

University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

This paper is made available online in accordance with
publisher policies. Please scroll down to view the document
itself. Please refer to the repository record for this item and our
policy information available from the repository home page for
further information.
To see the final version of this paper please visit the publisher’s website.
Access to the published version may require a subscription.

Author(s): B Casella and GO Roberts
Article Title: Exact simulation of jump-diffusion processes with Monte
Carlo applications
Year of publication: 2008
Link to published article:
http://dx.doi.org/10.1007/s11009-009-9163-1
Publisher statement: The original publication is available at
www.springerlink.com

http://go.warwick.ac.uk/wrap

CRiSM Paper No. 08-19, www.warwick.ac.uk/go/crism

Submitted to the Annals of Applied Probability

EXACT SIMULATION OF JUMP-DIFFUSION PROCESSES
WITH MONTE CARLO APPLICATIONS∗

By Bruno Casella† , and Gareth Roberts†

University of Warwick

We introduce a novel algorithm (JEA) to simulate exactly from a
class of one-dimensional jump-diffusion processes with state-dependent
intensity. The simulation of the continuous component builds on the
recent Exact Algorithm ((1)). The simulation of the jump component
instead employes a thinning algorithm with stochastic acceptance
probabilities in the spirit of (14). In turn JEA allows unbiased Monte
Carlo simulation of a wide class of functionals of the process’ trajec-
tory, including discrete averages, max/min, crossing events, hitting
times. Our numerical experiments show that the method outperforms
Monte Carlo methods based on the Euler discretization.

1. Introduction. The purpose of this paper is twofold.

1. We present an algorithm (the Jump Exact Algorithm or JEA) to sim-
ulate exactly from a general family of one-dimensional jump diffusion
processes with state-dependent intensity. The algorithm can be re-
garded as a generalisation of the Exact algorithm (EA) developed in
(4) and (1) for the simulation of diffusion processes.

2. We apply the Jump Exact Algorithm to develop suitable Monte Carlo
algorithms for the simulation of a number of jump-diffusions’ function-
als of interest in financial applications.

Jump-diffusion processes are useful modelling tools in many applied areas
ranging from neurobiology (13) to adaptive control (5) and computer sci-
ence (26). In particular they have become increasingly popular in financial
modeling since Merton seminal paper (20) thanks to their ability to account
for some empirically observed effects like heavy tails of the returns’ distri-
bution and volatility smiles. Recently, there has been growing interest for
jump-diffusion models in structural credit risk modeling (6, 25). In this con-
text jump diffusions are able to support the empirical evidence that short

∗Research supported by EPSRC.
†Both authors are indebted to Alex Beskos, Omiros Papaspiliopoulos and Stefano

Peluchetti for many stimulating discussions.
AMS 2000 subject classifications: Primary 60K30; secondary 65C05
Keywords and phrases: Jump Diffusion, Simulation, Exact Algorithms, Barrier Option

Pricing

1
imsart-aap ver. 2007/12/10 file: jumpdiffsub.tex date: May 16, 2008

http://www.imstat.org/aap/

CRiSM Paper No. 08-19, www.warwick.ac.uk/go/crism

2 B. CASELLA AND G.O. ROBERTS

maturity credit spreads are bounded away from 0. Generally speaking, by
choosing the parameters of the jump process appropriately, we can generate
a very wide variety of dynamics incorporating relevant empirically observed
effects that otherwise would not be explained by traditional diffusion-based
models. However computing with jump-diffusion processes, for example for
pricing derivatives or determining default probabilities, is mathematically
very challenging and it usually involves some kind of approximation. In prac-
tice most quantities of financial interest can be represented as expectations
of functionals of the underlying jump-diffusion and can be estimated within
a Monte Carlo simulation framework. Typically this involves the employ-
ment of a discretization scheme in order to simulate the process trajectory
in between any two jumps. If the jump component is independent from the
diffusion component, jumps’ times and sizes can be simulated exactly and
the discretization error affecting the Monte Carlo estimator is expected to
be the same as for pure diffusions. Instead when the intensity of the marked
point process driving the jump component is state-dependent, the discretiza-
tion error generated in the simulation of the continuous component reflects
on the simulation of the jumps, thus resulting in larger bias of the Monte
Carlo estimator. In a recent paper (14) develope an interesting simulation
procedure to deal with this case. Their method is based on a thinning al-
gorithm with state dependent acceptance probability for the simulation of
the jump component and a discretization scheme for the simulation of the
diffusion component. The authors prove that the weak convergence order of
their scheme equals the order of the employed discretization in a restricted
context where 1) the target functional depends on the realization of the
diffusion trajectory at only one fixed time point; 2) the target functional is
uniformly bounded.

In this paper, after introducing the class of jump-diffusion models of in-
terest (Section 2) and the simulation problem (Section 3), we present a
novel algorithm (JEA) to simulate exactly a Skeleton from a general family
of one-dimensional jump diffusion processes with a state-dependent inten-
sity (Section 4). The algorithm can be seen as a combination of the Exact
Algorithm and the thinning algorithm. The whole procedure is sequential.
At each jump epoch the starting point of the Exact Algorithm is updated
according to the output of the thinning experiment; conversely, the thin-
ning probability of a candidate jump depends on the current state of the
process simulated by the Exact Algorithm. Unlike (14), bias does not affect
neither the simulation of the diffusion component nor the simulation of the
jump component. As a consequence JEA algorithm allows unbiased Monte

imsart-aap ver. 2007/12/10 file: jumpdiffsub.tex date: May 16, 2008

CRiSM Paper No. 08-19, www.warwick.ac.uk/go/crism

EXACT SIMULATION OF JUMP-DIFFUSIONS 3

Carlo simulation of a large class of target functionals, including challeng-
ing path-dependent functionals. This is exemplified in Section 5 where we
apply the JEA framework to simulate Monte Carlo prices of some financial
derivatives. The key is the Brownian bridge decomposition: the Skeleton
generated by the JEA algorithm decomposes the jump-diffusion process in
a sequence of independent Brownian bridges. In a Monte Carlo context this
allows us to take advantage of the many distributional results related to
Brownian bridges’ functionals. Some of them are briefly reviewed in Ap-
pendix A. Results from the numerical simulation reported in Section 6 are
fully satisfactory. In fact on the one side they support our main theoretical
statement, confirming the unbiasedeness of the Monte Carlo estimator; on
the other side they motivate a practical interest in JEA techniques showing
that, if a good level of approximation is required, JEA estimator is compu-
tationally more efficient than competing estimators based on discretisation
schemes.

2. Jump-diffusion processes with state-dependent intensities. Let
V := {Vt : 0 ≤ t ≤ T} be a one-dimensional jump-diffusion process solving
the SDE:

(1) dVt = µ(Vt−)dt + σ (Vt−) dWt +

∫

E
g(z, Vt−)m(dz, dt), V0 = v0

where µ, σ : R → R and g : R×E → R are presumed to satisfy the appro-
priate Lipschitz and linear growth conditions for the existence of a unique
weak solution (16). Here m(dz, dt) is a random counting measure on the
product space E × [0, T] with E ⊆ R with associated intensity measure λm.
We assume that λm is absolutely continuous with respect to the Lebesque
measure on M × [0, T] and Markov-dependent on V :

(2) λm (dz, dt;Vt−) = λm(z, t;Vt−)dz dt = λ(t; Vt−) fZ(z; t) dz dt

where, for any v ∈ R, λ (·; v) is a positive real valued function on [0, T]
and for any t ∈ R+, fZ (·; t) is a standard density function with support
E. According to (1) and (2), between any two jumps the process V be-
haves as a homogeneus diffusion process with drift µ and diffusion coeffi-
cient σ. Jumps’ times and sizes are state-dependent. The jumps’ times, say
(t1, t2, . . . , tM), are generated by a renewal process on [0, T] with intensity
function λ(t ;Vt−). A random variable Zi ∼ fZ(z ; ti) is associated to each

imsart-aap ver. 2007/12/10 file: jumpdiffsub.tex date: May 16, 2008

CRiSM Paper No. 08-19, www.warwick.ac.uk/go/crism

4 B. CASELLA AND G.O. ROBERTS

jump time ti, i = 1, 2, . . . ,M . In turn Zi and the state of the process Vt−
i

determine the amplitude g(Zti , Vt−i
) of the jump in ti. By an appropriate

choice of the functions µ, σ, g, λ, and f , we can generate a wide variety of
stochastic dynamics and, more crucially, we can incorporate information on
the state of the system both in the continuous component and in the jump
component.
We consider the problem of simulating exact (finite information on the) sam-
ple paths of V and the related problem of unbiased Monte Carlo estimation
of:

(3) ν := E (φ(V) | V0 = v0) .

for general, eventually path-dependent, functional φ. However, preliminarly,
we shall introduce the transformed process X := {Xt : 0 ≤ t ≤ T}:

(4) Xt = η (Vt) =

∫ Vt

v

1

σ(u)
du

where v is an arbitrary element of the state-space of V . We apply the gener-
alized Ito’s Lemma for jump-diffusion processes to find the SDE of X. From
(1) we derive:

(5) dXt = α (Xt−) dt+dWt+

∫

E
∆η (z,Xt−) m (dz, dt), X0 = η(v0) := x0

where, for x ∈ R, α(x) :=
µ(η−1(x))
σ(η−1(x))

− 1
2σ

′ (

η−1(x)
)

and

(6) ∆η (z, x) := η
(

η−1(x) + g
(

z, η−1(x)
))

− x

with λm defined as in (2). Thus (5) and (2) define the dynamics of the
transformed process X = η(V). Transformation (4) turns (1) into a SDE
with unit diffusion coefficient. As unit diffusion coefficient is a pre-requisite
for the application of the Jump Exact Algorithm we shall work on (5) rather
than (1). However, since η(·) is invertible we can easily recover information
on the trajectories of V from the simulation of the process X by means of
the inverse transformation Vt = η−1(Xt).

imsart-aap ver. 2007/12/10 file: jumpdiffsub.tex date: May 16, 2008

CRiSM Paper No. 08-19, www.warwick.ac.uk/go/crism

EXACT SIMULATION OF JUMP-DIFFUSIONS 5

3. The simulation problem.

3.1. An introductory example: Merton model. To introduce the simu-
lation problem we analyze briefly the standard Merton’s model. Merton’s
model arises as a particular case of (1) and (2):

(7) dVt = µ Vt− dt + σ Vt− dWt + Vt−

∫

R

(ez − 1) m(dz, dt); V0 = v0

with

(8) λm(z, t) = λ fNγ, β
(z)

where λ is a strictly positive constant and fNγ, β
(·) is a gaussian density with

mean γ and variance β2. Thus the continuous component is driven by a geo-
metric Brownian motion; the jumps’ times (t1, t2, . . . , tM) are distributed ac-
cording to a homogeneous Poisson process with intensity function λ; for any
i = 1, 2, . . . ,M , the jump corresponding to ti is given by Ji = eZi − 1 where
Z1, Z2, . . . , ZM are i.i.d. normal random variables with mean γ and variance
β2. This modelisation of the jumps preserves the positivity of the process
V . We apply transformation (4) to (7) and (8) and find the following SDE
representation for the transformed process Xt = η (Vt) = 1

σ
(log Vt − κ) (κ

fixed constant):

(9)

dXt =

(

µ

σ
− σ

2

)

dt + dWt +

∫

R

z m(dz, dt); X0 = x0 :=
1

σ
(log v0 − κ)

with λm defined as in (8). From a simulation perspective the model (9)-(8)
has very attractive properties. In particular we can construct a simple and
efficient algorithm to simulate from (9) just by simulating in advance the
jumps’ times from a Poisson process (PP) and then the diffusion dynamics
between any two jumps from a Brownian motion with drift α := µ

σ
− σ

2 .
Algorithm 1 returns a partial finite realisation (a “Skeleton”) of the process
X defined over the time interval [0, T] with starting point x0. We represent
it as:

(10)

S0(x0; 0, T) :=
{

(t0, xt0), (t
−
1 , xt−

1
), (t1, xt1), . . . , (t

−
M , xt−

M
), (tM , xtM), (tM+1, xtM+1

)
}

imsart-aap ver. 2007/12/10 file: jumpdiffsub.tex date: May 16, 2008

CRiSM Paper No. 08-19, www.warwick.ac.uk/go/crism

6 B. CASELLA AND G.O. ROBERTS

Algorithm 1 Merton model

1. Simulate the jump times: (t1, t2, . . . tM) ∼ PP([0, T], λ)

2. Set t0 = 0, tM+1 = T . For any i = 0, 1, . . . , M repeat the following:

2.1. simulate X
t
−

i+1

= Xti
+ α(ti+1 − ti) + ξi+1 with ξi+1 ∼ N (0, (ti+1 − ti))

2.2. simulate Xti+1
= Zi+1 + X

t
−

i+1

with Zi+1 ∼ N
(

γ, β2
)

with t0 := 0 and tM+1 := T . We can simulate further information on the
process X thanks to the following representation, immediately derived from
elementary Brownian motion constructions:

(11) X | S0(x0; 0, T) ∼
M
⊗

i=0

BB(ti, xti ; t
−
i+1, xt−i+1

)

where we have denoted by BB(s1, a; s2, b) the measure of a Brownian bridge
starting in a at time s1 and ending in b at time s2. The representation
(11) of the conditional process X | S0 in terms of independent Brownian
bridges is very convenient as the law of many functionals associated with the
Brownian bridge are very well known (e.g. finite-dimensional distributions,
law of max/min, crossing probabilities of a given barrier..). As an example,
(21) apply the Brownian bridge factorization (11) to derive Monte Carlo
prices of barrier options under Merton model.

3.2. The general case. In the general case (5)-(2) the simulation of X is
far more challenging due to two main problems:

P.1: jump component. The jumps’ times cannot be simulated in advance
as they depend on the state of the process

P.2: diffusion component. Basic probabilistic properties, like transition
densities, of the diffusion component in (5) usually are not known.
This implies that:

(a) we cannot simulate directly a skeleton (10) of the process X

(b) the conditional law (11) of the process given the skeleton is not
available

imsart-aap ver. 2007/12/10 file: jumpdiffsub.tex date: May 16, 2008

CRiSM Paper No. 08-19, www.warwick.ac.uk/go/crism

EXACT SIMULATION OF JUMP-DIFFUSIONS 7

The Jump Exact Algorithm is designed to deal with these difficulties under
rather general conditions.

4. The Jump Exact Algorithm.

4.1. Constructing the Jump Exact Algorithm.

4.1.1. The jump component (Problem P.1). We can break down the
state-dependancy of the jumps’ times by performing a simple transforma-
tion of the jumps’ component in (5). To this end, we need to introduce our
first assumption:

C.0 the function λ(·, ·) in (2) is bounded above by a constant λ

Let us denote by R(t, x) the ratio R(t, x) := λ(t; η−1(x))
λ

≤ 1 and define
I(u, t, x) := I{[0,R(t,x)]} (u) with u ∈ [0, 1] where, for a given set A, IA(u)
is the indicator function of the event {u ∈ A}. Then Lemma 1 provides a
suitable alternative representation of the process X (5)-(2).

Lemma 1
The jump-diffusion process X (5)-(2) is a solution of the following SDE:

(12) dXt = α(Xt−)dt + dWt +

∫

E∗
∆η (z,Xt−) I (u, t,Xt−)m∗(du, dz, dt)

where X0 = x0, E∗ = E × [0, 1] and m∗ is a random Poisson measure with
intensity:

(13) λm∗ (du, dz, dt) = λfZ(z; t) du dz dt

Proof:
We can represent the jump component in (12) in the following way:

(14)

∫

E∗
∆η(z,Xt−)I (u, t;Xt−)m∗(du, dz, dt) =

∫

E
∆η(z,Xt−)m̂ (dz, dt)

with m̂ (dz, dt) :=
∫

[0,1] I (u, t;Xt−) m∗(du, dz, dt). Using elementary facts
from the renewal theory:

imsart-aap ver. 2007/12/10 file: jumpdiffsub.tex date: May 16, 2008

CRiSM Paper No. 08-19, www.warwick.ac.uk/go/crism

8 B. CASELLA AND G.O. ROBERTS

λm̂(z, t) =

∫

[0,1]
I (u, t;Xt−) λfZ(z; t) du = fZ(z, t)λ(t; η−1(Xt−)) = λm(z, t)

so that the jump component (14) in (12) is distributed as the jump compo-
nent in (5).

�

Let θ be a realisation of the marked Poisson process m∗ of intensity (13)
driving the jump component in (12):

(15) θ := {τ, z, u} = {(τ1, z1, u1) , . . . , (τm, zm, um)} , m ∈ N+

According to (12)-(13), the jumps’ times τ = (τ1, τ2, . . . , τm), are now se-
lected by a homogeneous Poisson process of intensity λ; each jump arrives
with a mark (zi, ui) such that Zi ∼ fZ(z; τi) and Ui ∼ Unif[0, 1]. Notice that,
crucially, the jumps’ times τi are independent from the state of the process
and can be simulated in advance along with the marks (zi, ui) affecting the
jumps’ size. We now turn the attention to the process’ behaviour in be-
tween any two jump times (diffusion component) and we set up a suitable
framework for undertaking problem P.2.

4.1.2. The diffusion component (Problem P.2).. Let us denote Q (a; s1, s2)
the law of the continuous process ω(a; s1, s2) starting in a at time s1, finish-
ing at time s2 driven by the diffusion component of (12):

(16) dωt = α (ωt) dt + dWt

We assume that (16) satisfies the following conditions.

C.1 Given T ∈ R+, for any a ∈ R, the diffusion measure Q(a; 0, T) is
absolutely continuous with respect to the Wiener measure on [0, T]
started in a, say W(a; 0, T), and Girsanov representation of the Radon-
Nikodym derivative holds:

dQ(a; 0, T)

dW(a; 0, T)
(ω) = exp

{

∫ T

0
α(ωs)dωs −

∫ T

0
α2(ωs)ds

}

imsart-aap ver. 2007/12/10 file: jumpdiffsub.tex date: May 16, 2008

CRiSM Paper No. 08-19, www.warwick.ac.uk/go/crism

EXACT SIMULATION OF JUMP-DIFFUSIONS 9

C.2 The drift function α is continuously differentiable.
C.3 The function (α2 + α

′
)/2 is bounded.

Now we observe that the dynamics (12) of the process X implies:

(17) {Xt : 0 ≤ t < τ1} | θ, x0 ∼ Q (x0; 0, τ1)

and, for any i = 1, . . . ,m:

(18) {Xt : τi ≤ t < τi+1} | θ, xτi−
∼ Q (xτi

; τi, τi+1) , τm+1 := T

where xτi
= x

τ−
i

+ ∆η

(

zi, xτ−
i

)

I
(

ui, τi− , x
τ−
i

)

. From (17) and (18) problem

P.2(a) boils down to the simulation of an exact skeleton, say S (a; s1, s2),
from Q(a; s1, s2) for given a ∈ R and 0 ≤ s1 ≤ s2 ≤ T . This is a challenging
task because in general (16) does not have explicit solution with identifiable
transition densities. Under conditions C.1-C.3 the Exact Algorihtm 1 ((4),
(1)) provides a suitable solution to this problem. Notice that for ease of
exposition, we have confined our analysis to the basic Exact Algorithm 1
characterized by the most restrictive set of conditions C.1-C.3. However we
can easily relax condition C.3 by applying the more general Exact Algorithm
2 and Exact Algorithm 3 (see (2)).

Lemma 2
Under conditions C.1-C.3 we can apply the Exact Algorithm 1 to simulate
an exact skeleton SEA(a; s1, s2) from Q(a; s1, s2) for given a ∈ R and 0 ≤
s1 < s2 ≤ T such that:

(19) SEA(a; s1, s2) :=

{

(s1, a) ,
{(

tj, ωtj

)}

j=1,2,...,N
, (s2, ωs2

)

}

where s1 < t1 < · · · < tN < s2.

Proof:
See (2).

�

imsart-aap ver. 2007/12/10 file: jumpdiffsub.tex date: May 16, 2008

CRiSM Paper No. 08-19, www.warwick.ac.uk/go/crism

10 B. CASELLA AND G.O. ROBERTS

Thus the Exact Algorithm returns as output a Skeleton SEA(a; s1, s2) (2)
of the trajectory of ω(a; s1, s2) including: the (given) starting point at time
s1, (s1, a); the ending point at time s2, (s2, ωs2

); a (random) number N of
intermediate points at (randomly located) time instants s1 < t1 < · · · <

tN < s2,
{(

tj, ωtj

)}

j=1,2,...,N
(problem P.2 (a)). Furthermore conditionally

on the EA1 output the process’ trajectory is distributed as a product of
independent Brownian bridges (problem P.2 (b)). Lemma (3) formalises this
crucial property.

Lemma 3
Let SEA(a; s1, s2) (19) be the Skeleton of ω(a; s1, s2) generated by the Exact
Algorithm. Then:

(20) ω(a; s1, s2) | SEA(a; s1, s2) ∼
N
⊗

j=0

BB
(

ti, ωti ; ti+1, ωti+1

)

where t0 ≡ s1 so that ωt0 ≡ a and tN+1 ≡ s2.

Proof:
See (2).

�

4.2. The JEA algorithm: Thinning and Exact Algorithm. The JEA sim-
ulation procedure follows easily from the results in Lemma 1 and Lemma
2. Under conditions C.0-C.3, Algorithm (2) returns an exact skeleton of the
process X (5)-(2) up to time T > 0.
An intuitively appealing way to see the Jump Exact Algorithm is as a com-
bination of the Exact Algorithm and the Thinning Algorithm. In fact let us
focus our attention on the model X under the original representation (5)-
(2). Given the assumption C.0, we can apply a thinning algorithm in order
to simulate the jumps’ times (t1, t2, . . . , tM) from the appropriate renewal
process of intensity λ(t; η−1(Xt−)), t > 0. This involves the usual two steps.

Proposal step: we propose a set of candidate jumps’ times τ = (τ1, τ2, . . . , τm)
from a Poisson process of intensity λ such that for any t > 0 and x ∈ R,
λ ≥ λ(t;x).

Acc./Rej. step: for any i = 1, 2, . . . ,m, given Xτ−
i

= xτ−
i

, we accept τi

(as jumps’ time) with probability:

(21) R
(

τi, xτ−
i

)

= Pr
{

I
(

Ui, τi, xτ−
i

)

= 1
}

; Ui ∼ Unif[0, 1]

imsart-aap ver. 2007/12/10 file: jumpdiffsub.tex date: May 16, 2008

CRiSM Paper No. 08-19, www.warwick.ac.uk/go/crism

EXACT SIMULATION OF JUMP-DIFFUSIONS 11

Algorithm 2 Jump Exact Algorithm (JEA)

1. Simulate θ from the marked Poisson process Θ with intensity (13):

θ = {τ, z, u} = {(τ1, z1, u1) , (τ2, z2, u2) , . . . , (τm, zm, um)}

such that τ1 ≤ τ2 ≤ · · · ≤ τm.

2. Set τ0 = 0 and τm+1 = T . For i = 0, 1, . . . , m repeat:

2.1. apply the Exact Algorithm (EA) to ω(xτi
; τi, τi+1) to simulate:

SEA (xτi
; τi, τi+1) =

{

(τi, xτi
) ,
{(

tj,i, xtj,i

)}

j=1,2,...,Ni

,
(

τ−
i+1, xτ

−

i+1

)}

2.2. set xτi+1
= x

τ
−

i+1

+ ∆η

(

zi, xτ
−

i+1

)

I
(

ui, τ
−
i+1, xτ

−

i+1

)

I{i<m}

3. Output:

SJEA(x0; 0, T) :=
⋃m

i=0
SEA (xτi

; τi, τi+1)

The proposal step is straightforward. The set of resulting candidate jumps’
times τ split the interval [0, T) in m + 1 sub-intervals {[τi−1, τi)}i=1,2,...,m+1

(τ0 ≡ 0, τm+1 ≡ T) on each of which the process X follows a pure diffusion
with SDE (16). Consider the first interval [0, τ1). Under assumptions A.1-A.3
we can apply the Exact Algorithm 1 to simulate a Skeleton SEA (x0; 0, τ1)
(x0 given) from the diffusion ω(x0; 0, τ1) such that, from Lemma 2:

(22) SEA (x0; 0, τ1) =

{

(0, x0) ,
{(

tj,1, xtj,1

)}

j=1,2,...,N1

, (τ−
1 , x

τ−
1

)

}

with 0 ≤ t1,1 ≤ t2,1 ≤ · · · ≤ tN1,1 ≤ τ1. Thus we can use the information
provided by the EA-Skeleton to compute exactly the thinning acceptance
probability (21) corresponding to the first candidate jump time τ1. According
to (5):

Xτ1 = xτ1 =







xτ−
1

+ ∆η(Z1, xτ−
1

) if I
(

U1, τ1, xτ−
1

)

= 1

xτ−
1

if I
(

U1, τi, xτ−
1

)

= 0

where U1 ∼ Unif [0, 1] and Z1 ∼ fZ(z; τ1). Given Xτ1 = xτ1 we can then
repeat the same procedure for the interval [τ1, τ2) and so forth until the

imsart-aap ver. 2007/12/10 file: jumpdiffsub.tex date: May 16, 2008

CRiSM Paper No. 08-19, www.warwick.ac.uk/go/crism

12 B. CASELLA AND G.O. ROBERTS

last time interval [τm, τm+1 ≡ T). Finally the Jump Exact Algorithm man-
ages to construct a Skeleton SJEA of the process X by merging the EA-
skeletons SEA(xτi

, τi, τi+1) defined on the time-intervals [τi, τi+1) selected
by the thinning proposal. By construction, the skeleton SJEA will have is-
tantaneous jumps at those times (t1, t2, . . . , tM) ⊆ (τ1, τ2, . . . , τm) accepted
by the thinning accept/reject test. For convenience of notation, we shall
represent SJEA(x0; 0, T) in the following way:
(23)

SJEA =
m
⋃

i=0

SEA (xτi
; τi, τi+1) =

m
⋃

i=0

{(

t0,i, xt0,i

)

,
(

t1,i, xt1,i

)

, . . . ,
(

tNi+1,i, xtNi+1,i

)}

where, τ0 = 0, τ−
m+1 = T and τi := t0,i ≤ t1,i ≤ · · · ≤ tNi+1,i := τ−

i+1 for
any i = 0, 1, . . . ,m. In Figure 1 we have provided a graphical representation
of the JEA Skeleton under notation (23).

5. Monte Carlo applications.

5.1. Preliminaries. In this Section we give some examples of applications
of the Jump Exact Algorithm to concrete Monte Carlo problems (Jump
Exact Monte Carlo Algorithms). Thus we assume that the process V (1)-(2)
is such that the transformed process X = η(V) (5)-(2) satisfies conditions
C.0-C.3 and we consider the problem of the Monte Carlo estimation of:

(24) ν := E (φ(V) | V0 = v0)

for some functionals of interest φ. The goal in this Section is to show by a
number of examples that in the JEA framework an appropriate combination
of standard distributional result from Brownian motion theory and suitable
Monte Carlo simulation techniques allow unbiased Monte Carlo estimation
of (24) even in presence of complex, highly path-dependent functonals φ.
The functionals we will consider are inspired by financial applications. In
fact we can interpret the problem of the Monte Carlo estimation of (24) as a
pricing problem where (24) is the price of a derivative defined on the under-
lying V (1)-(2) with (discounted) payoff φ. However we point out that the
analogy with option pricing is merely motivated by computational purposes.
In particular, we will not question the major problem of the characteriza-
tion of the model (1) under the pricing (or “martingale”) measure and the
related implications of the market uncompleteness (due to the presence of
jumps).

imsart-aap ver. 2007/12/10 file: jumpdiffsub.tex date: May 16, 2008

CRiSM Paper No. 08-19, www.warwick.ac.uk/go/crism

EXACT SIMULATION OF JUMP-DIFFUSIONS 13

JEA SKELETON

t

X_
t

0

xτ1

xτ2

4

xτ2−

0 τ1 τ2 ≡ t1 T ≡ 5

(t0, 0, xt0, 0)

(t0, 1, xt0, 1)≡(t1, 0, xt1, 0)

(t1, 1, xt1, 1)

(t2, 1, xt2, 1)

(t0, 2, xt0, 2) (t1, 2, xt1, 2) (t2, 2, xt2, 2) (t3, 2, xt3, 2)

Fig 1. This is a graphic illustration of the JEA skeleton for the model (38)-(39) with
parameters x0 = 0, T = 5, α = 0.5, β = 0.5, l = 0.3, σ = 1, λ0 = 1. The solid circles are
the realised trajectory at the candidate jumps’ times τ1 and τ2 where the thinning takes
place. The first jump in τ1 is rejected and the second in τ2 is accepted. Thus in t1 = τ2

the first and unique jump occurs. The labels in round brackets attached to each circle are
meant to exemplify the notation for the Skeleton introduced in (23).

We will need the following Brownian bridge-related notation. Given a Brow-
nian bridge starting in a at time s1 and ending in b at time s2, say BB (s1, y1; s2, y2),
we denote by M (s1, y1; s2, y2) its maximum and by p(s1, y1, s2, y2; l1, l2) its
exit probability from the interval (l1, l2) conditionally on the event {y1 ∈ (l1, l2)}:

M (s1, y1; s2, y2) := max
t

{BBt (s1, y1; s2, y2) : s1 ≤ t ≤ s2}
p(s1, y1, s2, y2; l1, l2) := 1 − Pr (BB (s1, y1; s2, y2) ∈ (l1, l2) | {y1 ∈ (l1, l2)})

Additionally, given the process X (5)-(2) and an open interval (l1, l2) such

imsart-aap ver. 2007/12/10 file: jumpdiffsub.tex date: May 16, 2008

CRiSM Paper No. 08-19, www.warwick.ac.uk/go/crism

14 B. CASELLA AND G.O. ROBERTS

that x0 ∈ (l1, l2), we will denote by τX
(l1,l2) its first exit time from the set

(l1, l2), i.e.

(25) τX
(l1,l2)

:= inf {t ∈ [0, T] : Xt /∈ (l1, l2)}

under the convention that inf ∅ = ∞.

5.2. Brownian bridge decomposition. The Jump Exact Algorithm allows
a desirable factorization of the conditional process given SJEA in terms of
independent Brownian bridges. This crucial property is formalised by Propo-
sition 1 and illustrated in Figure 2 where we have completed the Skeleton
of Figure 1 by the appropriate Brownian bridge interpolation.

Proposition 1
Let SJEA(x0; 0, T) (23) be the Skeleton of the process X generated by the
Jump Exact Algorithm. Then:

(26) X | SJEA(x0; 0, T) ∼
m
⊗

i=0

Ni
⊗

j=0

BB
(

tj,i, xtj,i
; tj,i+1, xtj,i+1

)

Proof:
From the JEA construction of the Skeleton (23) and the EA Brownian bridge
decomposition (20), for any i = 0, 1, . . . ,m:

X(i) | SJEA(x0; 0, T)
d
= ω

(

xt0,i
; t0,i, tNi+1,i

)

| SEA

(

xt0,i
; t0,i, tNi+1,i

)

∼
Ni
⊗

j=0

BB
(

tj,i, xtj,i
; tj+1,i, xtj+1,i

)

where we have used the following notation X(i) :=
{

Xt : t0,i ≤ t < tNi+1,i

}

.
Representation (26) then follows from the Markov property of the proocess
X.

�

Proposition 1 implies that, by conditioning on SJEA, we reduce the problem
of the simulation from the highly complex jump-diffusion process (1) to the
problem of the simulation from (well known) Brownian bridge measures.

imsart-aap ver. 2007/12/10 file: jumpdiffsub.tex date: May 16, 2008

CRiSM Paper No. 08-19, www.warwick.ac.uk/go/crism

EXACT SIMULATION OF JUMP-DIFFUSIONS 15

Brownian bridge decomposition

t

X_
t

0

xτ1

xτ2

4

xτ2−

0 τ1 τ2 ≡ t1 T ≡ 5

BB(1, 1)

BB(0, 1)

BB(0, 0)

BB(0, 2) BB(1, 2)
BB(2, 2)

Fig 2. This is the complete realisation of the trajectory corresponding to the Skeleton
in Figure 1. The continuous component of the trajectory is obtained by simulating the
appropriate bridge (according to Lemma 3) on a very fine discrete grid (δ = 0.01). We
have introduced the convenient notation BB(j, i) ≡ BB

(

tj,i, xtj,i
; tj+1,i, xtj+1,i

)

for any
j, i.

This is very valuable in Monte Carlo applications as many interesting func-
tionals associated with Brownian bridge can be simulated exactly. In the rest
of the current Section we will provide a sample of a number of challenging
Monte Carlo problems that can be solved thanks to the Brownian bridge
characterization (26).

5.3. Functional evaluated at a discrete set of time points. We consider
the following class of functionals:

(27) φ(V) := φ (VT1
, VT2

, . . . , VTn) = φ∗ (XT1
,XT2

, . . . ,XTn)

for given 0 ≤ T1 ≤ T2 ≤ · · · ≤ Tn and n ∈ {1, 2, . . . } where φ∗(u1, u2, . . . , un) =

imsart-aap ver. 2007/12/10 file: jumpdiffsub.tex date: May 16, 2008

CRiSM Paper No. 08-19, www.warwick.ac.uk/go/crism

16 B. CASELLA AND G.O. ROBERTS

φ
(

η−1(u1), η
−1(u2), . . . , η

−1(un)
)

, η−(·) being the inverse of η(·) (4). Popu-
lar examples of these functionals in finance are the payoffs of digital options,
european options and discrete (geometric and arithmetic) asian options. The
Monte Carlo problem involves the joint simulation of XT1

,XT2
, . . . ,XTn . To

this end the JEA framework offers two main options.

1. We can split [0, Tn] in n sub-intervals [Ti, Ti+1), i = 0, 1, . . . , n − 1,
apply the Exact Algorithm to each of the sub-intervals and then sim-
ply merge the individual sub-skeletons so that the resulting skeleton
SJEA(x0; 0, Tn) includes the target vector XT1

,XT2
, . . . ,XTn .

2. We can choose an arbitrary splitting scheme to generate the Skele-
ton on [0, Tn] and simulate the variables of interest XT1

,XT2
, . . . ,XTn

from the appropriate Brownian bridge according to (26). There are
several ways to simulate a discrete realisation from a Brownian bridge
trajectory; a very convenient one resorts to trivial Brownian motion
simulation through representation (43).

It is worth to point out here that the choice of the ”splitting” can have a
relevant effect on the efficiency of the Exact Algorithm (and thus also of the
Jump Exact Algorithm). We refer to (22) for a complete treatment of this
point.

5.4. Path dependent functionals. The Brownian bridge decomposition
(26) allows us to construct Monte Carlo estimators of (24) also for a num-
ber of interesting path-dependent functionals. We provide some examples
suggested by applications in option pricing.

5.4.1. Lookback options. Lookback options are a type of path-dependent
options where the payoff depends on the maximum (or minimum) asset price
over the life of the option [0, T] and eventually (floating strike type) by the
value of the underlying at some maturity time T . Since the function η (4) is
strictly increasing we can write the lookback options’ payoff as:

(28) φ(V) = φ

(

max
0≤t≤T

Vt, VT

)

= φ∗
(

max
0≤t≤T

Xt,XT

)

where φ∗ (v, u) = φ
(

η−1(v), η−1(u)
)

. Hence the crucial step of the Monte
Carlo procedure involves the simulation of the maximum of X given the
Skeleton. From (26) we have trivially that:

max
0≤t≤T

Xt | SJEA(x0; 0, T)
d
= max

i,j

{

M
(

tj,i, xtj,i
; tj,i+1, xtj,i+1

)}

imsart-aap ver. 2007/12/10 file: jumpdiffsub.tex date: May 16, 2008

CRiSM Paper No. 08-19, www.warwick.ac.uk/go/crism

EXACT SIMULATION OF JUMP-DIFFUSIONS 17

As the distribution function of the maximum of a given Brownian bridge
can be derived from simple properties of Brownian motion , we can easily
simulate from it by applying the inverse transform method. See Appendix
A ((48) and (49)).

5.4.2. Single Barrier options. Barrier options are an extremely popular
class of path-dependent options which come in many flavours and forms.
Their key characteristic is that they are either initiated (“knocked-in”) or
exterminated (“knocked-out”) if the underlying process V exits a given set
H = (a, b) such that V0 = v0 ∈ H. Firstly we discuss single barrier options
(a = −∞ or b = +∞). To fix the ideas let us consider a knock-out option
on the underlying V (1) with upper barrier b > v0 (i.e. H = (−∞, b)). If the
underlying does not cross the upper barrier b between 0 and T the option
pays off a function g of the asset process V at maturity time T . If the process
crosses the barrier the option is killed and a rebate R is paid to its holder at
the killing time. In this context, assuming a fixed continuously compounded
interest rate r, the payoff of the option under the transformed process X is:

(29) φ∗
(

XT , τX
H∗

)

= e−rT g∗(XT)(1 − I{τX
H∗≤T}) + e−rτX

H∗ R I{τX
H∗≤T}

where g∗(·) := g(η−1(·)) and H∗ := (−∞, b∗) with b∗ = η−1(b). Thus condi-
tionally on the Skeleton (23) exact simulation of φ∗ involves the two steps:
1) the simulation of the one-sided crossing event of a Brownian bridge I{... }
and 2) the simulation of the crossing time τX given the crossing event. Both
steps can be performed efficiently applying the standard results from Brow-
nian motion theory collected in Appendix A ((47) and (48)). Interestingly
if we assume that the rebate is paid at the (fixed) maturity time T , i.e.
τX
H∗ ≡ T in (29), we can perform more efficient Rao-Blackwellised Monte

Carlo estimation of η (24) by averaging over the conditional expectations:

E (φ∗ | SJEA(x0, 0, T)) = e−r T
[

g∗(xT) + (R − g∗(xT)) Pr
(

τX
H∗ ≤ T | SJEA

)]

(30)

where by Proposition 1 explicit expression for the conditional crossing proba-
bility can be derived from the one-sided crossing probability of the Brownian
bridge (47).

imsart-aap ver. 2007/12/10 file: jumpdiffsub.tex date: May 16, 2008

CRiSM Paper No. 08-19, www.warwick.ac.uk/go/crism

18 B. CASELLA AND G.O. ROBERTS

5.4.3. Double barrier options. We consider the payoff function φ∗ (29)
with τX

H∗ ≡ T under the assumption that H∗ = (a∗, b∗) for −∞ < a∗ <
x0 < b∗ < +∞. In the JEA framework, the simulation problem involves
the two-sided crossing probability of the Brownian bridge. It is known that
closed-form expressions for such probability are not available. This makes
the simulation task much harder than in the single barrier case. In particu-
lar: 1) Rao-Blakwelised estimation (30) is not feasible; 2) trivial simulation
strategies based on the knowledge of the crossing event’s probability cannot
be performed. An ad hoc algorithm to deal with this case has been proposed
by (8). We recall it briefly. For given i = 0, 1, . . . ,m and j = 0, 1, . . . ,Ni

we are looking for a simulation procedure that allows us to simulate events

of (unknown) probability p
(

tj,i, xtj,i
, tj+1,i, xtj+1,i

; a∗, b∗
)

. To this end, we

identify two sequences of (known) real numbers:

(31)
{

nk

(

tj,i, xtj,i
, tj+1,i, xtj+1,i

; a∗, b∗
)

;nk

(

tj,i, xtj,i
, tj+1,i, xtj+1,i

; a∗, b∗
)}

k=1,2,...

such that, as k → +∞:

nk

(

tj,i, xtj,i
, tj+1,i, xtj+1,i

; a∗, b∗
)

↑ p
(

tj,i, xtj,i
, tj+1,i, xtj+1,i

; a∗, b∗
)

(32)

nk

(

tj,i, xtj,i
, tj+1,i, xtj+1,i

; a∗, b∗
)

↓ p
(

tj,i, xtj,i
, tj+1,i, xtj+1,i

; a∗, b∗
)

(33)

The explicit functional form of the sequences (31) can be found in Ap-
pendix A ((53) and (54)) supported by a sketch of the proof of the limits
(32) and (33). Limits (32) and (33) suggest that we can simply simulate a
[0, 1]−uniformly distributed random variable U = u and compare it with
(increasing indeces) couples of values (nk, nk) until either u ≤ nk (crossing
event accepted) or u > nk (crossing event rejected). This procedure turns
out to be efficient as the sequences {nk} and {nk} converge to p faster than
exponentially (see also Proposition 2 in (8)).

5.4.4. Bond pricing with stochastic interest rate. Finally we outline a
general simulation algorithm for unbiased Monte Carlo estimation of:

(34) ν = E

[

e−
∫ T

0
Vs ds | V0 = v0

]

= E

[

e−
∫ T

0
η−1(Xs) ds | X0 = η(v0)

]

for jump-diffusion processes V (1)-(2) and (its transformation) X (5)-(2)

imsart-aap ver. 2007/12/10 file: jumpdiffsub.tex date: May 16, 2008

CRiSM Paper No. 08-19, www.warwick.ac.uk/go/crism

EXACT SIMULATION OF JUMP-DIFFUSIONS 19

under the usual conditions C.0-C.3. This is a very relevant computational
problem in financial applications. For instance we can think of ν as the
price of a bond with unit face value and maturity time T under a jump-
diffusion stochastic interest rate pricing framework (see e.g. (9) or (17)) or
alternatively as the (complementary) default probability in a reduced form
approach to credit risk modeling (see e.g. (12)) where the default arrival
process is a Cox process driven by an exogeneous jump-diffusion. The com-
putational task is very demanding, involving the (exponential of the) integral
of a jump-diffusion trajectory. However, conditioning on the JEA Skeleton
(23) and applying the Brownian bridge decomposition yields:

(35)

ν = ES





n
∏

i=0

Ni
∏

j=0

EBB(i,j)

(

exp

{

−
∫ tj,i+1

tj,i

η−1 (ωu) du

})



 := E





n
∏

i=0

Ni
∏

j=0

Ei,j(SJEA)





There is no immediate way to simulate an unbiased estimator of (35). In
fact we are not able to express the conditional expectation Ei,j as an explicit
function of SJEA, neither we can simulate the target functionals condition-
ally on the Skeleton. However we can still take advantage of the specific
form of the target functional and apply the Poisson estimator; i.e. for any
ci,j ∈ R and λi,j > 0, i = 0, 1, . . . ,m, j = 0, 1, . . . ,Ni:

(36) Ei,j(SJEA) = E

(

c∗i,j λ
−κi,j

i,j

κi,j
∏

h=1

{

ci,j − η−1(BBπi,j;h
(i, j)

}

)

where c∗i,j := exp {(λi,j − ci,j) (tj,i+1 − tj,i)} constant and
{

πi, j; 1, πi, j ;2, . . . , πi,j ; κi,j

}

is a Poisson process of intensity λi,j on the time interval tj,i+1 − tj,i. Finally
combining (35) and (36) gives an unbiased estimator of ν:

(37) ν∗ =
n
∏

i=0

Ni
∏

j=0

{

c∗i,j λ
−κi,j

i,j

κi,j
∏

h=1

{

ci,j − η−1(BBπi,j;h
(i, j)

}

}

which can be conveniently simulated in a Monte Carlo framework.

6. Numerical example.

imsart-aap ver. 2007/12/10 file: jumpdiffsub.tex date: May 16, 2008

CRiSM Paper No. 08-19, www.warwick.ac.uk/go/crism

20 B. CASELLA AND G.O. ROBERTS

6.1. The model. We test the JEA algorithm on a jump-diffusion model
X := {Xt : 0 ≤ t ≤ T} (5) defined by the SDE:

(38) dXt = sin (Xt−) dt + dWt +

∫

R

(σz + l Xt−) m(dz, dt)

with intensity function λm (2):

(39) λm (z , t; Xt− ; α, β, λ0) = λ0 FN0,1 (α + β Xt−) fN0,1(z)

for α, β, l ∈ R and λ0 > 0 where FN0,1 and fN0,1 are (resp.) the dis-
tribution function and the density function of a standard normal random
variable. The continuous component is a diffusion model without explicit
solution characterized by SINUS drift and unit diffusion coefficient (SINUS
model). The jump component is state-dependent both in the intensity of
the jumps’ arrival process λ(t;Xt− ; α, β, λ0) := λ0 FN0,1 (α + β Xt−) and
in the amplitude of the jumps g(Z,Xt− ; l, σ) := σ Z + l Xt− with Z ∼ N0,1.
The exogenous parameters α, β, l, λ0, σ provide us with a very general and
flexible modeling framework. In particular for λ0 = 0 or σ, l = 0, model
(38) and (39) reduces to the SINUS diffusion; for β = 0 and l = 0 the jump
component is independent from the state of the process as for Merton model
(9)-(8).

6.2. Simulation schemes.

6.2.1. The JEA scheme. For any given set of the exogenous parameters
(α, β, l, λ0) the process defined by (38) and (39) satisfies conditions C.0-
C.3. In particular the SINUS model satisfies conditions C.1-C.3 and it allows
the application of EA1. The SINUS model turns to be a convenient and
easily implementable choice for numerical testing of EA1-related algorithms
(see also (4), (3), (8)). The state dependent intensity function driving the
jumps’ arrival process satisfies condition C.0 as λ(t;Xt− ; α, β, λ0) ≤ λ0. In
this context the application of the JEA algorithm (Algorithm 2) entails the
following three main steps.

1. We select the vector of time points τ := (τ0, τ1, . . . , τm+1) where τ0 ≡ 0,
τm+1 ≡ T and (τ1, τ2, . . . , τm) is the vector of the candidate jumps’
times simulated from the proposal Poisson process of intensity λ0.

2. For any i = 0, 1, . . . ,m, we apply EA1 on the SINUS model between
any two time points τi and τi+1.

imsart-aap ver. 2007/12/10 file: jumpdiffsub.tex date: May 16, 2008

CRiSM Paper No. 08-19, www.warwick.ac.uk/go/crism

EXACT SIMULATION OF JUMP-DIFFUSIONS 21

3. We extract from the EA1 Skeleton the (left-limit) realisation of the
process’ trajectory at the candidate jumps’ time (τ1, τ2, . . . , τm) and
we evaluate the acceptance thinning probability FN0,1(α + βXτ−

i
) and

(in case the thinning test is positive) the amplitude of the jumps σ Z +
l Xτ−

i
.

We test numerically the Monte Carlo performances of the JEA algorithm
against two alternative Euler schemes with jumps.

6.2.2. The naive Euler scheme with jumps. This scheme is the natural
analog of the naive Euler approximation in a jump diffusion context. The
time setting is fully discrete: both the diffusion component and the jump
component are simulated at a fixed discrete grid of time points {i∆}i=1,2,...,n

where ∆ = T/n is the discretisation interval. The resulting approximation
to (38)-(39) has dynamics:

(40)

X̃(i+1) ∆ = X̃i ∆+sin(X̃i ∆)∆ +
√

∆ ξi+1+Ji+1

(

σ Zi+1 + l X̃i ∆

)

, i = 0, . . . , n−1

where ξi+1, Zi+1 ∼ N (0, 1), Ji+1 ∼ Bernoulli(∆λ0 FN0,1(α + β X̃i ∆)) un-
der the additional condition ∆λ0 ≤ 1. Under standard regularity conditions,
as ∆ → 0, the scheme converges weakly to (38)-(39) (see (23)). Although
rather crude, approximation (40) has been employed in various applied con-
texts because of its simplicity. Among the others, (25) applied this type
of discretisation to simulate the Merton model in a structural credit risk
context. More interestingly, (18) proposed a state dependent jump scheme
similar to (40) to model US equity indices’ dynamics in a discrete time
framework.

6.2.3. The Euler scheme with thinned jumps. We can construct a more
sophisticated approximation of (38)-(39) by combining the Euler scheme
with the thinning idea. Loosely, after selecting τ as in JEA (Step 1) we
apply the Euler scheme instead of the EA1 algorithm to simulate the process’
trajectory between any two times τi and τi+1. As a consequence the (state
dependent) thinning acceptance probability and the amplitude of the jumps
will be also biased. Nevertheless this scheme seems more sensible than the
fully discrete Euler scheme since it does not force the jumps to take place
only at the deterministic time points of the discretisation grid. Formally, if
we denote by T0, T1, . . . , TK the set of ordered time points resulting from the
superposition of the simulated candidate jumps’ times τ1, τ2, . . . , τm and the

imsart-aap ver. 2007/12/10 file: jumpdiffsub.tex date: May 16, 2008

CRiSM Paper No. 08-19, www.warwick.ac.uk/go/crism

22 B. CASELLA AND G.O. ROBERTS

deterministic discretisation grid t0, t1, . . . , tn (i.e. ti := i∆, i = 0, 1, . . . , n),
we can represent the dynamics of the scheme in the following compact way:

X̂T−
k+1

= X̂Tk
+ sin

(

X̂Tk

)

(Tk+1 − Tk) +
√

Tk+1 − Tk ξk+1(41)

X̂Tk+1
= X̂T−

k+1

+ H∗(Zk+1, Uk+1, X̂T−
k+1

) I{Tk+1∈{τ1,τ2,...,τm}}, k = 0, . . . ,K − 1

such that H∗(z, u, x) := (σ z + l x) I{
u≤FN0,1

(α + β x)
} with ξk+1, Zk+1 ∼

N0,1 and Uk+1 ∼ Unif [0, 1]. The Monte Carlo application of this scheme
as opposed to the crude (40) has been proposed by (14) for the simplest
case when the target functional φ depends on the trajectory of the process
only at a single fixed time point. However for Monte Carlo simulation of
path-dependent functionals we will rather employ a more appropriate con-
tinuous version of (41) based on a Brownian bridge interpolation of the Euler
trajectory (see (15)). This can be easily obtained from (41) by setting:

(42) X̂t = X̂Tk
+ sin(X̂tk) (t − Tk) + (Wt − WTk

), t ∈ [Tk, Tk+1)

where {Wt} is the usual standard Brownian motion. We will refer to this
scheme as continuous Euler with thinning.

6.3. Results. We have compared the Monte Carlo estimator generated
by the Jump Exact Algorithm (say E1) with the estimators generated by
the two Euler schemes (40) and (41) (say respectively E2 and E3) for the
discrete average (or asian option) functional and the maximum (or lookback
option) functional. For the maximum, E3 employes the continuous version
(42) of the Euler scheme. To address our comparison, we require that the
Monte Carlo 95%-confidence interval generated by E2 and E3 has non empty
intersection with the corresponding interval generated by E1. This seems a
very reasonable (although somewhat arbitrary) accuracy. Figures 3-4 and
Table 1 summarize the relevant results from a Monte Carlo numerical test
for a selection of values of the two parameters l and β affecting the jump
component. In order to ensure negligible Monte Carlo error we have chosen
a Monte Carlo sample size of 5 105 iterations. In Figures 3-4 we have plotted
the Monte Carlo estimates of E1 and E3 Vs the number of discretisation
steps (per time unit)

{

1, 2, 4, . . . , 26
}

. To preserve graphics’ readibility we
omitted to display the behavior of E2; however it turns out to be analogous
to E3 but characterised by slower convergence to E1. In Table 1 we have
reported the numeric values of the punctual estimate, the 95%-confidence

imsart-aap ver. 2007/12/10 file: jumpdiffsub.tex date: May 16, 2008

CRiSM Paper No. 08-19, www.warwick.ac.uk/go/crism

EXACT SIMULATION OF JUMP-DIFFUSIONS 23

interval and the computational time for E1, E2 and E3.

The results of the numeric experiment supports the following important
arguments in favour of the JEA estimator.

i E1 is not affected by discretization bias; in fact it turns out to be the limit
of discretisation schemes as the length of the discretization interval
tends to 0.

ii E1 is not prone to the trade-off between accuracy of the estimator and
computational effort. As a consequence, for sufficiently high level of
accuracy it is computationally more efficient than estimators based on
discretisation schemes.

iii E1 provides a reliable benchmark to evaluate the convergence of com-
peting discretisation methods and the accuracy of the related Monte
Carlo estimators.

7. Conclusion. We have developed a simple algorithm (JEA) for Monte
Carlo simulation of a wide class of functionals of jump-diffusion processes
with (markov) state-dependent intensity. Its core consists of the Exact Al-
gorithm for the simulation of the continuous component and on a stochastic
thinning algorithm for the simulation of the jump component. In comparison
with currently available Monte Carlo estimators, JEA estimator is unbiased,
and, for sufficiently high level of accuracy, computationally more efficient.

It is worth to mention at least two research areas related to JEA that deserve
further investigation.

1. Extension of C0-C3. The domain of JEA can be extended far bejond
conditions C0 − C3. Trivially, we can weaken conditions C1 − C3 by
replacing EA1 with the more recent EA2 or EA3 for the simulation of
the diffusion component. More interestingly, we believe we can remove
also condition C0 thus allowing unboundedness of the intensity of the
jump component; we are currently working on this.

2. Financial applications. In finance the application of jump-diffusion
with state-dependant intensity has been limited so far due to the the
lack of adequate computational techniques. However the common Mer-
ton assumption that jumps in assets’ values are fully exogeneous (i.e.
independent on the current value of the assets) is often far too restric-
tive. Now JEA provides a computational method to deal efficiently
with state-dependancy, thus motivating a renovated interest for jump
diffusion processes with state-dependent intensity in financial model-
ing. We believe this is a very promising area of applied research. For

imsart-aap ver. 2007/12/10 file: jumpdiffsub.tex date: May 16, 2008

CRiSM Paper No. 08-19, www.warwick.ac.uk/go/crism

24 B. CASELLA AND G.O. ROBERTS

a first example of application of the JEA framework to credit risk
modeling see (7), Chapter 4.

APPENDIX A: APPENDIX 1: BROWNIAN BRIDGE RESULTS.

We briefly review the Brownian bridge results supporting the Monte Carlo
algorithms presented in Section 5. We consider a generic (s1, a) → (s2, b)
Brownian bridge and an interval (l1, l2) ⊂ R such that a ∈ (l1, l2). We adopt
the notation:

τ(s1, a; s2, b; l1, l2) := inf {u ∈ [s1, s2] : BBu(s1, a; s2, b) /∈ (l1, l2)}

where BB(s1, a; s2, b) := {BBu(s1, a; s2, b) : s1 ≤ u ≤ s2} and inf ∅ = ∞.
Throughout we will rely on the following representation of the Brownian
bridge in terms of Brownian motion:

(43) BB(s1,a;s2,b)
u

d
= a +

u − s1

s2 − s1
(b − a) +

s2 − u√
s2 − s1

Wu−s1
s2−u

; s1 ≤ u ≤ s2

Given z ∈ [s1, s2] it follows from (43):

(44)

Pr (τ(s1, a; s2, b; l1, l2) > z) = Pr

(

Wu ∈ (α1 + β1 u, α2 + β2 u) , u ∈
(

0,
z − s1

s2 − z

))

with α1 := l1−a√
s2−s1

, α2 := l2−a√
s2−s1

, β1 := l1−b√
s2−s1

and β2 := l2−b√
s2−s1

. Let us

consider first the one sided case with l2 > a and l1 = −∞. The theory for
the one sided case is rather standard; references are the classic (24) and (19).
Firstly we rewrite (44) in the following way:

(45)

Pr (τ(s1, a; s2, b;−∞, l2) > z) = Pr

(

τα2,β2
>

z − s1

s2 − z

)

= Pr

(

s1 + τα2,β2
s2

1 + τα1,β1

> z

)

.

where τα2,β2
:= inf {u ≥ 0 : Wu ≥ α2 + β2u}. It is time to recall the cele-

brated Bachelier-Levy formula which gives the density of the hitting time
τα2,β2

of a sloping line α2 + β2 u for Brownian motion:

(46) fα2,β2
(u) =







e−2α2β2 IG
(

u; α2

β2
, α2

2

)

if α2β2 > 0

IG
(

u;−α2

β2
, α2

2

)

if α2β2 ≤ 0

imsart-aap ver. 2007/12/10 file: jumpdiffsub.tex date: May 16, 2008

CRiSM Paper No. 08-19, www.warwick.ac.uk/go/crism

EXACT SIMULATION OF JUMP-DIFFUSIONS 25

where IG(u; k, g) is an inverse gaussian density with parameters k and g.
Plugging in z = s2 in (44) and using (46) we find the one sided crossing
probability of the Brownian bridge:

(47) p(s1, a; s2, b;−∞, l2) =

{

1 if b ≥ l2

exp
{

− 2
s2−s1

(l2 − a)(l2 − b)
}

if b > l2

Let E := {τ(s1, a; s2, b;−∞, l2) ∈ [s1, s2]} be the crossing event with proba-
bility (47). From (45) and (46), we derive a suitable reprsentation to simulate
the hitting times conditionally on the crossing event:

τ(s1, a; s2, b;−∞, l2) | E
d
=

s1 + Z s2

1 + Z
: Z ∼







IG
(

− l2−a
l2−b

, (l2−a)2

s2−s1

)

if b ≥ l2

IG
(

l2−a
l2−b

, (l2−a)2

s2−s1

)

if b < l2

The simulation of an inverse gaussian random variable is standard (e.g. see
(10)). Finally from (47) we derive the distribution function of the maximum
of the Brownian bridge:

(48)

Pr {M(s1, a; s2, b) ≤ m} = 1−exp

{

−2 ((m − a)(m − b))

s2 − s1

}

, m ≥ max(a, b)

so that an immediate application of the inverse transform method (e.g. see
(10)) provides the recipe for the simulation of M:

(49)

M(s1, a, s2, b)
d
=

1

2

(

√

(a − b)2 − 2 (s2 − s1) log(U) + a + b

)

: U ∼ Unif[0, 1]

We turn the attention now to the double barrier case |l1| , |l2| < ∞, a ∈
(l1, l2) in order to justify the simulation method in Section 5.4.3. This is a
succint excerpt from (8) (Section 2.4.2 and Appendix 1). From (44):

(50)

p(s1, a; s2, b; l1, l2) =

{

1 if b /∈ (l1, l2)
Pr (Wu ∈ (α1 + β1 u, α2 + β2 u) , u ≥ 0) if b ∈ (l1, l2)

imsart-aap ver. 2007/12/10 file: jumpdiffsub.tex date: May 16, 2008

CRiSM Paper No. 08-19, www.warwick.ac.uk/go/crism

26 B. CASELLA AND G.O. ROBERTS

where a, b ∈ (l1, l2) implies that α1, β1 < 0 and α2, β2 > 0. We introduce
the two sequences of functions:

Pj(s, x; t, y; l1, l2) := pj(s, x; t, y; l2 − l1, l1) + pj(s, x; t, y; l2 − l1, l2)

Qj(s, x; t, y; l1, l2) := qj(s, x; t, y; l2 − l1, l1) + qj(s, x; t, y; l2 − l1, l2); (j = 1, 2, . . .)

where

(51)

pj(s, x; t, y; δ, l) = e−
2

t−s
[jδ+(l−x1)][jδ+(l−y)]; qj(s, x; t, y; δ, l) = e−

2j
t−s [jδ

2−δ(l−x)]

From the representation of the two sided crossing probability (of two sloping
lines) for Brownian motion in (11), using (50), for a, b ∈ (l1, l2):

(52) p(s1, a; s2, b; l1, l2) =
∞
∑

j=1

[Pj(s, x; t, y; l1, l2) − Qj(s, x; t, y; l1, l2)]

From (51) we can easily verify the two following crucial facts:

i. for any j = 1, 2, . . . : Pj > Qj > Pj+1

ii. for j → ∞: Pj ↓ 0 and Qj ↓ 0

In this context it is immediate that the two sequences:

nk (s, x; t, y; l1, l2) =
k
∑

j=1

[Pj (s, x; t, y; l1, l2) − Qj (s, x; t, y; l1, l2)](53)

nk (s, x; t, y; l1, l2) = nk−1 (s, x; t, y; l1, l2) + Pk (s, x; t, y; l1, l2)(54)

converge respectively from below and from above to the target probability p.
Thus we can establish the final result supporting the Monte Carlo algorithm
in Section 5.4.3: for a, b ∈ (l1, l2), −∞ < l1 < l2 < +∞ as k → ∞:

(55)
nk (s, x; t, y; l1, l2) ↑ p(s, x; t, y; l1, l2); nk (s, x; t, y; l1, l2) ↓ q(s, x; t, y; l1, l2)

imsart-aap ver. 2007/12/10 file: jumpdiffsub.tex date: May 16, 2008

CRiSM Paper No. 08-19, www.warwick.ac.uk/go/crism

EXACT SIMULATION OF JUMP-DIFFUSIONS 27

More details on the Doob’s approach to the two-sided crossing probability
problem (52) and an alternative proof of (55) based on probabilistic argu-
ments can be found in (8).

REFERENCES

[1] Beskos, A., Papaspiliopoulos, O., and Roberts, G. O. (2006a). Retrospective exact
simulation of diffusion sample paths with applications. Bernoulli, 12(6):1077–1098.

[2] Beskos, A., Papaspiliopoulos, O., and Roberts, G. O. (2007). A new factorisation of
diffusion measure and sample path reconstruction. Submitted.

[3] Beskos, A., Papaspiliopoulos, O., Roberts, G. O., and Fearnhead, P. (2006b). Exact
and efficient likelihood based inference for discretely observed diffusions (with discus-
sion). J. R. Stat. Soc. Ser. B Stat. Methodol., 68(3):333–382.

[4] Beskos, A. and Roberts, G. O. (2005). Exact simulation of diffusions. Ann. Appl.
Probab., 15(4):2422–2444.

[5] Caines, P. E. and Zhang, J. F. (1995). On adaptive control for jump parameter systems
via nonlinear filtering. SIAM J. Control Optim., 33:1758–1777.

[6] Cariboni, J. and Schoutens, W. (2004). Pricing credit default swaps under lévy models.
available from www.defaultrisk.com.

[7] Casella, B. (2006). Exact Monte Carlo simulation of Diffusion and Jump-diffusion
processes with financial applications. PhD thesis, Università Commerciale L. Bocconi,
Istituto Metodi Quantitativi.

[8] Casella, B. and Roberts, G. O. (2008). Exact monte carlo simulation of diffusions with
barriers. To appear in Advances in Applied Probability.

[9] Das, S. (2002). The surprise element: Jumps in interest rates. Journal of Econometrics,
106:27–65.

[10] Devroye, L. (1986). Nonuniform random variate generation. Springer-Verlag, New
York.

[11] Doob, J. L. (1949). Heuristic approach to the Kolmogorov-Smirnov theorems. Ann.
Math. Statistics, 20:393–403.

[12] Giesecke, K. (2004). Credit risk modeling and evaluation: an introduction. In Credit
risk: models and management, volume 2 of Risk Books. D. Shimko.

[13] Giraudo, M. and Sacerdote, L. (1997). Jump-diffusion processes as models for neu-
ronal activity. Biosystems, 40:75–82.

[14] Glasserman, P. and Merener, N. (2004). Convergence of a discretization scheme for
jump-diffusion processes with state-dependent intensities. Proc. R. Soc. Lond. Ser.
A Math. Phys. Eng. Sci., 460(2041):111–127. Stochastic analysis with applications to
mathematical finance.

[15] Gobet, E. (2000). Weak approximation of killed diffusion using Euler schemes.
Stochastic Process. Appl., 87(2):167–197.

[16] Ikeda, N. and Watanabe, S. (1989). Stochastic differential equations and diffusion
processes, volume 24 of North-Holland Mathematical Library. North-Holland Publishing
Co., Amsterdam, second edition.

[17] Johannes, M. (2004). The statistical and economic role of jumps in continuous-time
interest rate models. The Journal of Finance, 59(1):227–260.

[18] Johannes, M., Kumar, R., and Polson, N. (1999). State dependent jump models: How
do us equity indices jump? Working paper. University of Chicago.

[19] Karatzas, I. and Shreve, S. E. (1991). Brownian motion and stochastic calculus,

imsart-aap ver. 2007/12/10 file: jumpdiffsub.tex date: May 16, 2008

CRiSM Paper No. 08-19, www.warwick.ac.uk/go/crism

28 B. CASELLA AND G.O. ROBERTS

volume 113 of Graduate Texts in Mathematics. Springer-Verlag, New York, second
edition.

[20] Merton, R. C. (1976). Option pricing when undrlying stock returns are discontinuous.
Journal of Financial Economics, 3:125–144.

[21] Metwally, S. and Atiya, A. (2002). Using brownian bridge for fast simulation of
jump-diffusion processes and barrier options. Journal of Derivatives, 10:43–54.

[22] Pelucchetti, S. (2008). An analysis of the efficiency of the Exact Algorithm. PhD
thesis, Università Commerciale L. Bocconi, Istituto Metodi Quantitativi.

[23] Platen, E. and Rebolledo, R. (1985). Weak convergence of semimartingales and
discretisation methods. Stochastic Process. Appl., 20(1):41–58.

[24] Revuz, D. and Yor, M. (1991). Continuous Martingales and Brownian Motion.
Springer-Verlag.

[25] Zhou, G. (2001). The term structure of credit spreads with jump risk. Journal of
Banking and Finance, 25:504–531.

[26] Zhu, S. C. (1999). Stochastic jump-diffusion process for computing medial axes in
markov random fields. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 21:1158–1169.

Address of the Second author

Department of Statistics

University of Warwick

Coventry CV4 7AL

UK

E-mail: gareth.o.roberts@warwick.ac.uk
URL: http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic/roberts/

imsart-aap ver. 2007/12/10 file: jumpdiffsub.tex date: May 16, 2008

mailto:gareth.o.roberts@warwick.ac.uk
http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic/roberts/

CRiSM Paper No. 08-19, www.warwick.ac.uk/go/crism

EXACT SIMULATION OF JUMP-DIFFUSIONS 29

Asian: beta = 0, l = −0.3

Number of discretization intervals for time unit

Mo
nte

−C
ar

lo
es

tim
ate

2 4 8 16 32 64

1.6
2

1.6
3

1.6
4

1.6
5

1.6
6

1.6
7

1.6
8

1.6
9

Asian: beta = 1, l = −0.3

Number of discretization intervals for time unit
Mo

nte
−C

ar
lo

es
tim

ate

2 4 8 16 32 64

1.3
1.3

12
1.3

26
1.3

4
1.3

54
1.3

68
1.3

82
Asian: beta = 0, l = 0

Number of discretization intervals for time unit

Mo
nte

−C
ar

lo
es

tim
ate

2 4 8 16 32 64

2.7
2.7

1
2.7

2
2.7

3
2.7

4
2.7

5
2.7

6
2.7

7

Asian: beta = 1, l = 0

Number of discretization intervals for time unit

Mo
nte

−C
ar

lo
es

tim
ate

2 4 8 16 32 64

2.6
56

2.6
69

2.6
82

2.6
95

2.7
08

2.7
2

2.7
32

Asian: beta = 0, l = 0.3

Number of discretization intervals for time unit

Mo
nte

−C
ar

lo
es

tim
ate

2 4 8 16 32 64

5.3
5

5.3
75

5.4
5.4

2
5.4

45
5.4

7
5.4

95
5.5

2

Asian: beta = 1, l = 0.3

Number of discretization intervals for time unit

Mo
nte

−C
ar

lo
es

tim
ate

2 4 8 16 32 64

6.2
7

6.3
6.3

25
6.3

55
6.3

85
6.4

15
6.4

45

Fig 3. Plot of the Monte Carlo estimates and 95%-confidence intervals of E1 (resp. dashed
line and dotted lines) and E3 (resp. circle and triangles) Vs the number of discretisation
intervals per time unit (2n, n = 0, 1, . . . , 6). Functional: ASIAN option φ = X1+X2+X3+
X4 + X5. Model: X (38) with fixed parameters α = σ = λ0 = 1 and x0 = 2 and variable
parameters β and l. Monte Carlo sample size: 5 × 105. Notes: We have reported only the
confidence interval of E3 characterised by non-empty intersection with the corresponding
confidence interval of E1. The solid circles represent E3 estimates whose computational
time is lower than E1.

imsart-aap ver. 2007/12/10 file: jumpdiffsub.tex date: May 16, 2008

CRiSM Paper No. 08-19, www.warwick.ac.uk/go/crism

30 B. CASELLA AND G.O. ROBERTS

Lookback: beta = 0 , l = −0.3

Number of discretization intervals for time unit

Mo
nte

−C
ar

lo
es

tim
ate

2 4 8 16 32 64

3.8
25

3.8
49

3.8
73

3.8
97

3.9
21

3.9
45

3.9
69

Lookback: beta = 1, l = −0.3

Number of discretization intervals for time unit

Mo
nte

−C
ar

lo
es

tim
ate

2 4 8 16 32 64

3.7
45

3.7
69

3.7
93

3.8
17

3.8
41

3.8
65

3.8
89

Lookback: beta = 0, l = 0

Number of discretization intervals for time unit

Mo
nte

−C
ar

lo
es

tim
ate

2 4 8 16 32 64

4.6
8

4.7
4.7

2
4.7

4
4.7

6
4.7

8
4.8

4.8
2

Lookback: beta = 1, l = 0

Number of discretization intervals for time unit

Mo
nte

−C
ar

lo
es

tim
ate

2 4 8 16 32 64

4.7
55

4.7
77

4.7
99

4.8
21

4.8
43

4.8
65

4.8
87

Lookback: beta = 0, l = 0.3

Number of discretization intervals for time unit

Mo
nte

−C
ar

lo
es

tim
ate

2 4 8 16 32 64

9.4
3

9.4
7

9.5
1

9.5
5

9.5
9

9.6
3

9.6
7

Lookback: beta = 1, l = 0.3

Number of discretization intervals for time unit

Mo
nte

−C
ar

lo
es

tim
ate

2 4 8 16 32 64

11
.47

5
11

.53
5

11
.59

5
11

.65
5

11
.71

5
11

.77
5

Fig 4. Plot of the Monte Carlo estimates and 95%-confidence intervals of E1 (resp.
dashed line and dotted lines) and E3 (resp. circle and triangles) Vs the number of dis-
cretisation intervals per time unit (2n, n = 0, 1, . . . , 6). Functional: LOOKBACK option
φ = max{0≤t≤5} Xt. Model: X (38) with fixed parameters α = σ = λ0 = 1 and x0 = 2
and variable parameters β and l. Monte Carlo sample size: 5 × 105. Notes: We have re-
ported only the confidence interval of E3 characterised by non-empty intersection with the
corresponding confidence interval of E1. If no intersection occurs (plot: beta =1, l=-0.3)
we have reported the confidence interval corresponding to the smalles discretisation step
(1/26). The solid circles represent E3 estimates whose computational time is lower than
E1.

imsart-aap ver. 2007/12/10 file: jumpdiffsub.tex date: May 16, 2008

CRiSM Paper No. 08-19, www.warwick.ac.uk/go/crism

EXACT SIMULATION OF JUMP-DIFFUSIONS 31

Numerical comparison

Functional β l Method ν̂ C.I.(95%) N time

0

-0.3
E1 1.6251 [1.6209, 1.6293] 40
E2 1.6323 [1.6281, 1.6364] 25 218
E3 1.6305 [1.6264, 1.6347] 25 106

0
E1 2.705 [2.7005, 2.7094] 35
E2 2.7120 [2.7075, 2.7164] 25 216
E3 2.7093 [2.7049, 2.7138] 24 58

0.3
E1 5.3703 [5.359, 5.3816] 39
E2 5.36 [5.3491, 5.3709] 24 110

Asian E3 5.3834 [5.3722, 5.3947] 25 107

1

-0.3
E1 1.3088 [1.304, 1.3135] 41
E2 1.3134 [1.3095, 1.319] 26 312
E3 1.3180 [1.3131, 1.3229] 25 107

0
E1 2.6655 [2.6608, 2.6702] 37
E2 2.6703 [2.6656, 2.675] 25 160
E3 2.6738 [2.6691, 2.6785] 24 58

0.3
E1 6.2905 [6.2763, 6.3046] 40
E2 6.2851 [6.2708, 6.2991] 25 161
E3 6.3124 [6.2981, 6.3266] 24 58

0

-0.3
E1 3.8293 [3.8271, 3.8316] 44
E2 3 .7636 [3 .7613 , 3 .7658] 26 280
E3 3.8328 [3.8306, 3.8351] 26 244

0
E1 4.7008 [4.6969, 4.7048] 39
E2 4 .6306 [4 .6266 , 4 .6345] 26 281
E3 4.7077 [4.7038, 4.7117] 25 130

0.3
E1 9.4646 [9.4429, 9.4863] 43
E2 9 .3795 [9 .3579 , 9 .4011] 26 281

Lookback E3 9.4701 [9.4483, 9.4949] 26 247

1

-0.3
E1 3.7494 [3.7471, 3.7518] 46
E2 3 .6844 [3 .6821 , 3 .6867] 26 289
E3 3 .7555 [3 .7532 , 3 .7578] 26 243

0
E1 4.7636 [4.7593, 4.7678] 34
E2 4 .7003 [4 .6960 , 4 .7043] 26 292
E3 4.7679 [4.7636, 4.7721] 26 244

0.3
E1 11.5151 [11.4854, 11.5447] 43
E2 11 .3992 [11 .3699 , 11 .4185] 26 275
E3 11.5264 [11.4966, 11.5563] 24 66

Table 1

Monte Carlo estimate, 95%-confidence intervals and computational time of E1 (JEA
estimator), E2 (Euler estimator) and E3 (Euler + Thinning) with discretisation step

1/N . Functionals: ASIAN (φ =
∑5

i=1
Xi) and LOOKBACK option

(φ = max{0≤t≤5} Xt). Model: X (38) with fixed parameters α = σ = λ0 = 1 and x0 = 2
and variable parameters β and l. Monte Carlo sample size: 5 × 105. Notes: The

discretisation step selected for E2 or E3 is the largest in the range
{1/2n; n = 0, 1, . . . , 6} generating a confidence interval with non-empty intersection with
the corresponding confidence interval of E1. Alternatively if no intersection occurs, we

set N = 26 and the corresponding values of the estimate, confidence interval and
computational time are identified by the italic font.

imsart-aap ver. 2007/12/10 file: jumpdiffsub.tex date: May 16, 2008

	Introduction
	Jump-diffusion processes with state-dependent intensities
	The simulation problem
	An introductory example: Merton model
	The general case

	The Jump Exact Algorithm
	Constructing the Jump Exact Algorithm
	The jump component (Problem P.1)
	The diffusion component (Problem P.2).

	The JEA algorithm: Thinning and Exact Algorithm

	Monte Carlo applications
	Preliminaries
	Brownian bridge decomposition
	Functional evaluated at a discrete set of time points
	Path dependent functionals
	Lookback options
	Single Barrier options
	Double barrier options
	Bond pricing with stochastic interest rate

	Numerical example
	The model
	Simulation schemes
	The JEA scheme
	The naive Euler scheme with jumps
	The Euler scheme with thinned jumps

	Results

	Conclusion
	Appendix 1: Brownian bridge results.
	References
	Author's addresses

