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Abstract. The N-coupled symmetric rotor problem is solved exactly by using an infinite-
dimensional algebra. A formalism for solving the corresponding Hamiltonian eigenvalue
problem is also proposed. The system of equations that solves a special Hamiltonian eigenvalue
problem is shown to yield coupling coefficients of the corresponding Lie algebra.

The quantum rotor has proven to be a very useful model for many physical applications,
especially in the fields of molecular [1, 2] and nuclear physics [3,4]. A summary can be
found in a review paper by Draayer and Leschber [5]. In nuclear physics a connection
between irreducible representations (irreps) of §li&3) shell model and eigenvalues of

the principal moments of inertia of the rotor Hamiltonian has been established [6]. From
this it follows that the dynamics of a quantum rotor can be realized §U&3) shell-

model framework. By exploiting this connection, a two-rotor picture can be realized via
the coupling of twoSU (3) irreps [7]. This means that enhanc#fil transitions in heavy

and well-deformed nuclei, predicted within the framework of the phenomenological two-
rotor model (TRM) which considers the protons and neutrons as ellipsoidal distributions that
perform rotational oscillations against one another, can be given a shell-model interpretation
[8,9]. Indeed, the scissors mode of the TRM, together with a novel twist mode that is
realized when the parent proton and neutron distributions have triaxial shapes, has been given
a microscopic interpretation within the framework of the pseddg3) model [10, 11].
Likewise, N-coupled systems as found in Heisenberg spin chains [12], Hubbard models
[13], and so on, are of general interest in other branches of physics.

Recently, it was shown that there may be a large class of many-body problems that
can be solved exactly by introducing an infinite-dimensional algebra. The method was
demonstrated for nuclear pairing problems [14, 15]. In these cases, the infinite-dimensional
algebra is exactly, or similar to, the affirsd/ (2) Lie algebra without central extension. In
this paper, thev-coupled rotor Hamiltonian will be solved using a similar technique.

First, we introduce the following generators

N N
="y I =Y o)) (1)
j=1 j=1
wherec;, with j = 1,2,..., N, are free parameters which for simplicity are taken to be

real, I, (j) with © = 0, +, —, are generators of the intrinsic angular momentum for jtite
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rotor, andm can be taken to be a positive or negative integer, or zero. It is straightforward
to verify that these generators satisfy

[, 1" = =21+t [, 1) = —(£) 17+, 2

The algebra defined by these operators is therefore similar to the intfit'si2) affine Lie
algebra without central extension [16]. Using the generators given in (1), one can write out
the following N-coupled symmetric rotor Hamiltonian

~ 2
H=1°1° 1§ +a(10) +b101} ®)
wherea andb are additional parameters. Using (1), Hamiltonian (3) can be written as

N
H = Ho+ Hnw = ) _(cZU-(N1+()) = To()) + (@ + be)) (To(/)?)
j=1

N
+ Y [(a+ b Io()Io(j') + cjci I- ()1 ()] (4)
J#N
By comparing expression (4) with the Hamiltonian of a symmetric rotor, the Hamiltonian
of the jth subrotor can be identified as

Ho(j) = ¢ (I2() + 12())) + (@ + b IZ(j). (5)
Therefore, the moments of inertia of thiéh subrotor are
1 1
x = y = 5 = 6
Ix =, 2c2 Iz 2(a + be?) (©)
while
. N
Hiw =Y [(a + b Io(N (i) + cjci I-() 1+ ()] 7
J#J

describes interactions among therotors. Specifically, fotv = 2 the interaction term is
Hn™? = [2a + b(c3 + )] Io(D1o(2) + crco[ I (D11(2) + 121 (D]. (8)

In this case, there are four parameters:with j = 1,2 anda andb. For the case oV
rotors there areV 4 2 parameters.

Depending upon the parametrization of the Hamiltonian, there are two types of lowest-
weight state vectors. One, which is an eigenstate of the total angular momentism
achieved whem: = 1 and all thec; parameters are taken to be equal,= ¢ # 0 for

j=1,2,...,N. In this case the Hamiltonian can be written in terms of the total angular
momentum operator,
H = 2I1? + bely 9)

and lowest-weight state vectors are simply basis vectors of the total angular momentum and
its third component|/, M,), with M; = —I. A nontrivial case occurs when the and the

a andb are all different real numbers. In this case an exact solution of the corresponding

eigenvalue problem can be achieved with the help of the infinite-dimensional algebra given
in (2). The lowest-weight states for this case satisfy

IM0)=0  m=0+1+2,... (10)
where
[0) = I, =113 I, —12; ... Iy, — 1) (11)
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is an uncoupled lowest-weight state with fixed angular moménts, . . ., Iy, respectively,
for each of the subrotor representations, and
N
I§'10) = Ag10) = Y (—I)c"|0). (12)
j=1

This lowest-weight state, which is the ground state of Meoupled rotor problem, will

be called the level O state. Excited states are classified according to the number of raising
operators/_(j) that are applied on the level O state. If a state is constructed by applying
I_(j) on the level O staté times, the state is called the levektate. It can be shown that

up to a normalization factor the levkleigenvectors of the Hamiltonian (3) can be written

in the form

k) = I 12 ... 1™|0) (13)
where
N Ci
1Y = L1 (). 14
;Lﬁ#(n (14)
To obtain the variables; fori =1, 2, ..., k, we first expand (14) in terms af around
x; = 0. Thus,
lky = ) xitxp? .o xR 1M0) (15)

n;

wherel" are Fourier—Laurent coefficients in the expansior bf namely

1 -
" = —% dhx] 1Y (16)
2mi 0
Using (15) and commutation relations (2), one can easily prove thatytheith i =
1,2,...,k, satisfy the following relations
N 0
b(A k)y—1
h® — Z b(Ag+hk) —1 (17)
i=1 Xi
b(AQ+k) —1 L 21,3 2
Bot =1 _§~ 0% fori=1.2... .k (18)
X; = 1- Xich A Xi = Xj
where
h® = Ep — aAJ(AJ + 2k) — bAJ(AS + k) — ak® + A} (19)

and E; is the energy eigenvalue for levél Even though these relations are derived
nearx; = 0, they are valid in the entire complex plane. Hence, the coefficientnd
energy eigenvalues are simultaneously determined by the system of equations (17) and (18).
Equations (17) and (18) give exact solutions for the energy spectrum and wavefunctions.

In general, total angular momentum is not a good quantum number fa¥ tbeupled
rotor Hamiltonian given by (3) with different; parameters. As a consequence, it cannot be
used to solve coupling problems 8¢ (2). However, this becomes feasible if one considers
another type of Hamiltonian, namely

H=J— 02 +a(Ud)?+ b5 (20)
The generatord); with m =1,2,..., andu = 0, +, are defined by

N
It =Y G) (21)
j=1
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with the following commutation relations
[, g = =245+ [Jg, J1] = — (). (22)

In the following, the paramters are assumed to be different real numbers. Using the same
method as employed for diagonalizing (3), one can prove that exact solutions can only be
obtained for thez = 1 case. The eigenvalugg® for the levelk state

k) = J T2 . J™)0) (23)
where
N CiXi
Ji=) 1 (j 24
: Zl—xic- ) (24)
j=1 J
are given by
2 k1
WO =3 A Y = (25)
iZ) XiXj i1 Xi
where
W = EF — )3 — bagrd — (A% — kbAg (26)
Ar =25 +bO3+k) (27)
N
b=—> I (28)
j=1
with the x; are determined by the following set of equations
N o 2y 1
jTt
= — Ay/2 29
chxi—l in—x(, k/ (29)

Jj=1
fori=1,2,...,k.
It can be verified that whereas the third component of the total angular momer'ﬁum,

is a good quantum number for Hamiltonian (20), the total angular momentum itself is in
general not a conserved quantity. An interesting case occurs iWher2 with b = 0. In this

special case, the total angular momentum is a good quantum number and the Hamiltonian
(20) can be written as

H = AI1(1)? + 21(2)% + 2c1¢2I (1) - 1(2). (30)
The general levet state can be recognized, up to a normalization factor, as

k .

I_(ji)xic;,
=N > 1‘[(1_—“’ 10) = [(IL1)IM) = ) Cili s, | 1M1 M)
1<t je it <2i=1 i MMz

(31)

where\ is the normalization factot = k — Iy — I, andC;", . is the corresponding
Clebsch—Gordan (CG) coefficients of SU(2). Therefore, (29) can be used to evaluate
coupling coefficients ofSU(2) whenb = 0 and N = 2, regardless of what; values
are taken.

It can be verified that the levél states given by (23) hav, symmetry with respect to
permutations among different roats for i = 1, 2, ..., k determined by (29). It can also
be shown thattoco are always solutions whetkh = 0. The basis vectors (31) and energy
eigenvalues (25) also remain invariant under a sign change fromto +oco for some of



Exact solution forN-coupled symmetric rotors 6859

the rootsx;. This means we can choogex for the rootsy; for some cases, which enables
us to discuss the root systems systematically. For example, the roots can be arranged as

lx1] < |x2| < -+ < |xu| < Xp41 = xu42 = -+ = x, = +oo if the uth root is a finite
complex number. If two roots; andx;,; are conjugate to each othes, + ia,, where the
a; with i = 1,2 are real numbers, we always write = a; — iap, x;41 = a1 + iag. The
total angular momentum quantum number is written as
I=hL+DL—1t (32)

wherer =0,1,2,..., 11+ I, — |I1 — I]. Thus, for a given levet, r < k. One can easily
obtain the following solutions
X; = 00 withi=1,2,...,kfort =0 (33)

c1l1 + el

11 22 Xo=x3=---=x,=00forr=1 (34)

el + )

2L+ 2D — 1) (2c1lh + 2c21p — cic2)+i(er — )/ (I — D)2 — )21 + 21 — 1)

- 2cico(ly + I — )21y + 21, — 1)

. (211 + 21 — 1) (2111 + 2c212 — c1¢2)—i(c1 — c2)/ I — DRI — D211 + 21 — 1)
2c162(11 + Io — 1211 + 215 — 1)

X3=x4=---=x;, =00 fort =2 (35)

X1

For ¢t = u, u finite roots should be obtained from (29) with= 1, 2, ..., u, while other
roots are all infinite. Finally, whem = k, the k roots are all finite different complex
numbersx; < xp; < x3 < - -+ < x¢, Which can be derived directly from (29).

As examples, we now derive CG coefficients using the proposed method. Foethie
case, onlyt = 0 or 1 is possible. For = 0, the CG coefficients are very simply given,
after normalization, by

chithi-hor [N cthi-n—n _ | T2 (36)
h—h+1,L-1 — I I h—Ih,L—L+1 — Ji L’
1+ 12 1+ 12

For ther = 1 case, the basis vector can be written as

J2I V2T
W+ b-11-L—ILy =YY 1 hih —Ly+ ZY22 1 1 b 1- 1)
1—c1x 1—xco
(37)
where
I I
‘= c1li + calp (38)

cico(l+ 1)’
After normalization, we obtain

C11+12_1’1_11_12 _ I CI1+12—1,1—11—12 _ I (39)
h—-h+1L-1I, Jé I h—h,L—-L+1 I L’
1+ I2 1+ 12

The phase has been set to the standard Condon—Shortley convention.

It should be pointed out that there is a correspondence between the Hamiltonians
introduced in (3) and (20) wittv = 2 and the Hamiltonian used to describe a two-rotor
neutron—proton model for nuclei, which have recently been discussed in detail within an
SU (3) framework [10, 17] through the mapping from an intrinsic variable description to its
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algebraicSU (3) realization [5, 6]. Such Hamiltonians may also be useful in the description
of spin-glass systems [18, 19].

Actually, the approach presented in this paper follows the algebraic Bethe ansatz [20]
for wavefunctions (13) and (23), which has become a standard procedure in exactly solvable
models [13, 21, 22]. The difference between this method and other Bethe ansatz solutions
is that an infinite Lie algebra is used instead of finite nonlinear algebras such as the Yang-—
Baxter or Zamolodchikov types. There should be a link between an infinite Lie algebra of
the type discussed here and a corresponding nonlinear algebra. This will be studied in the
near future.

The methodology introduced in this paper, when extended to higher-rank Lie algebras,
is nontrivial. Nevertheless, coupling coefficients, including multiplicities, can be evaluated
via equations similar to (29). This will be the topic of a future study.

We conclude that there are new classes of exactly sovable many-body problems that
can be discovered by exploiting infinite-dimensional algebraic techniques. As this paper
shows, it is also possible to use this technique for the evaluation of coupling coefficients of
the corresponding Lie algebra. Applications of this method to other many-body problems,
especially associated with higher-rank algebras, are in progress.
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