 0.9968 -0.0032 -0.32% 0.0028 2.67 3.0000 2.9995 -0.0005 -0.02% 0.0049 75.23

256,000 1.0000 0.9977 -0.0023 -0.23% 0.0013 11.14 3.0000 2.9969 -0.0031 -0.10% 0.0025 325.37
1,024,000 1.0000 0.9994 -0.0006 -0.06% 0.0006 57.37 3.0000 3.0131 0.0131 0.43% 0.0012 1358.24

Chi (2012) t = 1 t = 3
1,000 1.0000 1.0070 0.0070 0.70% 0.0233 0.33 3.0000 3.0109 0.0109 0.36% 0.0392 0.62
4,000 1.0000 1.0100 0.0100 0.99% 0.0115 0.78 3.0000 3.0208 0.0208 0.69% 0.0197 2.19
16,000 1.0000 0.9955 -0.0045 -0.45% 0.0057 2.83 3.0000 3.0107 0.0107 0.35% 0.0099 8.44
64,000 1.0000 1.0026 0.0026 0.26% 0.0029 12.24 3.0000 3.0027 0.0027 0.09% 0.0050 31.16

256,000 1.0000 1.0018 0.0018 0.18% 0.0014 46.27 3.0000 3.0016 0.0016 0.05% 0.0025 132.28
1,024,000 1.0000 1.0036 0.0036 0.36% 0.0007 193.00 3.0000 2.9978 -0.0002 -0.01% 0.0012 514.12

Cloud and Huber (2017) t = 1 t = 3
1,000 1.0000 0.9832 -0.0168 -1.71% 0.0220 0.09 3.0000 2.9376 -0.0624 -2.12% 0.0379 0.28
4,000 1.0000 1.0153 0.0153 1.50% 0.0113 0.33 3.0000 2.9986 -0.0014 -0.05% 0.0195 0.92
16,000 1.0000 1.0059 0.0059 0.58% 0.0056 0.84 3.0000 3.0108 0.0108 0.36% 0.0096 2.31
64,000 1.0000 1.0076 0.0076 0.75% 0.0028 3.07 3.0000 3.0014 0.0014 0.05% 0.0048 8.61

256,000 1.0000 1.0013 0.0013 0.13% 0.0014 12.51 3.0000 3.0021 0.0021 0.07% 0.0024 36.47
1,024,000 1.0000 1.0017 0.0017 0.17% 0.0007 58.19 3.0000 3.0038 0.0038 0.13% 0.0012 155.93

4 More general Vervaat perpetuities

In this section, we present a general method for simulating Vervaat perpetuities, for more general

random variables Y. This method is applicable to a wide range of distributions, and we give several

examples to demonstrate this. We have the following result which decomposes the Vervaat perpetuity

X into the sum of a Gamma process (or truncated Gamma process), and compound Poisson processes.

For simplicity, we will let Y have a continuous density g.

Lemma 4.1 Consider a perpetuity X defined in (1.1), with Y ∈ R+. If the density of Y satisfies (1.3), then

there exists k ∈ R+ and b ∈ R+ such that P(Y > y) ≥ e−ky for all y < b. We then have the following two

cases:
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Figure 2: Convergence analysis of Algorithm 3.3 and Algorithms suggested in Devroye and Fawzi
(2010), Fill and Huber (2010), Chi (2012), and Cloud and Huber (2017) based on parameter setting
t = 1, 3, respectively, with associated detailed numerical results reported in Table 2.

Table 3: Comparison CPU time (sec) for Algorithms suggested in Devroye and Fawzi (2010), Fill and
Huber (2010), Chi (2012) and Cloud and Huber (2017) with Algorithm 3.3 for 100, 000 replications.

Input t 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3.40
Algorithm 3.3 1.85 1.81 1.68 1.60 1.71 1.79 1.82 1.83 1.78 2.03 1.72 1.77 1.83 2.02 1.83 1.95

Devroye and Fawzi (2010) 3.02 2.23 3.19 3.94 5.66 5.47 5.23 5.31 5.93 8.48 7.22 7.51 7.97 8.47 10.88 11.50
Fill and Huber (2010) 1.87 2.53 3.14 4.12 5.68 7.34 10.33 13.64 18.28 20.76 36.78 51.22 70.23 100.75 140.91 200.04

Chi (2012) 3.92 6.28 9.62 18.52 21.25 23.53 27.45 31.80 34.78 36.92 38.41 41.57 55.31 50.54 55.83 59.23
Cloud and Huber (2017) 2.45 3.09 3.93 4.71 5.66 6.71 7.57 9.70 11.16 11.82 13.45 13.72 14.71 15.54 16.99 17.25

Case 1: There exists k ∈ R+ such that P(Y > y) ≥ e−ky for all y ∈ R+. Then we have

B =
∫ ∞

0

P(Y > y)− e−ky

y
dy < ∞, (4.1)

and thus

X D
= Γt +

Nt∑
i=1

Ji, (4.2)

where

• Γt is a Gamma process such that Γt ∼ Γ(t, k);

•
Nt∑

i=1
Ji is a compound Poisson process such that

– Nt is a poisson process with rate tB,

– {Ji}i=1,2,... are i.i.d jumps with density

gJi(y) =
P(Y ≥ y)− e−ky

By
, y ∈ R+.
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Case 2: Otherwise, for the case that there only exists k ∈ R+ such that P(Y > y) ≥ e−ky for y < b. We have

D =
∫ b

0

P(Y > y)− e−ky

y
dy < ∞, (4.3)

and thus

X D
= Zt +

N1
t∑

i=1

J(1)i +

N2
t∑

k=1

J(2)k , (4.4)

where

• Zt is a truncated Gamma process with Lévy measure

ν(dz) = z−1e−kz1{0<z<b}dz;

•
N1

t∑
i=1

J(1)i is a compound Poisson process such that

– N1
t is a poisson process with rate tD,

– {J(1)i }i=1,2,... are i.i.d jumps with density

g
J(1)i

(y) =
P(Y ≥ y)− e−ky

Dy
, y ∈ (0, b).

•
N2

t∑
k=1

J(2)k is a compound Poisson process such that

– N2
t is a poisson process with rate tE, where

E =
∫ ∞

b

P(Y ≥ y)
y

dy (4.5)

– {J(2)k }i=1,2,... are i.i.d jumps with density

g
J(2)k

(y) =
P(Y ≥ y)

Ey
, y ∈ (b, ∞).

Proof. If the density of Y satisfies (1.3), then g(0) < ∞. Hence, the survival function of Y, P(Y > y),

decays at an exponential rate or slower at 0. This implies that there exists a k ∈ R+ such that P(Y >

y) ≥ e−ky for all y < b, for some b ∈ R+.

Case 1: If, furthermore, there exists such k ∈ R+ so that P(Y > y) ≥ e−ky holds for all y ∈ R+, then
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for B defined as in (4.1), we have that the integral B is finite since

∫ ∞

0

P(Y > y)− e−ky

y
dy =

∫ 1

0

P(Y > y)− e−ky

y
dy +

∫ ∞

1

P(Y > y)− e−ky

y
dy.

The second term is finite since we have assumed that the mean of Y exists, and we also have that

∫ 1

0

P(Y > y)− e−ky

y
dy =

î
log y

Ä
P(Y > y)− e−ky

äó1
0
+

∫ 1

0
log y

Ç
g(y)− e−ky

k

å
dy

=
∫ 1

0
log y

Ç
g(y)− e−ky

k

å
dy < ∞

since g(0) < ∞. Hence, the Laplace transform of X can be expressed as

E
î
e−βX

ó
= exp

Ç
−t

∫ ∞

0
(1− e−βy)

e−ky

y
dy
å

exp
Ç
−tB

∫ ∞

0
(1− e−βy)

P(Y > y)− e−ky

By
dy
å

= E
î
e−βΓt

ó
E

ï
e−β

∑Nt
i=1 Ji

ò
, (4.6)

and we have the distributional decomposition result given in (4.2).

Case 2: In the case where we only have P(Y > y) ≥ e−ky for y < b for some b ∈ R+, we define the

integral D as in (4.3) and E as in (4.5). A similar argument as above would show that they are finite,

and we thus have

E
î
e−βX

ó
= exp

Ç
−t

∫ b

0
(1− e−βy)

P(Y > y)
y

dy
å

exp
Ç
−t

∫ ∞

b
(1− e−βy)

P(Y > y)
y

dy
å

= exp
Ç
−t

∫ b

0
(1− e−βy)

e−ky

y
dy
å

exp
Ç
−tD

∫ b

0
(1− e−βy)

P(Y > y)− e−ky

Dy
dy
å

× exp
Ç
−tE

∫ ∞

b
(1− e−βy)

P(Y > y)
Ey

dy
å

= E
î
e−βZt

ó
E

ñ
e−β

∑N1
t

i=1 J(1)i

ô
E

ñ
e−β

∑N2
t

k=1 J(2)k

ô
. (4.7)

The distributional decomposition result (4.4) thus follows.

We now have a general method for exactly simulating generalised Vervaat perpetuities for a wide

range of distributions for Y. In particular, Case 2 is useful when the distribution of Y has finite support,

or when Y has a tail which decays faster than exponential, in which case there does not exist k ∈ R+

such that P(Y > y) ≥ e−ky for all y. In the rest of this section, we give some examples to demonstrate

18



the methodology.

Example 1: Y ∼ Pareto(α, σ). From Theorem 2.1, the Laplace transform of X is

E
î
e−βX

ó
= exp

Ç
−t

∫ σ

0

1− e−βy

y
dy
å

exp
Ç
−t

∫ ∞

σ

1− e−βy

y

Ç
σ

y

åα

dy
å

. (4.8)

Hence, X D
= Zt + CP, where Zt ∼ Dickman process, and CP is a Compound Poisson process, inde-

pendent of each other. The Dickman process can be generated using Algorithm 3.3, and the Com-

pound Poisson process can be generated easily via an A/R scheme.

Example 2: Y ∼ Gamma(α, β). Since g(0) < ∞ for all α ≥ 1, we can simulate all Gamma perpetuities

with α ≥ 1 and all values of β. Furthermore, for all α ≥ 1, there exists a k such that P(Y > y) ≥ e−ky

for all y, thus it falls under Case 1 of Lemma 4.1. Thus the Gamma perpetuity X can be split into

X D
= Zt + CP, where Zt is a Gamma process, and CP is a Compound Poisson process independent

of Zt by Lemma 4.1. Figure 3 shows the histograms of the Vervaat perpetuity X for Y ∼ Γ(α, β) with

different shape parameters α.

Example 3: Y ∼Weibull(κ, λ). Since g(0) < ∞ for all κ ≥ 1, we can simulate all Weibull perpetuities

with κ ≥ 1 and all values of λ. Furthermore, there only exists a k such that P(Y > y) ≥ e−ky for

y ∈ (0, b) for some b ∈ R+. Hence, the perpetuity falls into Case 2 of Lemma 4.1, and can be split into

X D
= Zt + CP1 + CP2, where Zt is a truncated Gamma process, CP1 and CP2 are Compound Poisson

processes, independent of each other and Zt. The truncated Gamma process can be generated using

Algorithm 3.4 and the two compound Poisson processes can be easily generated via A/R schemes.

Example 4: Y ∼ Beta(α, β). Since g(0) < ∞ for all α ≥ 1, we can simulate all Beta perpetuities with

α ≥ 1 and all values of β. Furthermore, since the distribution has a finite support, there only exists

a k such that P(Y > y) ≥ e−ky for y ∈ (0, b) for some b ∈ R+. Hence, the perpetuity falls into Case

2 of Lemma 4.1, and the Lévy measure needs to be truncated. The Beta perpetuity can be split into

X D
= Zt + CP1 + CP2 according to Lemma 4.1, where Zt is a truncated Gamma process, and CP1 and

CP2 are two compound Poisson processes, independent of each other and Zt.

Example 5: Y ∼ Normal(µ, σ2). The Normal perpetuity X is two-sided. According to Corollary

2.2, one could sample independent X1 and X2, each of which are half-normal perpetuities, and the

19



0 5 10 15

0

0.5

1

1.5

2

2.5

3

3.5
×10

4

0 5 10 15

0

0.5

1

1.5

2

2.5

3

3.5
×10

4

0 5 10 15

0

0.5

1

1.5

2

2.5

3

3.5
×10

4

0 5 10 15

0

0.5

1

1.5

2

2.5

3

3.5
×10

4

Figure 3: Histograms of perpetuity X with Y ∼ Γ(α, β) under the parameter setting α = 1, 1.5, 2, 2.5
and β = 1.

difference X1 − X2 is the realisation of the two-sided perpetuity X.

For a half-normal perpetuity Xi, where Yi ∼ Half-Normal(µ, σ), there only exists a k such that P(Y >

y) ≥ e−ky for y ∈ (0, b) for some b ∈ R+. Hence, the perpetuity Xi falls into Case 2 and can be

split into a truncated Gamma process and two compound Poisson processes according to Lemma 4.1.

The truncated Gamma process can be generated via Algorithm 3.4 and the two compound Poisson

processes can be easily generated via A/R schemes. Figure 4 illustrates a sample density plot for the

perpetuity Xi with Yi ∼ Half-Normal(0, 1). Figure 5 compares the distribution of Xi under different

parameter settings.

Now, we can simulate the Normal perpetuity X by generating two independent half-normal per-

petuities X1 and X2 and taking the difference X D
= X1 − X2. Figure 6 and 7 demonstrate the distribu-

tion behaviour of the two sided perpetuity X via its histogram and density plot. We can also obtain

other variations of the Normal perpetuities by introducing a new variable B ∼ Bernoulli(p) and set-
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Figure 4: Probability density function of Perpetuity Xi with Yi ∼ Half-Normal(0, 1).

Figure 5: Histograms of Perpetuity Xi with Yi ∼ Half-Normal(0, 1) and Yi ∼ Half-Normal(1, 1) with
t = 1, 2, respectively.

ting X̂ D
= pX1 − (1− p)X2. When p = 1

2 and Xi ∼ Normal(0, 1), this is identical to the Normal(0, 1)

perpetuity. Figure 8 illustrates the differences of the perpetuity X̂ and X in terms of their histograms.

Acknowledgments

The authors would like to thank the Associated Editor and two reviewers for many constructive com-

ments that greatly improved the presentation of our results.

21



-6 -4 -2 0 2 4 6

0

1

2

3

4

5
Density

-6 -4 -2 0 2 4 6

0

1

2

3

4

5
×10

4 Histogram 

Figure 6: Histogram and Density Plot of Perpetuity X with Y ∼ Normal(0, 1).

-4 -2 0 2 4 6 8

0

0.5

1

1.5

2
×10

4 Histogram

-4 -2 0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Density

Figure 7: Histogram and Density Plot of Perpetuity X with Y ∼ Normal(1, 1).

References

Arratia, R. (1998). On the central role of scale invariant Poisson processes on (0, oo). Microsurveys in discrete

probability (Princeton, NJ, 1997), pages 21–41.

Blanchet, J. H. and Sigman, K. (2011). On exact sampling of stochastic perpetuities. Journal of Applied Probability

Special Volume, 48A:165–182.

Chandrasekhar, S. and Münch, G. (1950). The theory of the fluctuations in brightness of the milky way, i and ii.

Astrophysical Journal, 112:380–398.

Chi, Z. (2012). On exact sampling of nonnegative infinitely divisible random variables. Advances in Applied

Probability, 44(3):842–873.

Cloud, K. and Huber, M. (2017). Fast perfect simulation of vervaat perpetuities. Journal of Complexity, 42:19–30.

22



Figure 8: Histogram of Perpetuity X̂ = BX1 − (1 − B)X2 with B ∼ Bernoulli(p) under parameter
setting p = 0.3, 0.5, 0.9.

De Bruijn, N. (1951). The asymptotic behaviour of a function occuring in the theory of primes. Journal of the

Indian Mathematical Society, 15:25–32.

Devroye, L. (2001). Simulating perpetuities. Methodology and Computing in Applied Probability, (1):97–115.

Devroye, L. and Fawzi, O. (2010). Simulating the Dickman distribution. Statistics & probability letters, 80(3):242–

247.

Dickman, K. (1930). On the frequency of numbers containing prime factors of a certain relative magnitude.

Arkiv for matematik, astronomi och fysik, 22(10):1–14.

Embrechts, P. and Goldie, C. M. (1994). Perpetuities and random equations. Asymptotic statistics (Prague, 1993),

pages 75–86.

Embrechts, P., Klüppelberg, C., and Mikosch, T. (1996). Modelling Extremal Events. Springer-Verlag.

Fill, J. and Huber, M. (2010). Perfect simulation of Vervaat perpetuities. Electronic Journal of Probability, 15:96–

109.

Goldie, C. M. and Grübel, R. (1996). Perpetuities with thin tails. Advances in Applied Probability, 28(2):463–480.

Grübel, R. and Rösler, U. (1996). Asymptotic distribution theory for Hoare’s selection algorithm. Advances in

Applied Probability, 28(1):252–269.

Mahmoud, H., Modarres, R., and Smythe, R. (1995). Analysis of quickselect: An algorithm for order statistics.

RAIRO - Theoretical Informatics and Applications, 29:255–276.

Nyrhinen, H. (2001). Finite and infinite time ruin probabilities in a stochastic economics environment. Stochastic

Processes and Applications, 92:265–285.

23



Takács, L. (1954). On secondary processes generated by a Poisson process and their applications in physics.

Acta Mathematica Hungarica, 5:203–236.

Takács, L. (1955). On stochastic processes generated by a Poisson process and their applications in physics. Acta

Mathematica Hungarica, 6:363–380.

Vervaat, W. (1979). On a stochastic difference equation and a representation of non–negative infinitely divisible

random variables. Advances in Applied Probability, 11(4):750–783.

24


