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Abstract

There are two types of tempered stable (TS) based Ornstein-Uhlenbeck (OU) processes:

1) OU-TS process, the OU process driven by TS subordinator, and 2) TS-OU process, the

OU process with TS marginal law. They have various applications in financial engineering

and econometrics. In the literature, only the second type under the stationary assumption

has an exact simulation algorithm. In this paper, we develop a unified approach to exactly

simulate both types without the stationary assumption. It is mainly based on the distributional

decomposition of stochastic processes with an aid of acceptance-rejection scheme. As the

inverse Gaussian distribution is an important special case of TS distribution, we also provide

tailored algorithms for the corresponding OU processes. Numerical experiments and tests are

reported to demonstrate the accuracy and effectiveness of our algorithms, and some further

extensions are also discussed.
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1 Introduction

A Lévy-driven Ornstein-Uhlenbeck (OU) process is the analogue of an ordinary Gaussian OU

process (Uhlenbeck and Ornstein, 1930) with its Brownian motion part replaced by a Lévy pro-

cess. This class of stochastic processes has been extensively studied in the literature, see Wolfe

(1982), Sato and Yamazato (1984), Barndorff-Nielsen (1998) and Barndorff-Nielsen et al. (1998).

Comparing with the Gaussian OU processes, the non-Gaussian counterparts offer greater flexib-

ility that can additionally accommodate some crucial distributional features, such as jumps and

volatility clustering, which are often observed in the real time series data1. Nowadays, these pro-

cesses have been widely used as the continuous-time stochastic volatility models for the observed
1See empirical evidences in finance from Carr et al. (2002).

1



behaviour of price dynamics in finance and economics. The applicability has been enhanced sub-

stantially by Barndorff-Nielsen and Shephard (2001b, 2002). They proposed a variety of useful

non-negative OU processes for modelling stochastic volatilities. This class of models not only

possess mathematically tractable properties, but also has nice economic interpretations for which

new information arrives in discrete packets and trades are made in blocks2. In addition, it has also

been used in option pricing, see Nicolato and Venardos (2003), Kallsen et al. (2011) and Li and

Linetsky (2014), and for describing high-frequency financial data in market microstructure, see

Barndorff-Nielsen and Shephard (2003a,b) and Todorov and Tauchen (2006).

In fact, Barndorff-Nielsen and Shephard (2001a,b,c) proposed two general ways to construct

non-Gaussian OU processes. One approach is to first specify the invariant marginal distribution of

the underlying OU process and then study the implied behaviour of the driving non-negative Lévy

process. The model building also involves an unusual change of time, in order to separate the mar-

ginal distribution and dynamic structure of the process. The alternative approach is the other way

around but more natural: the process is constructed directly by specifying the driving non-negative

Lévy process. Although the former approach appears to be more popular and is widely used in the

current literature3, the latter one is also very attractive as a natural alterative for describing financial

data.

Due to numerous applications of these models, the availability of efficient and accurate simula-

tion algorithms is particularly important in the context of model validation and statistical inference,

as well as for risk analysis and derivative pricing. The most well-known simulation scheme is based

on Rosiński’s infinite series representation (Rosiński, 2001). One could alternatively use Fourier

inversion techniques to numerically invert the underlying characteristic functions, see Glasserman

and Liu (2010) and Chen et al. (2012). Both methods apply to a very general class of processes,

however, they are not exact and would introduce truncation, discretisation or round-off errors. Our

interest in this paper is the exact simulation rather than the approximation-based, and we con-

sider two important types of non-Gaussian OU processes which are constructed from positive

tempered stable (TS) distributions: (1) OU-TS process, i.e. the ordinary Gaussian OU process

with its Brownian motion part replaced by a TS subordinator; (2) TS-OU process, i.e. the OU

process with positive TS marginal law. One should be aware that these two types are very differ-

ent although their names sound similar. The marginal distribution of TS-OU process is simply a
2See empirical evidences from the market microstructure in Easley and O’Hara (1987).
3The former approach has been widely used in the literature, for example, for modelling stochastic volatility, see

Barndorff-Nielsen and Shephard (2001c, 2002, 2003a), Barndorff-Nielsen et al. (2002), Gander and Stephens (2007a,b)
and Andrieu et al. (2010).
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time-invariant TS distribution, whereas the marginal distribution of OU-TS process is time-variant

and is not TS. As pointed in the concluding remarks of Barndorff-Nielsen and Shephard (2001c,

p.19), these two types offer great flexibility and are mathematically and computationally tract-

able, which could lead to a variety of applications, e.g. Barndorff-Nielsen et al. (1998, 2002),

Barndorff-Nielsen and Shephard (2001b, 2002, 2003a), Nicolato and Venardos (2003), Jongbloed

et al. (2005), Gander and Stephens (2007a,b), Andrieu et al. (2010) and Todorov (2015) for model-

ling the stochastic volatility, and a series of time-changed models by Li and Linetsky (2013, 2014,

2015) and Mendoza-Arriaga and Linetsky (2014, 2016) for modelling the stochastic time clock.

The aim of this paper is to design a unified approach to exactly simulate OU-TS and TS-OU

processes, with a particular focus on the first type. Our key methodology for simulation design is

the exact distributional decomposition, which has also been recently used to simulate the classical

Hawkes process (Dassios and Zhao, 2013), the point process with CIR intensity (Dassios and Zhao,

2017), tempered stable distributions (Dassios et al., 2018), Lévy-driven point processes (Qu et al.,

2019a) and gamma-driven Ornstein-Uhlenbeck processes (Qu et al., 2020). We first develop an

exact simulation scheme for the OU-TS process based on distributional decomposition by breaking

the Lévy measure of the driving TS subordinator. More precisely, the transition distribution of

OU-TS process can be decomposed into simple elements: one TS r.v. and one compound Poisson

r.v., and each of them can be exactly simulated directly, or, via acceptance-rejection (A/R) scheme.

Besides, this approach can also be easily extended to the TS-OU process. We find that the TS-OU

process is the sum of one OU-TS process and one compound Poisson process, and this immediately

reveals an associated exact simulation scheme for this process. In particular, the inverse Gaussian

(IG) OU processes, i.e. OU-IG and IG-OU processes, are included as the important special cases,

and their tailored algorithms are provided. In addition, some further extensions for Lévy-driven

OU processes with the BDLPs beyond tempered stable processes are also discussed.

Recently, Zhang (2011) derived an exact simulation algorithm for the stationary TS-OU pro-

cess, see also Zhang and Zhang (2009). His algorithm is developed mainly based on the well

known Lévy-Khintchine representation for the (infinitely divisible) TS distribution. Apparently it

is applicable, as the marginal distribution of a TS-OU process is a time-invariant TS distribution

under the key assumption of stationarity. However, his approach is methodologically different from

ours, and the key difference is that we do not use Lévy-Khintchine representation so the stationary

assumption is not required. For example, his approach can not apply to the non-stationary OU-TS

process whose marginal distribution is time-varying and is not necessarily TS or any identifiable

distribution. We can deal with the non-stationary processes, each of which starts from a given
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time with a fixed initial value (rather than a stationary distribution for the initial value). The main

contribution of this paper in the context of simulation is to provide the first method for exactly

sampling the OU-TS process without the stationary assumption, which is also applicable to the

TS-OU process.

This paper is organised as follows: Section 2 offers the preliminaries including formal math-

ematical definitions and introductions for the TS distribution, TS subordinator, non-Gaussian OU

process, and OU-TS/TS-OU processes. In Section 3 and 4, we first derive some important distri-

butional properties, and then present the associated algorithms of exact simulation for OU-TS/OU-

IG and TS-OU/IG-OU processes, respectively. In Section 5, extensive numerical experiments

have been carried out and reported in detail, which demonstrate the accuracy and effectiveness

of our algorithms. Some further extensions for Lévy-driven OU processes with the BDLPs beyond

tempered stable processes are discussed in Section 6. Finally, Section 7 draws a conclusion for this

paper, and proposes some issues for possible further extensions and future research.

2 Preliminaries

This preliminary section offers a brief review for a number ofwell-known distributions and stochastic

processes: tempered stable distribution, inverseGaussian distribution, TS subordinator, non-Gaussian

Ornstein-Uhlenbeck process, and two important types of non-Gaussian Ornstein-Uhlenbeck pro-

cesses. They provide the foundations for developing simulation algorithms later in the next section.

2.1 Tempered Stable Distribution and Tempered Stable Subordinator

Positive tempered stable distribution can be obtained from a one-sided α-stable law by exponential

tilting (Barndorff-Nielsen et al., 2002, p.14), see also Barndorff-Nielsen and Shephard (2001c, p.3).

More precisely, it can be defined as below:

Definition 2.1 (Positive Tempered Stable Distribution). Positive tempered stable (TS) distribu-

tion, denoted by TS(α, β, θ), is an infinitely divisible distribution defined by its Lévy measure

ν(dy) =
θ

yα+1
e−βydy, y ≥ 0, α ∈ (0, 1), β, θ ∈ R+, (2.1)

where α is the stability index, θ is the intensity parameter and β is the tilting parameter.

In particular, if α = 1
2 , it reduces to a very important distribution, the inverse Gaussian (IG)

distribution (which can be interpreted as the distribution of the first passage time of a Brownian
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motion to an absorbing barrier).

Tempered stable subordinator is a positive Lévy process whose one-dimensional distributions

are positive TS distributions4. More precisely, it can be defined as below:

Definition 2.2 (Tempered Stable Subordinator). Tempered stable (TS) subordinator is a positive

Lévy process
¶
Zt : t ≥ 0

©
such that Z1 follows a positive TS distribution, i.e. Z1 ∼ TS(α, β, θ).

It is a Lévy subordinator5 where the state space is restricted in the positive half real line, and

Zt ∼ TS
Ä
α, β, θt

ä
,∀t > 0. The stable index α determines the importance of small jumps for the

process trajectories, the intensity parameter θ controls the intensity of jumps, and the tilting para-

meter β determines the decay rate of large jumps. TS subordinator (including IG subordinator as

the special case) is one of the most general and widely used building blocks for further construct-

ing many useful TS-based stochastic processes. Distinguishing examples include the TS-based

non-Gaussian OU processes which are briefly reviewed as follows.

2.2 Non-Gaussian Ornstein-Uhlenbeck Processes and Tempered Stable Ornstein-

Uhlenbeck Processes

Non-Gaussian Ornstein-Uhlenbeck processes are well-equipped for capturing the mean-reverting

dynamics as well as the skewness and leptokurtosis in the marginal distributions of the underlying

financial time series. In the literature, there are two important types of non-Gaussian Ornstein-

Uhlenbeck processes: the modified version with time change, and the original version without

time change. Let us first review the original version6 as proposed by Barndorff-Nielsen et al. (1998,

p.995):

Definition 2.3 (Non-Gaussian Ornstein-Uhlenbeck Process). Xt is a non-Gaussian Ornstein-

Uhlenbeck (OU) process that satisfies the stochastic differential equation (SDE)

dXt = −δXtdt+ %dZt, t ≥ 0, (2.2)

where

• % > 0 is a positive constant;

• δ > 0 is the constant rate of exponential decay;

• Zt ≥ 0 with Z0 = 0 is a pure-jump Lévy subordinator.
4More generalised tempered stable distributions and hence the associated processes can be found in Rosiński (2007).
5A subordinator is a Lévy process with non-decreasing paths, see Bertoin (1998, Chapter 3) and Sato (1999).
6It is also named the general Ornstein-Uhlenbeck process in Norberg (2004).
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Equivalently, given the initial levelX0 > 0 at time 0, the solution to this SDE (2.2) is given by

Xt = e−δtX0 + %

t∫
0

e−δ(t−s)dZs. (2.3)

Zt, termed the background driving Lévy process (BDLP), is a homogenous Lévy process with

positive increments almost surely. Hence, the resulting process Xt is non-negative, and it is the

continuous-time analogue of a discrete-time autoregression of order 1 (AR(1)) (Barndorff-Nielsen

et al., 1998, p.995). IfZt is replaced by a standard Brownian motion, then, it returns to the ordinary

Gaussian OU process (Uhlenbeck and Ornstein, 1930).

On the other hand, Barndorff-Nielsen and Shephard (2001a,b,c) proposed a more popular ver-

sion based on change of time:

Definition 2.4 (Time-changed Non-Gaussian Ornstein-Uhlenbeck Process). Yt is a time-changed

non-Gaussian Ornstein-Uhlenbeck (OU) process that satisfies the SDE

dYt = −δYtdt+ dRt, t ≥ 0, (2.4)

where Rt is a time-changed Lévy subordinator such that the resulting marginal distribution of Yt

is independent of the decay rate δ.

This deliberately leads to a separation between the marginal distribution of OU process and its

dynamic structure, which is the main attractiveness of this model.

Based on these two types of non-Gaussian OU processes defined above, the associated two

types of TS-based OU processes can be naturally constructed, i.e. the so-called OU-TS process

and TS-OU process7, respectively:

Definition 2.5 (TS-BasedOrnstein-Uhlenbeck Processes). Two types of TS-basedOrnstein-Uhlenbeck

processes:

1. OU-TS Process: For the non-Gaussian OU process Xt of Definition 2.3, if Lévy subordin-

ator Zt is a TS process of Definition 2.2, then, Xt is an OU-TS process for any time t.

2. TS-OU Process: For the non-Gaussian OU process Yt of Definition 2.4, if the marginal

distribution of Yt is a positive TS distribution of Definition 2.1, then, Yt is a TS-OU process

for any time t.
7We adopt the abbreviations of OU-TS and TS-OU from Barndorff-Nielsen et al. (2002, p.13), see also Barndorff-

Nielsen et al. (1998), Barndorff-Nielsen and Shephard (2001c, 2003a) and Schoutens (2003, p.48).
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In particular, if the stable index α = 1/2, then they reduce to OU-IG and IG-OU processes.

Simulated paths of OU-TS and OU-IG processes are plotted in Figure 1 and Figure 2, respectively.

OU-TS and TS-OU processes are very tractable which could facilitate many types of positive

time series, such as stochastic volatilities, interest rates and default intensities. However, most of

the literature concentrate on the second type, whereas in this paper, we focus on the first type.

Meanwhile, we provide some important connections between the two.
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Figure 1: A simulated path of OU-TS process by Algorithm 3.1, with the parameter setting
(δ, %;α, β, θ;X0) = (0.2, 1.0; 0.9, 0.2, 0.25; 10) within the time period of [0, 100] and
10, 000 equally-spaced discretisation steps
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Figure 2: A simulated path of OU-IG process by Algorithm 3.3, with the parameter setting (δ, %; c;X0) =
(0.2, 1.0; 0.5; 2.0)within the time period of [0, 100] and 10, 000 equally-spaced discretisation steps
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3 Exact Simulation of OU-TS Process

In this section, we develop the exact simulation scheme for OU-TS process based on the exact

distributional decomposition, i.e. conditional on the value of OU-TS process at time t ∈ R+, the

distribution of OU-TS process at time t + τ for any time lag τ ∈ R+ can be broken into three

simple elements: one constant, one TS r.v. and one compound Poisson r.v., and each of them

can be exactly generated. This is achieved by the identification through the conditional Laplace

transforms derived as below.

Proposition 3.1. For a general non-Gaussian OU processXt of Definition 2.3, the Laplace trans-

form of Xt+τ conditional on Xt is given by

E
î
e−vXt+τ | Xt

ó
= e−vwXt × exp

Ñ
−%
δ

v∫
vw

Φ(u)

u
du

é
, τ ∈ R+, (3.1)

where w := e−δτ and Φ(u) is the Laplace exponent of Lévy subordinator Zt.

Proof. Note that, in general, the Laplace exponent for Zt is

Φ(u) =

∞∫
0

Ä
1− e−uy

ä
ν(dy),

where ν is the Lévy measure of Zt. The infinitesimal generator8 A of process (Xt, t) acting on

any function f(x, t) within its domain Ω (A) is given by

Af(x, t) =
∂f

∂t
− δx∂f

∂x
+ %

Ñ ∞∫
0

î
f(x+ y, t)− f(x, t)

ó
ν(dy)

é
, (3.2)

where Ω(A) is the domain for the generator A such that f(x, t) is differentiable with respect to x

and t for all x and t, and

∣∣∣∣∣∣
∞∫
0

î
f(x+ y, t)− f(x, t)

ó
ν(dy)

∣∣∣∣∣∣ <∞.
By applying the piecewise-deterministic Markov processes theory (Davis, 1984) and martingale

approach (Dassios and Embrechts, 1989), we can derive the conditional Laplace transform forXt.
8Infinitesimal generator for (Xt, t) is defined as

Af(x, t) := lim
∆t→0

E[f(Xt+∆t, t+ ∆t) | Xt = x]− f(x, t)

∆t
,

see Øksendal (2010). The associated infinitesimal generator for Lévy subordinators can be easily found in the existing
literature, for example, Sato (1999, Ch.6).
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More precisely, set Af(x, t) = 0, we find a martingale

exp
Ä
−Xtke

δt
ä

exp

Ñ
%

t∫
0

Φ
Ä
keδs
ä
ds

é
, ∀ k ∈ R+, (3.3)

with the proof in Appendix A. By martingale property and setting k = ve−δ(t+τ), we obtain

E
î
e−vXt+τ | Xt

ó
= exp

Ä
−ve−δτXt

ä
exp

Ñ
−%

t+τ∫
t

Φ
Ä
ve−δ(t+τ−s)

ä
ds

é
= exp

Ä
−ve−δτXt

ä
exp

Ö
−%
δ

v∫
ve−δτ

Φ(u)

u
du

è
.

The conditional Laplace transform (3.1)9 in Proposition 3.1 is the key tool to develop our exact

simulation scheme later in this section. It can also be used to obtain an analytical formula for the

associated conditional expectation in Proposition 3.2.

Proposition 3.2. The expectation of Xt+τ conditional on Xt is given by

E [Xt+τ | Xt] = wXt +
%

δ
(1− w)E [Z1] , τ ∈ R+, (3.4)

where E[Z1] =

∞∫
0

sν(ds).

Proof. Based on Proposition 3.1, we have

E [Xt+τ | Xt] = − ∂

∂v
E
î
e−vXt+τ | Xt

ó ∣∣∣∣∣
v=0

= e−δτXt +
%

δ
lim
v→0

Ç
Φ′(v)− Φ′

Ä
e−δτv

äå
= e−δτXt +

%

δ
lim
v→0

Ñ ∞∫
0

se−vsν(ds)− w
∞∫
0

se−wvsν(ds)

é
= e−δτXt +

%

δ

Ä
1− e−δτ

ä ∞∫
0

sν(ds).

In particular, for the OU-TS process, we have E [Z1] = θβ1−αΓ(1− α), where Γ(·) is gamma
9An alternative proof of this result via the characteristic function of stochastic integral for a continuous function

proposed by Lukacs (1969) can also be found in Wolfe (1982).
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function, i.e. Γ(u) :=

∞∫
0

su−1e−sds. Set t = 0 and τ = T > 0 in (3.4), we have

E [XT | X0] = X0e
−δT +

%

δ

Ä
1− e−δT

ä
θβα−1Γ(1− α), (3.5)

which will be used later for numerically validating our simulation scheme in Section 5.

3.1 Simulation Algorithm for OU-TS Process

The conditional distribution of OU-TS process is decomposable, due to the infinite divisibility

property of TS distribution. We choose a "cutting" value to break the OU-TS process into several

simple elements such that each one can be exactly simulated. Theorem 3.1 illustrates the exact

distributional decomposition of OU-TS process via integral transforms.

Theorem 3.1. For the OU-TS processXt of Definition 2.5, the Laplace transform ofXt+τ condi-

tional on Xt can be expressed by

E
î
e−vXt+τ | Xt

ó
(3.6)

= e−vwXt × exp

Ñ
−%θ(1− w

α)

αδ

∞∫
0

(1− e−vs)e
− β
w
s

sα+1
ds

é
× exp

Ü
−%θβ

αΓ(1− α)Dw

αδ

∞∫
0

(1− e−vs)

1
w∫

1

(βu)1−α

Γ(1− α)
s(1−α)−1e−βus

uα−1 − u−1

Dw
duds

ê
,

where w := e−δτ and

Dw :=
1

α

Ä
w−α − 1

ä
+ lnw. (3.7)

Proof. Since the Lévy measure of TS is (2.1), the Laplace exponent is specified by

Φ(u) =

∞∫
0

(1− e−uy) θ

yα+1
e−βydy =

θΓ(1− α)

α

î
(β + u)α − βα

ó
. (3.8)

Based on Proposition 3.1, we have

E
î
e−vXt+τ | Xt

ó
= e−vwXt exp

Ñ
−%
δ

v∫
vw

1

u

∞∫
0

Ä
1− e−uy

ä θ

yα+1
e−βydydu

é
,

where

v∫
vw

1

u

∞∫
0

Ä
1− e−uy

ä
θy−α−1e−βydydu
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=

∞∫
0

1− e−vs

s

s
w∫
s

θy−α−1e−βydyds

=

∞∫
0

1− e−vs

s

s
w∫
s

θ

yα+1

Ä
e−β

s
w + e−βy − e−β

s
w

ä
dyds

=

∞∫
0

1− e−vs

s

s
w∫
s

θ

yα+1
e−β

s
w dyds +

∞∫
0

1− e−vs

s

s
w∫
s

θ

yα+1

Ä
e−βy − e−β

s
w

ä
dyds. (3.9)

Since y < s
w , the two terms in (3.9) are both positive for any y ∈ [s, sw ]. In particular, for the first

term of (3.9), we have

∞∫
0

1− e−vs

s

s
w∫
s

θ

yα+1
e−β

s
w dyds =

θ(1− wα)

α

∞∫
0

Ä
1− e−vs

ä e− β
w
s

sα+1
ds; (3.10)

for the second term of (3.9), we have

∞∫
0

Ä
1− e−vs

ä 1

s

s
w∫
s

θ

yα+1

Ä
e−βy − e−β

s
w

ä
dyds

= θ

∞∫
0

Ä
1− e−vs

ä 1
w∫

1

s−αx−α−1 e
−βsx − e−β

s
w

s
dxds

= θ

∞∫
0

Ä
1− e−vs

ä 1
w∫

1

x−α−1s−α

1
w∫
x

βe−βsududxds

= θ

∞∫
0

Ä
1− e−vs

ä 1
w∫

1

s−αβe−βsu
u∫

1

x−α−1dxduds

=
θβα

α
Γ(1− α)Dw

∞∫
0

Ä
1− e−vs

ä 1
w∫

1

(βu)1−α

Γ(1− α)
s(1−α)−1e−βus

1

Dw

Ä
uα−1 − u−1

ä
duds,

(3.11)

where

Dw =

1
w∫

1

Ä
uα−1 − u−1

ä
du =

1

α

Ä
w−α − 1

ä
+ lnw.

The exact distributional decomposition of Xt+τ conditional on Xt can be immediately iden-

tified from the representation of Laplace transforms in Theorem 3.1, and hence implies an exact

simulation scheme summarised in Algorithm 3.1.
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Algorithm 3.1 (Exact Simulation for OU-TS Process). The distribution of Xt+τ conditional on

Xt can be exactly decomposed by

Xt+τ | Xt
D
= wXt + T̃ S +

N∑
i=1

Si, τ ∈ R+,

where w := e−δτ ,

• T̃ S is a TS r.v. of

T̃ S ∼ TS
Å
α,

β

w
,
%θ

αδ
(1− wα)

ã
, (3.12)

which can be exactly simulated by Algorithm D.1;

• N is a Poisson r.v. of rate %θ
αδβ

αΓ(1− α)Dw;

•
¶
Si
©
i=1,2,...

are conditionally independent and conditionally gamma r.v.s of

Si | V ∼ Gamma
Ä
1− α, βV

ä
10, (3.13)

given that V can be exactly simulated via Algorithm 3.2;

• T̃ S,N and
¶
Si
©
i=1,2,...

are independent of each other.

Proof. From Theorem 3.1, we can see that, the original Laplace transform has been broken into

three parts, and each part is a well-defined Laplace transform. In particular, (3.10) is the Laplace

transform of a TS r.v. with Lévy measure

ν(ds) =
θ(1− wα)

α
s−α−1e−

β
w
sds.

(3.11) is the Laplace transform of a compound Poisson r.v. with the jump sizes following a Gamma

distribution of shape parameter (1−α) and rate parameter βV . Here, V is a well-defined r.v. with

density function

fV (u) =
1

Dw

Ä
uα−1 − u−1

ä
, u ∈

ï
1,

1

w

ò
. (3.14)

Note that, there are several different algorithms for generating TS r.v.s in the literature, such

as simple stable rejection (SSR) (Algorithm D.1), double rejection (Devroye, 2009), fast rejection

(Hofert, 2011), backward recursive (Dassios et al., 2018) and two-dimensional single rejection (Qu

et al., 2019b). The choice for the fundamental TS generator is indeed not our main focus of this
10Gamma(1− α, βV ) means a Gamma distribution with shape parameter (1− α) and rate parameter βV .
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paper. Here, we directly adopt the SSR scheme just for the purpose of illustration. It is the simplest

and most widely-used algorithm for exact simulation, and it works more efficiently when α is larger

and β, θ are smaller.

Algorithm 3.2 (A/R Scheme for V ). The r.v. V , defined by its density (3.14), can be exactly

simulated via the following A/R procedure:

1. Generate a candidate r.v.

Ee
D
=
(
1 +
»
αCwU (1)

) 2
α
, U (1) ∼ U[0, 1], (3.15)

where

Cw :=
1

α

Ä
w−

α
2 − 1

ä2
.

2. Generate a standard uniform r.v. U (2) ∼ U[0, 1].

3. If

U (2) ≤ 1

2

Eαe − 1

Eαe − E
α
2
e

,

then, accept this candidate by setting V = Ee; otherwise, reject this candidate and go back

to Step 1.

Proof. Based on the density function (3.14), it is easy to derive the CDF of V by

FV (u) := Pr{V ≤ u} =
1

Dw

ñ
1

α

Ä
uα − 1

ä
− lnu

ô
, u ∈

ï
1,

1

w

ò
.

However, its inverse function has no explicit form, and the explicit inverse transform is not available.

Then, it is natural to consider the A/R scheme for exact simulation. For a detailed introduction to

A/R scheme, see Glasserman (2003) and Asmussen and Glynn (2007). We choose an envelop r.v.

Ee defined by its density function

ge(u) =
1

Cw

Ä
uα−1 − u−

α
2
−1
ä
, u ∈

ï
1,

1

w

ò
.

We can derive its CDF

Ge(u) =
1

αCw

Ä
u
α
2 − 1

ä2
, u ∈

ï
1,

1

w

ò
,

which can be inverted explicitly by

G−1
e (x) =

Ä
1 +

√
αCwx

ä 2
α , x ∈ [0, 1] .
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Hence, Ee can be exactly simulated by explicit inverse transform (3.15). Obviously, uα−1

uα−u
α
2
is a

strictly decreasing function of u ∈
î
1, 1

w

ó
. By L’Hôpital’s rule, we can find its upper bound

lim
u↓1

uα − 1

uα − u
α
2

= 2.

Then, we have

fV (u)

ge(u)
=
Cw
Dw

uα − 1

uα − u
α
2

≤ Cw
Dw

lim
u↓1

uα − 1

uα − u
α
2

= 2
Cw
Dw

:= c̄w, ∀u ∈
ï
1,

1

w

ò
. (3.16)

Remark 3.1. Note that, c̄w of (3.16) is the expected number of candidates generated until one is

accepted, hence, 1/c̄w is the acceptance probability, i.e. the probability of acceptance on each

attempt. Obviously, it is preferable for us to have c̄w close to 1. In fact, our Algorithm 3.2 is pretty

efficient, as we can prove in Appendix B that, the acceptance probability is guaranteed to be above

50%. More precisely, we have c̄w ∈ (1, 2) and


c̄w → 1, when w → 1,

c̄w → 2, when w → 0.

(3.17)

3.2 Algorithm for OU-IG Process

We provide a tailored algorithm for the special case of OU-IG process. The enhancement is mainly

achieved by replacing the TS r.v. of (3.12) in Algorithm 3.1 by an IG r.v.11, and it is well known

that IG r.v.s can be very efficiently simulated without A/R using the classical algorithm developed

by Michael et al. (1976).

Algorithm 3.3 (Algorithm for OU-IG Process). For the OU process Xt with Lévy subordinator

Zt ∼ IG
( t
c , t

2
)
, c ∈ R+, we can exactly simulateXT+τ conditional onXt via modifying Algorithm

3.1 by

1. setting α = 1
2 , β = 1

2c
2 and θ = 1√

2π
;

2. replacing the general TS r.v. (3.12) by the IG r.v.›IG ∼ IG
Ç
µIG =

2%

δc

Ä√
w − w

ä
, λIG =

ï
2%

δ

Ä
1−
√
w
äò2å

,

where µIG is the mean parameter and λIG is the rate parameter.
11Mathematical properties of IG distributions are well documented in Chhikara and Folks (1989).
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Proof. For an IG r.v. IG ∼ IG
Ä

1
c , 1
ä
, the Lévy measure is given by

ν(ds) =
1√

2πs3
e−

c2

2
sds,

then, we have

IG ∼ TS
Ç

1

2
,
c2

2
,

1√
2π

å
.

If we set α = 1
2 , β = 1

2c
2 and θ = 1√

2π
, then, it recovers the special case of OU-IG process. In

particular, (3.12) turns to be

TS
Ç

1

2
,
c2

2w
,

2%

δ
√

2π

Ä
1−
√
w
äå

,

with the associated Laplace exponent

∞∫
0

Ä
1− e−vs

ä 2%(1−
√
w)

δ√
2πs3

e−

Ä
c√
w

ä2

2
sds.

Note that, in general, the Laplace exponent of IG (µIG, λIG) is given by

∞∫
0

Ä
1− e−vs

ä √λIG√
2πs3

e−

(√
λIG
µIG

)2

2
sds, µIG, λIG ∈ R+. (3.18)

Under the parameter setting of α = 1
2 , β = 1

2c
2 and θ = 1√

2π
, the general TS r.v. in (3.12) can be

replaced by an IG r.v. as

TS
Ç

1

2
,
c2

2w
,

2%

δ
√

2π
(1−

√
w)

å
D
= IG

Ç
2%

δc

Ä√
w − w

ä
,

ï
2%

δ

Ä
1−
√
w
äò2å

.

4 Exact Simulation of TS-OU Process

In this section, we extend our approach developed in Section 3 to the TS-OU process Yt of Defini-

tion 2.5. Analogue to Proposition 3.1 for the OU-TS processXt, the conditional Laplace transform

of TS-OU process Yt is given by

E
î
e−vYt+τ | Yt

ó
= e−vwYt × exp

Ñ
−

v∫
vw

Φ(u)

u
du

é
. (4.1)
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According to the general theory of OU processes (Barndorff-Nielsen and Shephard, 2001b, p.173),

the stationary TS-OU process Yt has a TS marginal law with Lévy measure νTS(dy) specified in

(2.1). The one-dimensional distributions of the process is self-decomposable, and the Laplace

exponent Φ(u) in (4.1) is of the form

Φ(u) =

∞∫
0

Ä
1− e−ur

ä
νBDLP(dr),

with

νBDLP(dr) = −νTS(dr)− r ∂
∂r
νTS(dr) =

Ä
αr−1 + β

ä
θr−αe−βrdr, (4.2)

where νBDLP(dr) is the Lévy measure of BDLP Rt in (2.4).

Given the Lévy measure of Rt, we provide the conditional expectation of Yt as below.

Proposition 4.1. The expectation of Yt+τ conditional on Yt is given by

E [Yt+τ | Yt] = wYt + (1− w)θβα−1Γ(1− α), (4.3)

lim
τ→∞

E [Yt+τ | Yt] = θβ1−αΓ(1− α). (4.4)

Proof. Based on (4.2), (4.3) can be immediately derived from (3.4) by

∞∫
0

sνBDLP(ds) = αθβα−1Γ(1− α) + θβα−1Γ(2− α).

Take the limit of τ →∞ for (4.3), then, w → 0 and we have (4.4).

In fact, we can see from (4.2) that, the Lévy measure of the BDLP of TS-OU process is the

sum of Lévy measures of a TS process and a compound Poisson process. Hence, based on the

exact decomposition of OU-TS process in Algorithm 3.1, the distribution of TS-OU process at a

given time is equivalent to the sum of a TS r.v. and two compound Poisson r.v.s. as specified by

Algorithm 4.1, with the proof outlined in Appendix C.

Algorithm 4.1 (Exact Simulation for TS-OU Process). The distribution of YT+τ conditional on

Yt can be exactly decomposed by

Yt+τ | Yt
D
= wYt + fĭTS +

Ñ∑
i=1

Si +
N̆∑
j=1

S̆j , τ ∈ R+, (4.5)

where w := e−δτ ,
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• fĭTS is a TS r.v. of fĭTS ∼ TS
Ç
α,

β

w
, θ
Ä
1− wα

äå
; (4.6)

• Ñ is a Poisson r.v. of rate θβαΓ(1 − α)Dw, and the jump sizes {Si}i=1,2,... are i.i.d. and

exactly the same as (3.13);

• N̆ is another Poisson r.v. of rate θβαΓ(1 − α) ln
Ä

1
w

ä
, and the jump sizes {S̆j}j=1,2,... are

conditionally independent and conditionally gamma r.v.s of

S̆j | V ∗ ∼ Gamma
Ä
1− α, βV ∗

ä
,

given that

V ∗
D
= exp

Ä
δτU (3)

ä
, U (3) ∼ U[0, 1]; (4.7)

• fĭTS, Ñ , N̆ , {Si}i=1,2,... and {S̆j}j=1,2,... are independent of each other.

Accordingly, we also offer a tailored scheme for the IG-OU process:

Algorithm 4.2 (Algorithm for IG-OU Process). For the OU process Yt with an IG
Ä

1
c , 1
ä
marginal

law, we can exactly simulate YT+τ conditional on Yt via modifying Algorithm 4.1 by

1. setting α = 1
2 , β = 1

2c
2 and θ = 1√

2π
in Algorithm 4.1;

2. replacing the general TS r.v. (4.6) by the IG r.v.

˘̃
IG ∼ IG

Å
µIG =

1

c

Ä√
w − w

ä
, λIG =

Ä
1−
√
w
ä2ã

.

Proof. When α = 1
2 , β = 1

2c
2 and θ = 1√

2π
, the Laplace exponent of (4.6) is

∞∫
0

Ä
1− e−vs

ä 1−
√
w√

2πs3
e−

Ä
c√
w

ä2

2
sds.

Comparing with (3.18), we have

TS
Ç

1

2
,
c2

2w
, θ(1−

√
w)

å
D
= IG

Å
1

c

Ä√
w − w

ä
,
Ä
1−
√
w
ä2ã

.
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5 Numerical Examples

In this section, we illustrate the performance and effectiveness of our exact simulation schemes

through extensive numerical experiments. We have implemented the exact simulation scheme for

four cases, OU-TS/OU-IG and TS-OU/IG-OU processes within the fixed time period [0, T ], re-

spectively. They are mainly implemented on a desktop with Intel Core i7-6700 CPU@3.40GHz

processor, 24.00GB RAM, Windows 10 Professional, 64-bit Operating System. The algorithms

are coded and performed in MatLab (R2012a), and the computing time is measured by the elapsed

CPU time in seconds. We use our algorithms to simulate paths ofXt and Yt from time 0 to T , and

numerically validate and test them based on the true values of means (3.5) and (4.3) at the terminal

time T for OU-TS/OU-IG processes and TS-OU/IG-OU processes, respectively. The associated

errors from the true values are reported by three standard measures:

1. difference = estimated value− true value;

2. relative error (error %) = estimated value − true value
true value ;

3. root mean square error RMSE =
√
bias2 + SE2, where the SE is the standard error of the

simulation output, and the bias is the difference between the expectation of the estimator and

the associated true (theoretical) value. For our exact simulation schemes, the bias is zero.

We set the parameters (δ, %;α, β, θ;X0 = Y0;T ) = (0.2, 1.0; 0.25, 0.5, 0.25; 10.0; 5.0) for

OU-TS/TS-OU processes and (δ, %; c;X0 = Y0;T ) = (0.2, 1.0; 1.0; 10.0; 5.0) for OU-IG/IG-OU

processes, and experiment with different numbers of equally-spaced discretisation steps within the

period [0, T ], i.e. nτ := T/τ . Of course, all of our algorithms can be directly applied to the

irregularly-spaced time points which may be more useful in practice12, and the equally-spaced

cases here just serve for illustration purpose.

Simulated paths of OU-TS/OU-IG processes have been presented earlier in Figure 1 and Fig-

ure 2, respectively. Numerical verification for the four cases, OU-TS/TS-OU, OU-IG/IG-OU, are

reported in Table 1. The efficiency enhancement for simulating OU-IG/IG-OU processes using

the tailored schemes (Algorithm 3.3, 4.2) against the associated general schemes (Algorithm 3.1,

4.1) can be clearly observed through numerical results reported in Table 2. Overall, from these

numerical results reported in this section, it is evident that each algorithm developed in this paper

can achieve a very high level of accuracy as well as efficiency.

12The data in practice, such as trade transactions from market microstructure, are often observed at irregularly-spaced
time points, see Engle and Russell (1998).
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Table 1: Comparison between the true means and the associated simulation results of our exact simulation
schemes for 1, 024, 000 replications, based on the parameter setting (δ, %;α, β, θ;X0 = Y0;T ) =
(0.2, 1.0; 0.25, 0.5, 0.25; 10.0; 5.0) for OU-TS/TS-OU processes and (δ, %; c;X0 = Y0;T ) =
(0.2, 1.0; 1.0; 10.0; 5.0) for OU-IG/IG-OU processes with nτ = 1, 2, 5, 10, respectively.

nτ True Estimation Difference Error% Time True Estimation Difference Error% Time
OU-TS TS-OU

1 5.3072 5.3090 0.0018 0.03% 2,564.31 4.0045 4.0059 0.0015 0.04% 105.42
2 5.3072 5.3100 0.0027 0.05% 332.94 4.0045 4.0055 0.0010 0.03% 202.75
5 5.3072 5.3070 -0.0002 -0.00% 383.53 4.0045 4.0043 -0.0002 -0.00% 492.27
10 5.3072 5.3098 0.0026 0.05% 662.92 4.0045 4.0026 -0.0019 -0.05% 995.53

OU-IG IG-OU
1 6.8394 6.8344 -0.0017 -0.02% 54.58 4.3109 4.3110 0.0000 0.00% 90.56
2 6.8394 6.8413 0.0019 0.03% 102.08 4.3109 4.3100 -0.0009 -0.02% 179.05
5 6.8394 6.8385 -0.0009 -0.01% 240.36 4.3109 4.3101 -0.0008 -0.02% 430.52
10 6.8394 6.8401 0.0007 0.01% 474.41 4.3109 4.3120 0.0011 0.03% 857.55

Table 2: Comparison between the true means and the associated simulation results of our exact simula-
tion schemes for 1, 024, 000 replications, based on the parameter setting (δ, %; c;X0 = Y0;T ) =
(0.2, 1.0; 1.0; 10.0; 5.0) for OU-IG/IG-OU processes with nτ = 1, 2, 5, 10, respectively.

nτ True Estimation Difference Error% Time True Estimation Difference Error% Time
OU-IG Algo. 3.1 OU-IG Algo. 3.3

1 6.8394 6.8402 0.0008 0.01% 4,487.67 6.8394 6.8417 0.0022 0.03% 58.25
2 6.8394 6.8451 0.0057 0.08% 353.39 6.8394 6.8374 -0.0020 -0.03% 100.39
5 6.8394 6.8371 -0.0023 -0.03% 374.17 6.8394 6.8400 0.0006 0.01% 242.95
10 6.8394 6.8401 0.0007 0.01% 660.09 6.8394 6.8369 -0.0025 -0.04% 478.70

IG-OU Algo. 4.1 IG-OU Algo. 4.2
1 4.3109 4.3103 0.0006 0.01% 120.68 4.3109 4.3123 0.0014 0.03% 93.81
2 4.3109 4.3109 0.0000 0.00% 216.94 4.3109 4.3106 -0.0030 -0.01% 188.57
5 4.3109 4.3107 -0.0002 -0.00% 501.08 4.3109 4.3098 -0.0011 -0.03% 434.11
10 4.3109 4.3108 -0.0001 -0.00% 1009.34 4.3109 4.3107 -0.0002 -0.00% 862.09

Conditional mean provides us the easiest way to test and verify newly-developed algorithms as

the its true value can be much easier to be derived in a simple analytic form in most circumstances

as given by (3.5) and (4.3). In fact, our tests and validations based on the means have been carried

out using a vast number of various different parameter sets. The results based on other parameter

sets show very similar levels of accuracy and efficiency, so we do not present all of them here in

order to make our presentation more concise. Of course, other higher moments, values of probab-

ilities or density functions can be also convenient to be used for testing as long as they have analytic

forms so we have already known the true values precisely. For example, the conditional Laplace

transforms that we have derived in Proposition 3.1 and Theorem 3.1 could be used for testing as

well. But we have to first discretize and truncate the infinite integrals in the Laplace transforms,

which would introduce estimation errors. Basically, means can be tested by a sufficient number

of different parameter choices, the aim of testing and verifying our algorithms numerically can be

achieved very similarly based on the simple mean and more complicated moments, so we choose

means for simplicity and it also avoid additional estimation errors.

Alternatively, a widely used and simpler approach for simulating stochastic processes is the

Euler time-discretisation scheme. However, it is well known that this scheme is not exact and it in-
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troduces biases for the estimators. For example, the continuous-time OU-TS processXt following

the SDE (2.2) can be approximated by X̂t via the Euler discretisation scheme,

X̂t+h − X̂t = −δX̂th+ %(Zt+h − Zt),

or,

X̂t+h = (1− δh)X̂t + %(Zt+h − Zt), h = T/ng,

where ng ∈ N+ is the total number of grids within the time interval [0, T ], and (Zt+h − Zt) ∼

TS
Ä
α, β, θh

ä
. According to the principle of optimal allocation of computation budget proposed

by Duffie and Glynn (1995), the number of time-discretisation grids is set equal to the square root

of the number of sample paths, i.e., ng =
√
np where np is the total number of sample paths. The

comparison results between Algorithm 3.1 and Euler discretisation scheme for the OU-TS process,

based on the parameter setting (δ, %;α, β, θ;X0) = (0.2, 1.0; 0.25, 0.5, 0.25; 10.0) and T = 1, 5

are reported in Table 3 with convergence comparison in Figure 3. Obviously, our algorithm out-

performs the discretisation scheme in terms of RMSE and CPU time. In conclusion, our exact

simulation scheme is far more efficient and accurate than the Euler discretisation scheme.
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Figure 3: Convergence comparison between Algorithm 3.1 and discretisation scheme for OU-TS process,
based on the parameter setting (δ, %;α, β, θ;X0) = (0.2, 1.0; 0.25, 0.5, 0.25; 10.0) and T = 1, 5,
respectively, with the associated detailed numerical results reported in Table 3
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Table 3: Comparison between the true means and the associated simulation results for Algorithm 3.1 and
discretisation scheme for OU-TS process, based on the parameter setting (δ, %;α, β, θ;X0) =
(0.2, 1.0; 0.25, 0.5, 0.25; 10.0) and T = 1, 5, respectively, with the associated plots provided in
Figure 3

Paths np True Estimation Difference Error% RMSE Time Grids ng Estimation Difference Error% RMSE Time
Algo. 3.1 T = 1 Discretisation T = 1

10,000 8.6543 8.6443 -0.0099 -0.11% 0.0077 1 100 8.6574 0.0031 0.04% 0.009 17
40,000 8.6543 8.6600 0.0058 0.07% 0.0041 2 200 8.6447 -0.0096 -0.11% 0.010 133
90,000 8.6543 8.6531 -0.0011 -0.01% 0.0026 5 300 8.6503 -0.0040 -0.05% 0.005 442
160,000 8.6543 8.6560 0.0017 0.02% 0.0020 10 400 8.6573 0.0031 0.04% 0.004 1,045
250,000 8.6543 8.6554 0.0011 0.01% 0.0016 15 500 8.6567 0.0024 0.03% 0.003 2,026

Algo. 3.1 T = 5 Discretisation T = 5
10,000 5.3072 5.3112 0.00 0.08% 0.0128 1 100 5.3003 -0.0069 -0.13% 0.015 15
40,000 5.3072 5.3126 0.01 0.10% 0.0065 3 200 5.2892 -0.0180 -0.34% 0.019 115
90,000 5.3072 5.3124 0.01 0.10% 0.0043 6 300 5.3050 -0.0023 -0.04% 0.005 384
160,000 5.3072 5.3104 0.00 0.06% 0.0033 11 400 5.3084 0.0012 0.02% 0.003 912
250,000 5.3072 5.3099 0.00 0.05% 0.0026 16 500 5.3002 -0.0070 -0.13% 0.007 1,793

6 Extensions

Based on the results proposed in Section 3, one could further decompose certain types of Lévy-

driven OU processes with the BDLPs beyond tempered stable processes. The details are provided

in Proposition 6.1.

Proposition 6.1. LetXt being a non-Gaussian OU process of Definition 2.3 and the Lévy measure

of the BDLP Zt is of the form

ν(dy) =
θh(y)

yα+1
dy, (6.1)

with ν satisfies the following condition

∞∫
0

min{1, y}ν(dy) <∞.

For the following two cases, the distribution ofXt+τ conditional onXt can be exactly decomposed.

CASE I: If

D̂w :=

∞∫
0

1
w∫

1

h(su)− h( sw )

sα+1uα+1
duds < ∞, (6.2)

and w := e−δτ , then, Xt+τ |Xt can be expressed as

Xt+τ |Xt
D
= wXt + wẐ +

N̂∑
i=1

Ŝi, τ ∈ R+,

where

– Ẑ is a Lévy subordinator with Lévy measure

ν(ds) =
%θ(1/wα − 1)

αδ

h(s)

sα+1
ds;
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– N̂ is a Poisson r.v. of rate %θD̂w
δ ;

– {Ŝi}i=1,2,... are i.i.d r.v.s with density

fŜ(s) =
1

D̂w

1
w∫

1

h(su)− h( sw )

sα+1uα+1
du, s ∈ (0,∞);

– Ẑ, N̂ , and {Ŝi}i=1,2,... are independent of each other.

CASE II: If h(·) in (6.1) satisfies the conditions

h(y) ≥ e−βy, ∀y ∈ (0,∞), (6.3)

and

D̄w :=

∞∫
0

1
w∫

1

h(su)− e−βsu

sα+1uα+1
duds < ∞, (6.4)

and w := e−δτ , then, Xt+τ |Xt can be expressed as

Xt+τ | Xt
D
= wXt + T̃ S +

N∑
i=1

Si +
N̄∑
i=1

S̄i, τ ∈ R+,

where

– T̃ S, N , {Si}i=1,2,... are suggested in Algorithm 3.1;

– N̄ is a Poisson r.v. of rate %θD̄w
δ ;

– {S̄i}i=1,2,... are i.i.d r.v.s with density

fS̄(s) =
1

D̄w

1
w∫

1

h(su)− e−βsu

sα+1uα+1
du, s ∈ (0,∞);

– T̃ S, N , N̄ , {Si}i=1,2,... and {S̄i}i=1,2,... are independent of each other.

Proof. According to Proposition 3.1, the Laplace transform ofXt+τ conditional onXt is given by

E
î
e−vXt+τ |Xt

ó
= e−vwXt exp

Ö
−%θ
δ

∞∫
0

Ä
1− e−vs

ä 1

s

s
w∫
s

h(y)

yα+1
dyds

è
.

For CASE I, we have

E
î
e−vXt+τ |Xt

ó
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= e−vwXt exp

Ö
−%θ
δ

∞∫
0

Ä
1− e−vs

ä 1

s

s
w∫
s

h( sw )

yα+1
dyds

è
exp

Ö
−%θ
δ

∞∫
0

Ä
1− e−vs

ä 1

s

s
w∫
s

h(y)− h( sw )

yα+1
dyds

è
= e−vwXt exp

Ñ
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ä h(s)
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é
× exp
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0
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ä 1
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1

h(su)− h( sw )

D̂wsα+1uα+1
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ê
, (6.5)

where D̂w is specified in (6.2). We can see that,Xt+τ |Xt can be expressed as the sum of a determ-

inistic constant, a Lévy subordinator with measure proportional to (6.1), and a compound Poisson

r.v. under the condition D̂w <∞.

For CASE II, we have

E
î
e−vXt+τ |Xt

ó
= e−vwXt exp

Ö
−%θ
δ

∞∫
0

Ä
1− e−vs

ä 1

s

s
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s

e−βy
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dyds

è
exp

Ö
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δ
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Ä
1− e−vs

ä 1

s

s
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s

h(y)− e−βy

yα+1
dyds

è
= e−vwXt exp

Ñ
−%θ(1− w

α)

αδ
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0

(1− e−vs)e
− β
w
s

sα+1
ds

é
× exp

Ü
−%θβ

αΓ(1− α)Dw

αδ
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0

(1− e−vs)

1
w∫

1

(βu)1−α

Γ(1− α)
s(1−α)−1e−βus

uα−1 − u−1

Dw
duds

ê
× exp
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−%θD̄w

δ
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0

Ä
1− e−vs

ä 1
w∫

1

h(su)− e−βsu

D̄wsα+1uα+1
duds

ê
, (6.6)

where Dw is given by (3.7) and D̄w is given in (6.4). We can see that, based on the exact decom-

position of OU-TS process in Algorithm 3.1, the distribution of this new Lévy-driven OU process

at a given time is equivalent to the sum of a TS r.v. and two compound Poisson r.v.s under the

conditions h(y) ≥ e−βy for all y ∈ (0,∞) and D̄w <∞.

Remark 6.1. The availability to exact simulate the Lévy-driven OU process Xt suggested in Pro-

position 6.1 depends on the ability to sample Ŝi from density fŜ and S̄i from density fS̄ . Since

we do not have a general scheme to exactly sample Ŝi and S̄i, therefore the first task is to develop

simulation schemes to sample these random variables when the function h(·) is specified. After

that, given the specified h(·), if there exists an available simulation algorithm to generate Zt, then
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one could follow CASE I in Proposition 6.1 to simulate Xt by sampling the corresponding Lévy

suboridinator Ẑ and the compound Poisson r.v.
N̂∑
i=1

Ŝi, respectively. If the simulation scheme forZt

is not available but the specified h(·) satisfies the condition in (6.3), then one could follow CASE

II in Proposition 6.1 to simulate Xt by sampling a tempered stable r.v. T̃ S and two compound

Poisson r.v.s
N∑
i=1

Si and
N̄∑
i=1

S̄i, respectively.

In general, when the function h(·) is specified, it is highly likely that the simulation scheme

for the corresponding Lévy subordinator Zt is not available, therefore, one has to consider CASE

II. However, there are some rare cases when the simulation schemes for Zt with Lévy measure in

(6.1) are indeed available. One typical example is an indicator function h(y) = 1{0<y<b} with b

being a positive constant. The associated Lévy subordinator Zt, namely truncated stable process,

can be simulated via the exact simulation scheme proposed by Dassios et al. (2020). Hence, by

ensuring the corresponding D̂w < ∞, one could use the decomposition scheme above to sample

this truncated stable-driven OU process. The details of the simulation procedures for this truncated

stable-driven OU process are provided in Dassios et al. (2020, p.17:22).

7 Conclusion

Themain contribution of this paper is providing the first exact simulation algorithm to generate OU-

TS processes. This approach can be extended to generate TS-OU processes and beyond. Besides,

it can also be used to exact simulation certain types of two-sided Lévy-driven OU processes by

taking a difference of two Lévy-driven OU processes. Our algorithms are accurate and efficient

which have been numerically verified and tested by our extensive experiments. They could be

easily adopted for generating sample paths for modelling the dynamics of stochastic volatilities

and interest rates to name a few. They would be especially useful for simulation-based statistical

inference, derivative pricing and risk management in practice. Model extensions to the processes

with time-varying parameters as well as multi-dimensional versions may be also possible, and we

propose them for future research.

Appendices

A Proof for the Martingale of (3.3)

Proof. We adopt a similar approach as Dassios and Jang (2003) and Dassios and Zhao (2011) to

find the martingale solution to Af = 0 for the generator (3.2). We try a solution of exponential

form e−xA(t)eB(t) where A(t) and B(t) are deterministic and differentiable functions of time t.
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Then, we get

−xA′(t) +B′(t) + δxA(t)− %
∞∫
0

î
1− e−yA(t)

ó
ν(dy) = 0,

which is rewritten as

x

Ç
δA(t)−A′(t)

å
+B′(t)− %

∞∫
0

î
1− e−yA(t)

ó
ν(dy) = 0,

holding for any x. It implies two equations

A′(t) = δA(t),

B′(t) = %Φ(A(t)),

which can be easily solved as

A(t) = keδt, B(t) = %

t∫
0

Φ
Ä
keδs
ä

ds, ∀ k ∈ R+,

where Φ(u) is the Laplace exponent for Zt, i.e.,

Φ(u) =

∞∫
0

Ä
1− e−uy

ä
ν(dy).

B Proof of the Acceptance Rate c̄w ∈ (1, 2) for A/R Algorithm 3.2

Proof. To further investigate how the acceptance rate c̄w of (3.16) depends on w, i.e. the range of

c̄w, we let x = 1
w , and then, we have

Cw
Dw

=
C 1
x

D 1
x

=
1
α

Ä
x
α
2 − 1

ä2
1
α (xα − 1)− lnx

, x > 1. (B.1)

Obviously,

d

dx

Ñ
C 1
x

D 1
x

é
=
Ä
x
α
2 − 1

ä
x
α
2
−1

1
α

Ä
x
α
2 − x−

α
2

ä
− lnxî

1
α (xα − 1)− lnx

ó2 > 0, ∀x > 1,
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so,
C 1
x

D 1
x

in (B.1) is a strictly increasing function of x > 1. When w → 1 or x→ 1, by L’Hôpital’s

rule, we obtain the lower bound

lim
x↓1

C 1
x

D 1
x

= lim
x↓1

xα−1 − x
α−1

2

xα−1 − x−1
= lim

x↓1

(α− 1)xα−2 −
(α

2 − 1
)
x
α
2
−2

(α− 1)xα−2 + x−2
=

1

2
;

when w → 0 or x→∞, we obtain the upper bound

lim
x→∞

C 1
x

D 1
x

=
1
α
1
α

= 1.

Therefore, CwDw ∈
Ä

1
2 , 1
ä
for w ∈ (0, 1), or, c̄w ∈ (1, 2) for w ∈ (0, 1), and we have (3.17).

C Proof for Algorithm 4.1

Proof. According to (4.1), we have

E
î
e−vYt+τ | Yt

ó
= e−vwYt exp
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v∫
vw

1

u
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1− e−uy
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éé× exp
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vw

1
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Ä
1− e−uy
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y−αe−βydydu

é
. (C.1)

From (C.1), we can identify that:

1. The first term of (C.1) is the Laplace transform of constant wYt.

2. The second term of (C.1) is the Laplace transform of an OU-TS process such that TS ∼

TS(α, β, αθ) with initial value equal to 0, and it can be broken into a TS r.v. and a compound

Poisson r.v. by Theorem 3.1.

3. Within the third term of (C.1), we have

θβ

v∫
vw

1

u

∞∫
0

(1− e−uy)y−αe−βydydu

= θβΓ(1− α)
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0

(1− e−vs)

1
w∫

1

1

Γ(1− α)
s(1−α)−1e−βusu−αduds
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= θβαΓ(1− α)
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In fact, (C.2) is the Laplace exponent of a compound Poisson r.v.
N̆∑
j=1

S̆j . The intermediate

r.v. V ∗ has a simple density function

fV ∗(u) =
1

ln
Ä

1
w

ä 1

u
, u ∈

ï
1,

1

w

ò
,

and the CDF can be inverted explicitly. Hence, V ∗ can be exactly simulated via the explicit

inverse transform (4.7).

D Simple Stable Rejection (SSR) Scheme

AlgorithmD.1 (Simple Stable Rejection (SSR) Scheme). For simulating one r.v. TS ∼ TS(α, β, θ):

1. Generate a stable r.v. S(α, θ) via Zolotarev’s integral representation (Zolotarev, 1966) of

S(α, θ)
D
=
Ä
− θΓ(−α)

ä 1
α

sin
Ä
αUs + 1

2πα
äÄ

cos(Us)
ä 1
α

cos
Ä
(1− α)Us − 1

2πα
ä

Es

 1−α
α

, (D.1)

where Us ∼ U
î
−1

2π,
1
2π
ó
, Es ∼ Exp(1), and they are independent;

2. Generate a uniformly distributed r.v. U ∼ U[0, 1];

3. If U ≤ e−βS(α,θ), then, accept and set TS = S(α, θ); otherwise, reject and go back to Step

1.
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