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Abstract

The unsteady motion of an Oldroyd-B fluid over an infinite flat plate is studied by

means of the Laplace and Fourier transforms. After time t = 0, the plate applies

cosine/sine oscillating shear stress to the fluid. The solutions that have been

obtained are presented as a sum of steady-state and transient solutions and can be

easily reduced to the similar solutions corresponding to Newtonian or Maxwell fluids.

They describe the motion of the fluid some time after its initiation. After that time

when the transients disappear, the motion is described by the steady-state solutions

that are periodic in time and independent of the initial conditions. Finally, the

required time to reach the steady-state is established by graphical illustrations. It is

lower for cosine oscillations in comparison with sine oscillations of the shear,

decreases with respect to ω and l and increases with regard to lr.
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1 Introduction

The laminar flow of a great number of fluids such as polymeric liquids, food products,

paints and so forth cannot be adequately described by means of the classical linearly

viscous Newtonian model. The interest into motion problems of such fluids, also called

non-Newtonian fluids, has considerably grown due to their multiple applications.

Among the many models that have been used to describe the behavior of non-Newto-

nian fluids, the rate type models have received much attention. The first systematic

thermodynamic study of such models is that of Rajagopal and Srinivasa [1], within

which models for a variety of rate type viscoelastic fluids can be obtained. They

showed that the Oldroyd-B fluid is one which stores energy like a linearized elastic

solid, its dissipation however being due to two dissipative mechanisms that implies

that they arise from a mixture of two viscous fluids. The first exact solutions corre-

sponding to some motions of Oldroyd-B fluids seem to be those of Tanner [2] and

Waters and King [3].

Over the past few decades, the unsteady flows of viscoelastic fluids caused by the

oscillations of the boundary are of considerable interest. Rajagopal [4] found steady-

state solutions for some oscillating motions of second grade fluids and Erdogan [5]
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provided two starting solutions for the motion of a viscous fluid due to cosine and sine

oscillations of a flat plate. Flows of the fluids due to oscillating boundary for different

constitutive models can be found into [6-20]. However, all these articles deal with

motion problems in which the velocity is given on the boundary. To the best of our

knowledge, the first exact solutions for motions of non-Newtonian fluids due to an

infinite plate that applies a shear stress to the fluid seem to be those of Waters and

King [21] and Bandelli et al. [22]. Recently [23], interesting solutions have been

obtained for the motion of Newtonian fluids induced by an infinite plate that applies

oscillating shear stresses to the fluid. This is very important as in some problems, what

is specified is the force applied on the boundary. The “no slip” boundary condition

may not be necessarily applicable to flows of polymeric fluids that can slip or slide on

the boundary. Thus, the shear stress boundary condition is particularly meaningful and

a closed-form expression for the starting solutions corresponding to the motion

induced by a flat plate that applies an oscillating shear to an Oldroyd-B fluid has not

been given before.

Consequently, the aim of this article is to determine starting solutions for the

unsteady motion of an incompressible Oldroyd-B fluid due to an infinite plate that

applies an oscillating shear to the fluid. Such exact solutions, which are not common

in the literature, provide an important check for numerical methods that are used to

study flows of such fluids in a complex domain. They are presented as a sum of

steady-state and transient solutions and satisfy both the governing equations and all

imposed initial and boundary conditions. Furthermore, the similar solutions for Max-

well and Newtonian fluids can easily be obtained as limiting cases of general solutions.

Finally, the influence of the material parameters on the fluid motion and the required

time to reach the steady-state are determined by graphical illustrations. This time is

lower for the cosine oscillations in comparison with the sine oscillations of the shear,

decreases with respect to the relaxation time l and the frequency ω of the shear and

increases with respect to the retardation time lr.

2 Governing equations

An incompressible Oldroyd-B fluid is characterized by the following constitutive equa-

tions [9,14,17]

T = −pI + S, S + λ
(

Ṡ − LS − SL
T
)

= µ
[

A + λr

(

Ȧ − LA − AL
T
)]

, (1)

where T is the Cauchy stress tensor, -pI denotes the indeterminate spherical stress, S is

the extra-stress tensor, L is the velocity gradient, A = L + L
T is the first Rivlin-Ericksen

tensor, μ is the dynamic viscosity, l and lr are the relaxation and retardation times, the

superscript T indicates the transpose operation and the superposed dot denotes the mate-

rial time derivative. In the following analysis, we will consider a unidirectional flow whose

velocity field is given by

V = V(y, t) = u(y, t)i, (2)

where i denotes the unit vector along the x-direction of the Cartesian coordinate sys-

tem x, y, and z. For such a flow, the constraint of incompressibility is automatically

satisfied. We also assume that the extra-stress tensor S, as well as the velocity V,

depends only on y and t. In the absence of a pressure gradient in the flow direction
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and neglecting body forces, the governing equation is given by [14]

∂u(y, t)

∂t
+ λ

∂2u(y, t)

∂t2
= ν

(

1 + λr
∂

∂t

)

∂2u(y, t)

∂y2
; y, t > 0, (3)

where v = μ /r is the kinematic viscosity and r is the constant density of the fluid.

The non-trivial shear stress τ(y, t) = Sxy(y, t) satisfies the partial differential equation

[[24], Equation (4)]

(

1 + λ
∂

∂t

)

τ (y, t) = µ

(

1 + λr
∂

∂t

)

∂u(y, t)

∂y
; y, t > 0. (4)

3 Statement of the problem

Let us consider an incompressible Oldroyd-B fluid at rest, over an infinite plate. After

time t = 0 the plate applies an oscillating shear to the fluid (f sin ωt or f cos ωt, where

f and ω are constants). Owing to the shear, the fluid is gradually moved. Its velocity

has the form of Equation (2), the governing equation is given by Equation (3) and the

appropriate initial and boundary conditions are

u(y, 0) = 0,
∂u(y, 0)

∂t
= 0, τ (y, 0) = 0, y > 0, (5)

(

1 + λ
∂

∂t

)

τ (y, t)

∣

∣

∣

∣

y=0

= µ

(

1 + λr
∂

∂t

)

∂u(y, t)

∂y

∣

∣

∣

∣

y=0

= f sin ωt or f cos ωt t > 0. (6)

Moreover, the natural condition

u(y, t) → 0 as y → ∞, (7)

also has to be satisfied.

4 Exact solutions

In the following, let us denote by us(y, t), τs(y, t) and uc(y, t), τc(y, t), the solutions cor-

responding to the two problems and by

V(y, t) = uc(y, t) + ius(y, t), T(y, t) = τc(y, t) + iτs(y, t), (8)

the complex velocity and the complex tension, respectively. In view of the above

equations, the functions V (y, t) and T (y, t) have to be solutions of the next initial and

boundary values problems

∂V(y, t)

∂t
+ λ

∂2V(y, t)

∂t2
= ν

(

1 + λr
∂

∂t

)

∂2V(y, t)

∂y2
y, t > 0, (9)

(

1 + λ
∂

∂t

)

T(y, t) = µ

(

1 + λr
∂

∂t

)

∂V(y, t)

∂y
y, t > 0, (10)

V(y, 0) = 0,
∂V(y, 0)

∂t
= 0, T(y, 0) = 0 y > 0, (11)
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(

1 + λ
∂

∂t

)

T(y, t)

∣

∣

∣

∣

y=0

= µ

(

1 + λr
∂

∂t

)

∂V(y, t)

∂y

∣

∣

∣

∣

y=0

= f eiωt t > 0, (12)

V(y, t) → 0 as y → ∞ t > 0. (13)

4.1 Calculation of the velocity field

In order to determine the solution of initial-boundary values problem (9), (11)1,2, (12)2

and (13), we first take the Laplace transform [25] of Equation (9) and obtain

qV̄(y, q) + λq2V̄(y, q) = ν
(

1 + λrq
) ∂2V̄(y, q)

∂y2
, (14)

where the Laplace transform V̄(y, q) of function V (y, t) has to satisfy the conditions

∂V̄(y, q)

∂y

∣

∣

∣

∣

y=0

=
f

µ(q − iω)(1 + λrq)
, (15)

V̄(y, q) → 0 as y → ∞. (16)

Multiplying Equation (14)
√

2
π

cos(yξ), integrating the result with respect to y from

0 to infinity and using Equations (15) and (16), we obtain

V̄c(ξ , q) = −
√

2

π

f

ρ

1

(q − iω)[λq2 + (1 + λrνξ2)q + νξ2]
, (17)

where

V̄c(ξ , q) =

√

2

π

∞
∫
0

V̄(y, q) cos(yξ)dy, (18)

denotes the Fourier cosine transform [26] of function V̄(y, q). Equation (17) can be

written as

V̄c(ξ , q) = V̄c1(ξ , q) + V̄c2(ξ , q), (19)

where

V̄c1(ξ , q) = −
√

2

π

f

ρ

(νξ2 − λω2) − iω(1 + λrνξ2)

(νξ2 − λω2)2 + ω2(1 + λrνξ2)2

1

q − iω
, (20)

V̄c2(ξ , q) =

√

2

π

f

ρ

(νξ2 − λω2) − iω(1 + λrνξ2)

(νξ2 − λω2)2 + ω2(1 + λrνξ2)2

λq + [iλω + (1 + λrνξ2)]

λq2 + (1 + λrνξ2)q + νξ2
. (21)

Applying the inverse Laplace transform and then the inverse Fourier cosine trans-

form to Equation (20), we get the following expression

V1(y, t) = −
2

π

f eiωt

ρν2α

∞
∫
0

(νξ2 − λω2) − iω(1 + λrνξ2)

(ξ2 − β2)2 + γ 2
cos(yξ)dξ , (22)
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where

α = 1 + λr
2ω2, β2 =

ω2(λ − λr)

ν(1 + λ2
r ω

2)
, γ =

ω(1 + λλrω
2)

ν(1 + λ2
r ω

2)
.

Using (A1) and (A2) from Appendix 1, we obtain the following simplified expression

V1(y, t) =
f

µ

√

ν

ω

e−yB

4
√

(1 + λ2
r ω

2)(1 + λ2ω2)

[

cos
(

ωt − yA + ϕ +
π

2

)

+ i sin
(

ωt − yA + ϕ +
π

2

)]

(23)

where

2A2 =
√

β4 + γ 2 + β2, 2B2 =
√

β4 + γ 2 − β2 and

tan ϕ =

√
1 + λ2ω2 − λω

√

1 + λ2
r ω

2

√

1 + λ2
r ω

2 + λrω
√

1 + λ2ω2
.

Now, for Equation (21), we introduce the function

F(ξ , q) =
λq +

[

iλω + (1 + λrνξ2)
]

λq2 + (1 + λrνξ2)q + νξ2
, (24)

which can be written in the following equivalent form

F(ξ , q) =
q +

b(ξ)
2λ

(

q +
b(ξ)
2λ

)2

−
(

c(ξ)
2λ

)2
+

b(ξ) + i2λω

c(ξ)

c(ξ)
2λ

(

q +
b(ξ)
2λ

)2

−
(

c(ξ)
2λ

)2
, (25)

where

b(ξ) = 1 + λrνξ2, c(ξ) =

√

(1 + λrνξ2)2 − 4νλξ2.

Applying the inverse Laplace transform and then the inverse Fourier transform to

Equation (21) and using Equation (25), we obtain the following expression

V2(y, t) =
2

π

f

νµα

∞
∫
0

cos(yξ)

(ξ2 − β2)2 + γ 2

[

(νξ2 − λω2)ch

(

c(ξ)t

2λ

)

+
(νξ2 + λω2)b(ξ)

c(ξ)
sh

(

c(ξ)t

2λ

)]

e
−

b(ξ)t

2λ dξ

−i
2

π

fω

νµα

∞
∫
0

cos(yξ)

(ξ2 − β2)2 + γ 2

[

b(ξ)ch

(

c(ξ)t

2λ

)

+
b2(ξ) − 2λ(νξ2 − λω2)

c(ξ)
sh

(

c(ξ)t

2λ

)]

e
−

b(ξ)t

2λ dξ .

(26)

Finally, the velocity corresponding to the cosine oscillations of the shear is given by

uc(y, t) =
f

µ

√

ν

ω

e−yB

4
√

(1 + λ2
r ω

2)(1 + λ2ω2)
cos

(

ωt − yA + ϕ +
π

2

)

+
2

π

f

νµα

×
∞
∫
0

cos(yξ)

(ξ2 − β2)2 + γ 2

[

(νξ2 − λω2)ch

(

c(ξ)t

2λ

)

+
(νξ2 + λω2)b(ξ)

c(ξ)
sh

(

c(ξ)t

2λ

)]

e
−

b(ξ)t

2λ dξ ,

(27)

while that corresponding to sine oscillations has the form

us(y, t) =
f

µ

√

ν

ω

e−yB

4
√

(1 + λ2
r ω

2)(1 + λ2ω2)
sin

(

ωt − yA + ϕ +
π

2

)

−
2

π

fω

νµα

×
∞
∫
0

cos(yξ)

(ξ2 − β2)2 + γ 2

[

b(ξ)ch(
c(ξ)t

2λ
) +

b2(ξ) − 2λ(νξ2 − λω2)

c(ξ)
sh(

c(ξ)t

2λ
)

]

e
−

b(ξ)t

2λ dξ .

(28)
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The starting solutions (27) and (28) corresponding to cosine and sine oscillations of

the shear, are presented as a sum between the steady-state and transient solutions.

They describe the motion of the fluid some time after its initiation. After that time, in

which the transients disappear, the starting solutions tend to the steady-state solutions

ucs(y, t) =
f

µ

√

ν

ω

e−yB

4
√

(1 + λ2
r ω

2)(1 + λ2ω2)
cos

(

ωt − yA + ϕ +
π

2

)

=
f

µ

√

ν

ω

e−yB

4
√

(1 + λ2
r ω

2)(1 + λ2ω2)
sin(ωt − yA + ϕ + π),

(29)

respectively,

uss(y, t) =
f

µ

√

ν

ω

e−yB

4
√

(1 + λ2
r ω

2)(1 + λ2ω2)
sin

(

ωt − yA + ϕ +
π

2

)

. (30)

which are periodic in time and independent of the initial conditions. However, they

satisfy the governing equation and boundary conditions. As expected, they differ with a

phase shift.

4.2 Calculation of shear stress

In order to obtain the corresponding shear stresses, we apply the Laplace transform to

Equation (10) and the inverse Fourier cosine transform to Equation (17). Combining

the results, we get the following expression for the Laplace transform of the complex

tension T (y, t):

T̄(y, q) =
2

π

fµ

ρ

∫ ∞

0

ξ sin(yξ)
1

1 + λq

1

q − iω

λrq + 1

λq2 + (1 + λrνξ2)q + νξ2
dξ . (31)

Equation (31) can be written as

T̄(y, q) = T̄1(y, q) + T̄2(y, q) + T̄3(y, q), (32)

where

T̄1(y, q) =
−2f

π(1 + λ2ω2)

1 − iλω

q + 1
λ

∫ ∞

0

sin(yξ)

ξ
dξ , (33)

T̄2(y, q) =
2f

π(1 + λ2ω2)

1

q − iω

∫ ∞

0

ξ sin(yξ)

[

ξ2 − β2 − λωγ

(ξ2 − β2)2 + γ 2
− i

λωξ2 − λωβ2 + γ

(ξ2 − β2)2 + γ 2

]

dξ , (34)

T̄3(y, q) =
2

π

fµ

ρ

∞
∫

0

ξ sin(yξ)
M(ξ)q + N(ξ)

λq2 + (1 + λrνξ2)q + νξ2
dξ , (35)

with

M(ξ) =
λ

ν(1 + λ2ω2)

{

ξ2(λωγ − β2) + (γ 2 + β4) + i[ξ2(γ + λωβ2) − λω(γ 2 + β4)]

ξ2((ξ2 − β2)2 + γ 2)

}

,

N(ξ) =
1

ω(1 + λ2ω2)

{

−ξ2(γ + λωβ2) + λω(γ 2 + β4) + i[ξ2(λωγ − β2) + (γ 2 + β4)]

(ξ2 − β2)2 + γ 2)

}

.
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Applying the inverse Laplace transform to the Equation (33) and using (A3) from

Appendix 1, we get

T1(y, t) =

(

−f

1 + λ2ω2
+ i

fλω

1 + λ2ω2

)

e

−t

λ . (36)

Similarly, using (A4) and (A5) from Appendix 1, from Equation (34), we obtain the

following suitable form for T2(y, t)

T2(y, t) =
f e−yB

1 + λ2ω2

[

cos(ωt − yA) + λω sin(ωt − yA) + i(sin(ωt − yA) − λω cos(ωt − yA))
]

. (37)

A straightforward calculation leads to the following simplified form

T2(y, t) =
f e−yB

√
1 + λ2ω2

[

cos(ωt − yA − ψ) + i sin(ωt − yA − ψ)
]

(38)

where tan ψ = lω.

Now, we consider the function

G(ξ , q) =
M(ξ)q + N(ξ)

λq2 + (1 + λrνξ2)q + νξ2
, (39)

which can be written in the following equivalent form:

G(ξ , q) = M(ξ)
q + b(ξ)

2λ

λ
[

(q + b(ξ)

2λ
)

2
− ( b(ξ)

2λ
)

2
]+

[

−b(ξ)M(ξ)

λc(ξ)
+

2N(ξ)

c(ξ)

] c(ξ)

2λ
[

(q + b(ξ)

2λ
)

2
− ( c(ξ)

2λ
)

2
] . (40)

Applying the inverse Laplace transform to Equation (35) and using Equation (40), we

obtain

T3(y, t) =
2f

π(1 + λ2ω2)

∞
∫

0

sin(yξ)

ξ[(ξ2 − β2)2 + (γ )2]

[(

(ξ2(λωγ − β2) + (γ 2 + β4))ch

(

c(ξ)t

2λ

)

−
p(ξ)

ωc(ξ)
sh

(

c(ξ)t

2λ

))

+i

(

[ξ2(γ + λωβ2) − λω(γ 2 + β4)]ch

(

c(ξ)t

2λ

)

+
r(ξ)

ωc(ξ)
sh

(

c(ξ)t

2λ

))]

e
−

b(ξ)t

2λ dξ ,

(41)

where

p(ξ) = νξ4[λrω(λωγ − β2) + 2(γ + λωβ2)] + ω(γ 2 + β4) + ωξ2[(λωγ − β2) − ν(γ 2 + β4)(2λ − λr)],

r(ξ) = νξ4[2(λωγ − β2) − λrω(γ + λωβ2)] + ξ2[ν(γ 2 + β4)(2 + λλrω
2) − ω(γ + λωβ2)] + λω2(γ 2 + β4).

Using Equations (32), (36), (38), and (41), the shear stress corresponding to cosine

oscillations of the shear can be written in the form

τc(y, t) =
−f

1 + λ2ω2
e

−t

λ +
f e−yB

√
1 + λ2ω2

cos(ωt − yA − ψ) +
2f

π(1 + λ2ω2)

∞
∫

0

sin(yξ)

ξ[(ξ2 − β2)2 + (γ )2]

×
[

(ξ2(λωγ − β2) + (γ 2 + β4))ch

(

c(ξ)t

2λ

)

−
p(ξ)

ωc(ξ)
sh

(

c(ξ)t

2λ

)]

e

−b(ξ)t

2λ dξ .

(42)

Also, the shear stress corresponding to sine oscillations is given by

τs(y, t) =
fλω

1 + λ2ω2
e

−t

λ +
f e−yB

√
1 + λ2ω2

sin(ωt − yA − ψ) +
2f

π(1 + λ2ω2)

∞
∫

0

sin(yξ)

ξ[(ξ2 − β2)2 + (γ )2]

×
[

[

ξ2(γ + λωβ2) − λω(γ 2 + β4)
]

ch

(

c(ξ)t

2λ

)

+
r(ξ)

ωc(ξ)
sh

(

c(ξ)t

2λ

)]

e

−b(ξ)t

2λ dξ .

(43)
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Of course, the shear stresses given by Equations (42) and (43) are also presented as a

sum of steady-state and transient solutions. The steady-state solutions

τcs(y, t) =
f e−yB

√
1 + λ2ω2

cos(ωt − yA − ψ) and τss(y, t) =
f e−yB

√
1 + λ2ω2

sin(ωt − yA − ψ),

also differ by a phase shift. The property seems to be not true for the transient solu-

tions. This is the reason that we separately gave the starting solutions for both cosine

and sine oscillations of the shear stress on the boundary.

5 Particular cases

5.1 lr = 0 (Maxwell fluid)

Making lr ® 0 into Equations (27) and (28), we obtain the velocity fields

ucM(y, t) =
f

µ

√

ν

ω

e−yB

4
√

(1 + λ2ω2)
cos

(

ωt − yA + ϕ +
π

2

)

+
2f

πµν

∫ ∞

0

cos(yξ)
(

ξ2 − λω2

ν

)2
+

(

ω
ν

)2

×
[

(νξ2 − λω2)ch

(
√

1 − 4λνξ2

2λ
t

)

+
νξ2 + λω2

√

1 − 4λνξ2
sh

(
√

1 − 4λνξ2

2λ
t

)]

e− t
2λ dξ ,

(44)

usM(y, t) =
f

µ

√

ν

ω

e−yB

4
√

(1 + λ2ω2)
sin

(

ωt − yA + ϕ +
π

2

)

−
2

π

fω

µν

∫ ∞

0

cos(yξ)
(

ξ2 − λω2

ν

)2
+

(

ω
ν

)2

×
[

ch

(
√

1 − 4λνξ2

2λ
t

)

+
1 − 2λ(νξ2 − λω2)

√

1 − 4λνξ2
sh

(
√

1 − 4λνξ2

2λ
t

)]

e
−

t

2λ dξ ,

(45)

corresponding to a Maxwell fluid performing the same motion. Similarly, from Equa-

tions (42) and (43), we obtain the corresponding shear stresses

τcM(y, t) = −
f

1 + λ2ω2
e− t

λ +
f e−yB

√
1 + λ2ω2

cos(ωt − yA − ψ) +
2f

π

∫ ∞

0

sin(yξ)e− t
2λ

ξ

[

(νξ2 − λω2)2 + ω2
]

×
[

ω2ch

(
√

1 − 4λνξ2

2λ
t

)

−
ω2 + 2νξ2(νξ2 − λω2)

√

1 − 4λνξ2
sh

(
√

1 − 4λνξ2

2λ
t

)]

dξ .

(46)

τsM(y, t) =
fλω

1 + λ2ω2
e− t

λ +
f e−yB

√
1 + λ2ω2

sin(ωt − yA − ψ) +
2fω

π

∫ ∞

0

sin(yξ)e− t
2λ

ξ

[

(νξ2 − λω2)2 + ω2
]

×
[

(νξ2 − λω2)ch

(
√

1 − 4λνξ2

2λ
t

)

+
νξ2 + λω2

√

1 − 4λνξ2
sh

(
√

1 − 4λνξ2

2λ
t

)]

dξ .

(47)

5.2 l ® 0 (second grade fluid)

Using Equations (27), (28), (42), (43) and the limits

lim
λ→0

e− b(ξ)t
2λ ch

(

c (ξ) t

2λ

)

= lim
λ→0

e− b(ξ)t
2λ sh

(

c (ξ) t

2λ

)

=
1

2
exp

(

−γ ξ2t

1 + νλrt

)

,

we obtain solutions corresponding to a fluid of second grade:

ucSG(y, t) =
f

µ

√

ν

ω

e−yB

4
√

1 + δ2
cos

(

ωt − yA + ϕ +
π

2

)

+
2f

πµ
(

1 + δ2
)

∞
∫

0

ξ2 cos(yξ)
(

ξ2 + β2
)2

+ γ 2
exp

(

−νξ2t

1 + αξ2

)

dξ , (48)
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usSG(y, t) =
f

µ

√

ν

ω

e−yB

4
√

1 + δ2
sin

(

ωt − yA + ϕ +
π

2

)

−
2f

πµν
(

1 + δ2
)

∞
∫

0

(

1 + αξ2
)

cos(yξ)
(

ξ2 + β2
)2

+ γ 2
exp

(

−νξ2t

1 + αξ2

)

dξ , (49)

τcSG(y, t) = f e−yB cos
(

ωt − yA
)

−
2fνγ

πω

∞
∫

0

ξ3 sin(yξ)
(

ξ2 + β2
)2

+ γ 21 + αξ2
exp

(

−νξ2t

1 + αξ2

)

dξ , (50)

τsSG(y, t) = f e−yB sin
(

ωt − yA
)

−
2f

π
γ

∞
∫

0

ξ3 sin(yξ)
(

ξ2 + β2
)2

+ γ 2
exp

(

−νξ2t

1 + αξ2

)

dξ , (51)

where

α = νλr , δ =
αω

ν
, β2 =

αω2

ν2(1 + δ2)
, γ =

ω

ν(1 + δ2)
,

2A2 = γ (
√

1 + δ2 − δ), 2B2 = γ (
√

1 + δ2 + δ), tanϕ = (
√

1 + δ2 − δ).

(52)

5.3 l ® 0, lr ® 0 (Newtonian fluid)

Making, l ® 0 and, lr ® 0 into Equations (27), (28), (42), and (43) or, l ® 0 into

Equations (44)-(47), or a = 0 into Equations (48)-(52), we recover the solutions [[23],

Equations (20)-(23)]

ucN(y, t) =
f

µ

√

ν

ω
e
−y

√

ω
2ν cos

(

ωt − y

√

ω

2ν
+

3π

4

)

+
2f

µπ

∞
∫

0

ξ2 cos(yξ)

ξ4 +
(ω

ν

)2
e−νξ2tdξ , (53)

usN(y, t) =
f

µ

√

ν

ω
e
−y

√

ω
2ν sin

(

ωt − y

√

ω

2ν
+

3π

4

)

−
2f

µπ

ω

ν

∞
∫

0

cos(yξ)

ξ4 +
(ω

ν

)2
e−νξ2 tdξ , (54)

τcN(y, t) = f e
−y

√

ω
2ν cos

(

ωt − y

√

ω

2ν

)

−
2f

π

∞
∫

0

ξ3 sin(yξ)

ξ4 + (ω
ν

)2
e−νξ2tdξ , (55)

τsN(y, t) = f e
−y

√

ω
2ν sin

(

ωt − y

√

ω

2ν

)

+
2f

π

ω

ν

∞
∫

0

ξ sin(yξ)

ξ4 + (ω
ν

)2
e−νξ2 tdξ , (56)

corresponding to the flow of a Newtonian fluid.

6 Numerical results and conclusions

In this article, the unsteady motion of an incompressible Oldroyd-B fluid over an infi-

nite plate that applies an oscillating shear stress to the fluid is studied by means of

integral transforms. The starting solutions that have been obtained for velocity and

shear stress are presented as a sum of steady-state and transient solutions. They

describe the motion of the fluid some time after its initiation. After that time, when

the transients disappear, the starting solutions tend to the steady-state solutions that

are periodic in time and independent of the initial conditions. However, they satisfy

the governing equations and boundary conditions. Furthermore, as it was to be

expected, the steady-state solutions corresponding to the cosine oscillations of the

shear differ with a phase shift from those due to the sine oscillations of the shear. This
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property is not true for the transient components of solutions. This is the reason that

we separately gave the starting solutions for both cosine and sine oscillations of the

shear stress on the boundary.

By making lr = 0 into general solutions (27), (28), (42), and (43), we obtain the simi-

lar solutions (44)-(47) corresponding to a Maxwell fluid performing the same motion.

Making l ® 0 into Equations (27), (28), (42), and (43) we obtain the similar solutions

(48)-(51) corresponding to a second grade fluid performing the same motion. Solutions

(44)-(47) with l ® 0, respectively (48)-(51) with a = 0 give the similar solutions (53)-

(56) for Newtonian fluids. It is worth pointing out that the expressions of τcN (y, t) and

τsN (y, t) are identical, as form, with those of vcN (y, t) and vsN (y, t) corresponding to a

similar motion with the boundary conditions [[13], Equation (3.1)]

v (0, t) = V cos (ωt) or v (0, t) = Vsin (ωt) ; t > 0. (57)

The velocity field (see [[13], Equations (3.11) and (6.2)])

vsN(y, t) = Ve
−y

√

ω
2ν sin

(

ωt − y

√

ω

2ν

)

+
2V

π

ω

ν

∞
∫

0

ξ sin(yξ)

ξ4 +
(

ω
ν

)2
e−νξ2 tdξ , (58)

for instance, has the same form as τsN (y, t) given by Equation (56). This is not a sur-

prise because, for Newtonian fluids, Equations (3) and (4) together with the balance of

linear momentum lead to a governing equation for shear stress of the same form as

that for velocity.

Generally, the starting solutions for unsteady motions of fluids are important for

those who need to eliminate the transients from their rheological measurements. Con-

sequently, an important problem regarding the technical relevance of these solutions is

to find the required time to get the steady-state. More exactly, in practice it is neces-

sary to know the approximate time after which the fluid is moving according to the

steady-state solutions. For this, the variations of the starting and steady-state velocities

with the distance from the plate are depicted in Figures 1, 2, 3, 4, 5, 6, 7, and 8 for

sine and cosine oscillations of the shear stress on the boundary. At small values of

time, the difference between the starting and steady-state solutions is meaningful. This

difference decreases in time and it is clearly seen from figures that the required time

to reach the steady-state for the sine oscillations is higher in comparison with the

cosine oscillations of the shear. This is obvious, because at t = 0 the shear stress on

the boundary is zero for sine oscillations.

Of course, the required time to reach the steady-state depends on the material con-

stants and the frequency ω of the shear. Figures 1 and 4 show the influence of ω on

the fluid motion. Furthermore, the required time to reach the steady-state decreases

for increasing ω. The influence of the relaxation and retardation times l and lr on the

fluid motion is underlined by Figures 2, 3, 5, and 6. The two parameters, as expected,

have opposite effects on the motion. The required time to reach the state-state

decreases with respect to l and increases with regard to lr for both types of oscillating

shear. The steady-state is rather obtained for a Maxwell fluid in comparison with an

Oldroyd-B fluid having the same relaxation time l. Figures 7 and 8 show the influence

of ω on the motion of second grade and Newtonian fluids. As expected, the required

time to reach the steady-state is lower for second grade fluids in comparison with

Newtonian fluids.
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Figure 1 Comparison between the starting velocity us(y, t) and the steady-state velocity uss(y, t), for

f = 6, ν = 0.004, μ = 3.92, l = 8, lr = 4 and different values of time t and frequency ω.
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Figure 2 Comparison between the starting velocity us(y, t) and the steady-state velocity uss(y, t), for

f = 6, ν = 0.004, μ = 3.92, lr = 0.5, ω = 0.08 and different values of time t and the relaxation time

l.

Shahid et al. Boundary Value Problems 2012, 2012:48

http://www.boundaryvalueproblems.com/content/2012/1/48

Page 12 of 19



Figure 3 Comparison between the starting velocity us(y, t) and the steady-state velocity uss(y, t), for

f = 6, ν = 0.004, μ = 3.92, l = 4, ω = 0.08 and different values of time t and the retardation time lr.
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Figure 4 Comparison between the starting velocity uc(y, t) and the steady-state velocity ucs(y, t),

for f = 6, ν = 0.004, μ = 3.92, l = 8, lr = 4, and different values of time t and frequency ω.
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Figure 5 Comparison between the starting velocity uc(y, t) and the steady-state velocity ucs(y, t),

for f = 6, ν = 0.004, μ = 3.92, lr = 0.5, ω = 0.08 and different values of time t and the relaxation

time l.
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Figure 6 Comparison between the starting velocity uc(y, t) and the steady-state velocity ucs(y, t),

for f = 6, ν = 0.004, μ = 3.92, l = 4, ω = 0.08 and different values of time t and the retardation

time lr.
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Appendix

∫ ∞
0

x2 cos(mx)

(x2 − b2)2 + c2
dx =

πe−mB

2c

[

A cos(mA) − B sin(mA)
]

, (A1)

∫ ∞
0

cos(mx)

(x2 − b2)2 + c2
dx =

πe−mB

2c(A2 + B2)

[

A cos(mA) + B sin(mA)
]

, (A2)

∫ ∞
0

sin(yξ)

ξ
=

π

2
, (A3)

∫ ∞
0

x sin(mx)(x2 − b2)

(x2 − b2)2 + c2
dx =

π

2
e−mB cos(mA), (A4)

Figure 7 Comparison between the starting velocity and steady-state velocity for second grade and

Newtonian fluids for f = 6, ν = 0.004, μ = 3.92, a = 0.016 and different values of time t and

frequency ω (sine oscillations).
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∫ ∞
0

x sin(mx)

x
[

(x2 − b2)2 + c2
]dx =

π

2c
e−mB sin(mA), (A5)

∫ ∞
0

sin(mx)

x
[

(x2 − b2)2 + c2
]dx =

π

2c(b4 + c2)

{

c +
[

b2 sin(mA) − c cos(mA)
]

. exp(−mB)
}

, (A6)

where

b2 =
ω2(λ − λr)

ν(1 + λ2
r ω

2)
, c =

ω(1 + λλrω
2)

ν(1 + λ2
r ω

2)
, 2A2 =

√
b4 + c2 + b2, 2B2 =

√
b4 + c2 − b2.
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