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Exact solution for N -coupled symmetric rotors
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Abstract. The N -coupled symmetric rotor problem is solved exactly by using an infinite-
dimensional algebra. A formalism for solving the corresponding Hamiltonian eigenvalue
problem is also proposed. The system of equations that solves a special Hamiltonian eigenvalue
problem is shown to yield coupling coefficients of the corresponding Lie algebra.

The quantum rotor has proven to be a very useful model for many physical applications,
especially in the fields of molecular [1, 2] and nuclear physics [3, 4]. A summary can be
found in a review paper by Draayer and Leschber [5]. In nuclear physics a connection
between irreducible representations (irreps) of theSU(3) shell model and eigenvalues of
the principal moments of inertia of the rotor Hamiltonian has been established [6]. From
this it follows that the dynamics of a quantum rotor can be realized in aSU(3) shell-
model framework. By exploiting this connection, a two-rotor picture can be realized via
the coupling of twoSU(3) irreps [7]. This means that enhancedM1 transitions in heavy
and well-deformed nuclei, predicted within the framework of the phenomenological two-
rotor model (TRM) which considers the protons and neutrons as ellipsoidal distributions that
perform rotational oscillations against one another, can be given a shell-model interpretation
[8, 9]. Indeed, the scissors mode of the TRM, together with a novel twist mode that is
realized when the parent proton and neutron distributions have triaxial shapes, has been given
a microscopic interpretation within the framework of the pseudo-SU(3) model [10, 11].
Likewise, N -coupled systems as found in Heisenberg spin chains [12], Hubbard models
[13], and so on, are of general interest in other branches of physics.

Recently, it was shown that there may be a large class of many-body problems that
can be solved exactly by introducing an infinite-dimensional algebra. The method was
demonstrated for nuclear pairing problems [14, 15]. In these cases, the infinite-dimensional
algebra is exactly, or similar to, the affineSU(2) Lie algebra without central extension. In
this paper, theN -coupled rotor Hamiltonian will be solved using a similar technique.

First, we introduce the following generators

Im± =
N∑
j=1

c2m+1
j I±(j) Im0 =

N∑
j=1

c2m
j I0(j) (1)

wherecj , with j = 1, 2, . . . , N , are free parameters which for simplicity are taken to be
real, Iµ(j) with µ = 0,+,−, are generators of the intrinsic angular momentum for thej th
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rotor, andm can be taken to be a positive or negative integer, or zero. It is straightforward
to verify that these generators satisfy

[Im+ , I
n
−] = −2Im+n+1

0 [Im0 , I
n
±] = −(±)Im+n± . (2)

The algebra defined by these operators is therefore similar to the intrinsicSU(2) affine Lie
algebra without central extension [16]. Using the generators given in (1), one can write out
the followingN -coupled symmetric rotor Hamiltonian

Ĥ = I 0
−I

0
+ − I 1

0 + a
(
I 0

0

)2+ bI 0
0 I

1
0 (3)

wherea andb are additional parameters. Using (1), Hamiltonian (3) can be written as

Ĥ = Ĥ0+ Ĥint =
N∑
j=1

(c2
j (I−(j)I+(j)− I0(j))+ (a + bc2

j )(I0(j))
2)

+
N∑
j 6=j ′

[(a + bc2
j ′)I0(j)I0(j

′)+ cj cj ′I−(j)I+(j ′)]. (4)

By comparing expression (4) with the Hamiltonian of a symmetric rotor, the Hamiltonian
of the j th subrotor can be identified as

Ĥ0(j) = c2
j

(
I 2
x (j)+ I 2

y (j)
)+ (a + bc2

j )I
2
z (j). (5)

Therefore, the moments of inertia of thej th subrotor are

Jx = Jy = 1

2c2
j

Jz = 1

2(a + bc2
j )

(6)

while

Ĥint =
N∑
j 6=j ′

[(a + bc2
j ′)I0(j)I0(j

′)+ cj cj ′I−(j)I+(j ′)] (7)

describes interactions among theN rotors. Specifically, forN = 2 the interaction term is

ĤN=2
int = [2a + b(c2

1 + c2
2)]I0(1)I0(2)+ c1c2[I−(1)I+(2)+ I−(2)I+(1)]. (8)

In this case, there are four parameters:cj with j = 1, 2 anda and b. For the case ofN
rotors there areN + 2 parameters.

Depending upon the parametrization of the Hamiltonian, there are two types of lowest-
weight state vectors. One, which is an eigenstate of the total angular momentumI , is
achieved whena = 1 and all thecj parameters are taken to be equal,cj = c 6= 0 for
j = 1, 2, . . . , N . In this case the Hamiltonian can be written in terms of the total angular
momentum operator,

Ĥ = c2I 2+ bcI0 (9)

and lowest-weight state vectors are simply basis vectors of the total angular momentum and
its third component,|I,MI 〉, with MI = −I . A nontrivial case occurs when thecj and the
a andb are all different real numbers. In this case an exact solution of the corresponding
eigenvalue problem can be achieved with the help of the infinite-dimensional algebra given
in (2). The lowest-weight states for this case satisfy

Im+ |0〉 = 0 m = 0,±1,±2, . . . (10)

where

|0〉 = |I1,−I1; I2,−I2; . . . ; IN,−IN 〉 (11)
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is an uncoupled lowest-weight state with fixed angular momentaI1, I2, . . . , IN , respectively,
for each of the subrotor representations, and

Im0 |0〉 = 3m
0 |0〉 =

N∑
j=1

(−Ij )c2m
j |0〉. (12)

This lowest-weight state, which is the ground state of theN -coupled rotor problem, will
be called the level 0 state. Excited states are classified according to the number of raising
operatorsI−(j) that are applied on the level 0 state. If a state is constructed by applying
I−(j) on the level 0 statek times, the state is called the levelk state. It can be shown that
up to a normalization factor the levelk eigenvectors of the Hamiltonian (3) can be written
in the form

|k〉 = I x1− I
x2− . . . I

xk− |0〉 (13)

where

I
xi− =

N∑
j=1

cj

1− xic2
j

I−(j). (14)

To obtain the variablesxi for i = 1, 2, . . . , k, we first expand (14) in terms ofxi around
xi = 0. Thus,

|k〉 =
∑
ni

x
n1
1 x

n2
2 . . . x

nk
k I

n1− I
n2− . . . I

nk− |0〉 (15)

whereI ni− are Fourier–Laurent coefficients in the expansion ofI
xi− , namely

I
ni− =

1

2π i

∮
0

dxix
ni
i I

xi− . (16)

Using (15) and commutation relations (2), one can easily prove that thexi with i =
1, 2, . . . , k, satisfy the following relations

h(k) =
N∑
i=1

b(30
0+ k)− 1

xi
(17)

b(30
0+ k)− 1

xi
=

N∑
p=1

2Ipc2
p

1− xic2
p

−
∑
j 6=i

2

xi − xj for i = 1, 2, . . . , k (18)

where

h(k) = Ek − a30
0(3

0
0+ 2k)− b31

0(3
0
0+ k)− ak2+31

0 (19)

and Ek is the energy eigenvalue for levelk. Even though these relations are derived
nearxi = 0, they are valid in the entire complex plane. Hence, the coefficientsxi and
energy eigenvalues are simultaneously determined by the system of equations (17) and (18).
Equations (17) and (18) give exact solutions for the energy spectrum and wavefunctions.

In general, total angular momentum is not a good quantum number for theN -coupled
rotor Hamiltonian given by (3) with differentcj parameters. As a consequence, it cannot be
used to solve coupling problems ofSU(2). However, this becomes feasible if one considers
another type of Hamiltonian, namely

Ĥ = J 1
−J

1
+ − J 2

0 + a(J 1
0 )

2+ bJ 0
0J

1
0 . (20)

The generatorsJmµ with m = 1, 2, . . . , andµ = 0,±, are defined by

Jmµ =
N∑
j=1

cmj Iµ(j) (21)
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with the following commutation relations

[Jm+ , J
n
−] = −2Jm+n0 [Jm0 , J

n
±] = −(±)Jm+n± . (22)

In the following, the paramterscj are assumed to be different real numbers. Using the same
method as employed for diagonalizing (3), one can prove that exact solutions can only be
obtained for thea = 1 case. The eigenvaluesE(k) for the levelk state

|k〉 = J x1− J
x2− . . . J

xk− |0〉 (23)

where

J
xi− =

N∑
j=1

cjxi

1− xicj I−(j) (24)

are given by

h(k) =
∑
i 6=j

2

xixj
+1k

k∑
i=1

1

xi
(25)

where

h(k) = Ek − λ2
0− bλ1

0λ
0
0− (λ1

0)
2− kbλ1

0 (26)

1k = 2λ1
0+ b(λ0

0+ k) (27)

λn0 = −
N∑
j=1

Ij c
n
j (28)

with the xi are determined by the following set of equations

N∑
j=1

c2
j xiIj

cj xi − 1
=
∑
q 6=i

1

xi − xq −1k/2 (29)

for i = 1, 2, . . . , k.
It can be verified that whereas the third component of the total angular momentum,J 0

0 ,
is a good quantum number for Hamiltonian (20), the total angular momentum itself is in
general not a conserved quantity. An interesting case occurs whenN = 2 with b = 0. In this
special case, the total angular momentum is a good quantum number and the Hamiltonian
(20) can be written as

Ĥ = c2
1I(1)

2+ c2
2I(2)

2+ 2c1c2I(1) · I(2). (30)

The general levelk state can be recognized, up to a normalization factor, as

|k〉 = N
∑

16j1j2...jk62

k∏
i=1

(
I−(ji)xicji
1− xicji

)
|0〉 = |(I1I2)IM〉 =

∑
M1M2

CIMI1M1I2M2
|I1M1; I2M2〉

(31)

whereN is the normalization factor,M = k − I1 − I2, andCIMI1M1I2M2
is the corresponding

Clebsch–Gordan (CG) coefficients of SU(2). Therefore, (29) can be used to evaluate
coupling coefficients ofSU(2) when b = 0 andN = 2, regardless of whatcj values
are taken.

It can be verified that the levelk states given by (23) haveSk symmetry with respect to
permutations among different rootsxi for i = 1, 2, . . . , k determined by (29). It can also
be shown that±∞ are always solutions whenb = 0. The basis vectors (31) and energy
eigenvalues (25) also remain invariant under a sign change from−∞ to +∞ for some of
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the rootsxi . This means we can choose+∞ for the rootsxi for some cases, which enables
us to discuss the root systems systematically. For example, the roots can be arranged as
|x1| < |x2| < · · · < |xµ| < xµ+1 = xµ+2 = · · · = xk = +∞ if the µth root is a finite
complex number. If two rootsxi andxi+1 are conjugate to each other,a1± ia2, where the
ai with i = 1, 2 are real numbers, we always writexi = a1 − ia2, xi+1 = a1 + ia2. The
total angular momentum quantum number is written as

I = I1+ I2− t (32)

wheret = 0, 1, 2, . . . , I1+ I2− |I1− I2|. Thus, for a given levelk, t 6 k. One can easily
obtain the following solutions

xi = ∞ with i = 1, 2, . . . , k for t = 0 (33)

x1 = c1I1+ c2I2

c1c2(I1+ I2)
x2 = x3 = · · · = xk = ∞ for t = 1 (34)

x1= (2I1+ 2I2− 1)(2c1I1+ 2c2I2− c1c2)+i(c1− c2)
√
(2I1− 1)(2I2− 1)(2I1+ 2I2− 1)

2c1c2(I1+ I2− 1)(2I1+ 2I2− 1)

x2= (2I1+ 2I2− 1)(2c1I1+ 2c2I2− c1c2)−i(c1− c2)
√
(2I1− 1)(2I2− 1)(2I1+ 2I2− 1)

2c1c2(I1+ I2− 1)(2I1+ 2I2− 1)
x3 = x4 = · · · = xk = ∞ for t = 2 (35)

· · · · · · .
For t = µ, µ finite roots should be obtained from (29) withi = 1, 2, . . . , µ, while other
roots are all infinite. Finally, whent = k, the k roots are all finite different complex
numbersx1 < x2 < x3 < · · · < xk, which can be derived directly from (29).

As examples, we now derive CG coefficients using the proposed method. For thek = 1
case, onlyt = 0 or 1 is possible. Fort = 0, the CG coefficients are very simply given,
after normalization, by

C
I1+I2,1−I1−I2
I1−I1+1,I2−I2

=
√

I1

I1+ I2
C
I1+I2,1−I1−I2
I1−I1,I2−I2+1 =

√
I2

I1+ I2
. (36)

For thet = 1 case, the basis vector can be written as

|I1+ I2− 1, 1− I1− I2〉 = c1x
√

2I1

1− c1x
|I1, 1− I1; I2,−I2〉 + c2x

√
2I2

1− xc2
|I1,−I1; I2, 1− I2〉

(37)

where

x = c1I1+ c2I2

c1c2(I1+ I2)
. (38)

After normalization, we obtain

C
I1+I2−1,1−I1−I2
I1−I1+1,I2−I2

=
√

I2

I1+ I2
C
I1+I2−1,1−I1−I2
I1−I1,I2−I2+1 = −

√
I1

I1+ I2
. (39)

The phase has been set to the standard Condon–Shortley convention.
It should be pointed out that there is a correspondence between the Hamiltonians

introduced in (3) and (20) withN = 2 and the Hamiltonian used to describe a two-rotor
neutron–proton model for nuclei, which have recently been discussed in detail within an
SU(3) framework [10, 17] through the mapping from an intrinsic variable description to its
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algebraicSU(3) realization [5, 6]. Such Hamiltonians may also be useful in the description
of spin-glass systems [18, 19].

Actually, the approach presented in this paper follows the algebraic Bethe ansatz [20]
for wavefunctions (13) and (23), which has become a standard procedure in exactly solvable
models [13, 21, 22]. The difference between this method and other Bethe ansatz solutions
is that an infinite Lie algebra is used instead of finite nonlinear algebras such as the Yang–
Baxter or Zamolodchikov types. There should be a link between an infinite Lie algebra of
the type discussed here and a corresponding nonlinear algebra. This will be studied in the
near future.

The methodology introduced in this paper, when extended to higher-rank Lie algebras,
is nontrivial. Nevertheless, coupling coefficients, including multiplicities, can be evaluated
via equations similar to (29). This will be the topic of a future study.

We conclude that there are new classes of exactly sovable many-body problems that
can be discovered by exploiting infinite-dimensional algebraic techniques. As this paper
shows, it is also possible to use this technique for the evaluation of coupling coefficients of
the corresponding Lie algebra. Applications of this method to other many-body problems,
especially associated with higher-rank algebras, are in progress.
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