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We present an exact analytical solution for quantum strong long-range models in the canonical
ensemble by extending the classical solution proposed in Campa et al. J. Phys. A 36, 6897 (2003)
[1]. Specifically, we utilize the equivalence between generalized Dicke models and interacting quan-
tum models as a generalization of the Hubbard-Stratonovich transformation. To demonstrate our
method, we apply it to the Ising chain in transverse field and discuss its potential application to
other models, such as the Fermi-Hubbard model, combined short and long-range models and models
with antiferromagnetic interactions. Our findings indicate that the critical behaviour of a model is
independent of the range of interactions, within the strong long-range regime, and the dimension-
ality of the model. Moreover, we show that the order parameter expression is equivalent to that
provided by mean-field theory, thus confirming the exactness of the latter. Finally, we examine the
algebraic decay of correlations and characterize its dependence on the range of interactions in the
full phase diagram.

I. INTRODUCTION

Long-range systems are those in which two-body in-
teractions decay as a power-law at large distances. They
are ubiquitous in nature, with some examples given by
dipolar, Coulomb or Wan-der-Walls interactions. Recent
experimental advances in atomic, molecular and optical
systems have lead to a resurgence of interest in long-range
models [2–5]. In these experiments, the effective interac-
tions between spins are often long-ranged and tunable,
renewing the need for a comprehensive understanding
of long-range systems. Although less studied than their
short-ranged counterparts, there are already some rigor-
ous and numerical results available [6–9]. Some proper-
ties have been discussed in comparison with short-range
systems. Notable examples are the existence (or absence)
of an area law of entanglement [10–13], the algebraic de-
cay of two-point correlators out of criticality [14–16], the
spreading of correlations [17], the existence of Majorana
modes [18] and topological properties [19].

In these examples, the phenomenology can be under-
stood within a (sub)classification in terms of the range
of interactions they exhibit. To fix notation and ideas,
let us introduce this classification with the models con-
sidered in this paper: quantum long-range models in an
N -site lattice with a coupling of the form

Hc = −
N∑
ij

JijCiCj , (1)

where Ci is a local hermitian operator acting on site i.
We consider models with power-law decaying interactions
Jij = ΓJ̃(rij)/Ñ ,

J̃(rij) =

{
b if rij = 0

|rij |−α otherwise
(2)

α
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FIG. 1. Classification of long-range models following reviews
[6] and [9] valid for both the classical and quantum models.
This work presents a solution for the quantum strong long-
range regime.

and periodic boundary conditions (PBC). The distance
between sites rij is then given by the nearest image con-
vention. Through this work we will focus on the case
of attractive or ferromagnetic interaction, so the interac-
tion strength is Γ > 0, although the extension to anti-
ferromagnetic or repulsive models will be discussed. b is
a parameter that can be tuned to shift the spectrum of
J . The decay rate, α, sets the range of the interactions.
For α < d, where d is the dimensionality of the lattice,
the interactions decay slowly enough that the sum in the
coupling term (1) depends superlinearly on N , break-
ing the extensivity of the model (See App. A 1.). Kac’s

renormalization factor 1/Ñ restores extensivity, ensuring

a well-defined thermodynamic limit. Here Ñ =
∑
i J̃ij ,

note that PBC make the model translation invariant and
thus

∑
i J̃ij is independent of j. Regardless, the model re-

mains non-additive in this regime. Non-additivity brings
about particular statistical and dynamical phenomena
that differ from the commonly studied short-range mod-
els, such as ensemble inequivalence, negative specific heat
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and quasistationary states [9]. Accordingly, the regime
α < d is identified as (strong) long-range. In the regime
α > d, the model is naturally extensive, and Kac’s reno-
marlization factor amounts to a rescaling of the interac-
tion strength. Within the regime α > d two further sub-
regimes can be identified: for α > α∗ the critical expo-
nents of the model match those of the nearest-neighbours
model (α → ∞), this is the short-range regime; for
d < α < α∗ the model presents critical exponents that
differ from the short-range ones, the effects of long-range
interactions are felt but the model is additive, this is the
weak long-range regime [6, 9]. For convenience, we sum-
marize this classification in Fig. 1. This work deals with
the strong long-range regime.

Strong long-range models are commonly disregarded in
many analytical and numerical studies on the grounds of
the ill-defined thermodynamic limit brought about by the
non-extensivity. Kac’s rescaling eliminates this barrier,
making their study possible. For quantum models, sem-
inal numerical studies solving the transverse-field Ising
model in the strong long-range regime are found in Refs.
[20, 21]. They confirm that in this regime the model is
within the mean-field universality class. This is in agree-
ment with the claim that mean field is exact for quantum
spin models in the strong long-range regime [22] that
generalizes similar findings in classical systems [23–26].
These works are crucial for the rigorous understanding
of the physics of long-range systems. On the one hand,
they provide an exact way to solve them, on the other
hand, they provide a starting point for approximations
that tackle the weak long-range regime.

This work provides a recipe to analytically solve, in the
canonical ensemble, quantum strong long-range models.
Therefore, it complements the work of Mori [22] and con-
firms that in the strong long-range regime mean field is
exact. Besides, it extends the work of Campa and cowork-
ers for classical strong long-range models to the quantum
case [1]. Our work introduces a generalized Hubbard-
Stratonovich transformation (HST) and provides a closed
expression for the free energy at any temperature. Tech-
nically, we show how to use the equivalence between gen-
eralized Dicke models and interacting quantum models
as a quantum HST. We show that only strong long-range
models admit this mapping and formulate their canonical
solution in terms of the associated Dicke model, which is
then tackled following the prescription of Wang and Hioe
[27, 28]. We illustrate the method on the Ising chain in
transverse field. We find that the critical behaviour is
universal for α < d and any lattice dimensionality. The
expression for the magnetization (the order parameter)
is shown to be equivalent to the mean-field solution, thus
proving the exactness of the latter. Finally, we study the
algebraic decay of correlations as a function of the decay
rate of interactions α.

The rest of the paper is organized as follows. In Sec-
tion II, we provide a brief overview of the HST as a tool
to solve classical models, which forms the basis for our
further development. In Section III, we establish the

relationship between generalized Dicke and long-range
models and introduce the generalized HST. Section IV
presents the solution for strong long-range models and
a discussion of which models can be treated with this
method. We perform the calculations for the long-range
transverse field Ising model, including the full phase di-
agram and the decay of two-point correlations in section
V. Finally, we conclude the article with some general re-
marks and relegate more technical details to the Appen-
dices.

II. SKETCH OF THE SOLUTION FOR
CLASSICAL SYSTEMS

To warm up, it is convenient to understand how to
solve classical strong long range models, mainly following
the works of Campa and coworkers [1, 23]. For simplicity
consider the Ising model,

Hcl = h

N∑
i

si −
N∑
ij

Jijsisj . (3)

Here, si is a discrete variable. The solution is based
on two main observations. First, diagonalizing the in-
teraction matrix J = ΛDΛT , which allows one to write
the coupling term as

∑
kDk (

∑
i Λiksi)

2
, where {Dk} are

the eigenvalues of the interaction matrix. Note that, in
this form, the coupling is written as a sum of interaction

terms that are quadratic in
∑N
i Λiksi. Second, eliminat-

ing these quadratic interactions by use of the Hubbard-
Stratonovich transformation which is based on the equal-
ity,

Z =
∑
si

e−βHcl

∝
∫
duk

∑
si

e−β
(
h
∑
i si+

∑
k u

2
k/Dk−2

∑
ik Λiksiuk

) (4)

here, uk are real auxiliary variables. This equality for the
partition function follows from Gaussian integral formu-
las.

Notice that we have decoupled the interaction Jijsisj ,
therefore the sum over si-configurations are trivial. Fi-
nally, the integral over the real variables uk can be done
within the saddle point approximation in the N -large
limit. This is true if some conditions are met on the
eigenspectrum of the Jij matrix, see below and the dis-
cussion in App. B.

III. FROM THE DICKE MODEL TO QUANTUM
LONG-RANGE MODELS AND BACK

A. Effective theory of the Dicke model

The method described above and utilized in Ref. [1]
cannot be straightforwardly applied to quantum models.
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FIG. 2. Analysis of the eigenvalues of the coupling matrix J
(1) for d = 1. Left: For α = 0.2 < 1, a plot of the eigenvalues
for N = 100 on top and a histogram of the eigenvalues as a
function of N on the bottom. Right: Same but for α = 1.8 >
1.

The application of the HST requires splitting the expo-
nential that constitutes the kernel of the partition func-
tion into a product of exponentials, which in the quantum
case is prevented by the non-commutativity of the long-
range interaction term and other terms in the Hamilto-
nian. There are ways in which the HST can be applied
to solve quantum systems, but it requires a reframing of
the partition function in terms of commuting quantities.
A field-theory formulation or imaginary-time Trotteriza-
tion are examples of this. Here we present an alternative
which is the closest to the classical formulation.

Our method utilizes some results from quantum optics
in order to draw an equivalence between some quantum
long-range models and a cavity QED model. Specifically,
we utilize the generalized Dicke model as our starting
point to develop this equivalence:

H =

M−1∑
k=0

ωka
†
kak +H0 −

∑
k,i

(
ak + a†k

) λik√
N
Ci . (5)

Here H0 is an exactly solvable Hamiltonian of the
“mater” degrees of freedom and Ci is the local hermitian
operator that couples site i to the bosonic modes with

[ak, a
†
k′ ] = δk,k′ , finally λik are real coupling constants.

In two previous publications [29, 30] we show that the
generalized Dicke model, after integrating out the elec-
tromagnetic modes, yields an exact effective Hamiltonian
description for the matter degrees of freedom alone in
the limit N →∞ (thermodynamic limit). The resulting

Hamiltonian,

Heff
m = H0 −

N∑
ij

M−1∑
k=0

λikλjk
Nωk

CiCj , (6)

corresponds to a quantum model with interactions given

by (Jeff)ij =
∑M−1
k λikλjk/(Nωk). The mode structure

of the cavity determines the resulting effective model.
However, it is important to note that the exact mapping
between Hamiltonians (5) and (6) is limited to the ther-
modynamic limit, N → ∞, and a number of modes M
such that limN→∞M/N = 0. Below, we demonstrate
how we can reverse the effective theory to solve a quan-
tum model. The first question that arises is which family
of quantum models, with interaction given by Eq. (1),
can be solved this way, i.e. which can be cast in the form
of Eq. (6). Below, we show that this is the case for strong
long range models, α < d, this is the first result of this
paper.

B. Mapping a quantum model to the Dicke model

If we start from an arbitrary extensive [31] model of
the form Hm = H0 −

∑
ij JijCiCj , Cf. Eq. (1), the first

step is to diagonalize the interaction matrix J = ΛDΛT ,
where D is a diagonal matrix, Dkp ≡ Dkδkp. Note that
Λ is orthogonal because J is symmetric. The matrix
elements are then given by

Jij =

N−1∑
k=0

ΛikDkΛjk (7)

Assuming that Jij > 0, the smallest eigenvalue of J
can always be set to zero by adjusting its diagonal ele-
ments, which we denote b. Fixing b 6= 0 introduces, gen-
erally, non-trivial diagonal terms of the form Γb/ÑC2

i .
These can be shown to be negligible in the thermody-
namic limit, so the freedom to set b remains (See App.
A 2.). For a general interaction matrix the number of
non zero eigenvalues, M , scales with the size of the ma-
trix, N . Conveniently, it can be shown that for a model
with power-law decaying interactions and PBC such as
the one considered in this work (1), the number of non-
zero modes in the thermodynamic limit (N → ∞) de-
pends on the decay rate of the interaction [1]. For a
model in the strong long-range regime, α < d, only a
small number of modes have a non zero eigenvalue, such
that limN→∞M/N = 0. This can be seen analytically in
models with a translation-invariant interaction matrix,
which can be diagonalized in Fourier space, obtaining a
closed expression for its eigenvalues:

D(q) =
Γ

Ñ

∑
r

J̃(r) exp[−iqr] . (8)

Here q denotes any of the N reciprocal-space vectors in
the first Brillouin zone and the sum runs over all lat-
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FIG. 3. Schematic of the generalized Hubbard-Stratonovich
transformation mapping a quantum long-range model to (and
from) a generalized Dicke model. Blue dots represent “mat-
ter” degrees of freedom and red squares represent cavity
modes. Cf. Hamiltonians (5) and (6) in the main text.

tice points. The large-N behaviour of D(q) can then be
estimated by replacing the sum with an integral [1].

Complementarily, we provide in Fig. 2 a graphical
analysis of this phenomenon by showing the typical dis-
tribution of eigenvalues depending on α for d = 1 (
the same behaviour is observed in other dimensions, not
shown). This graphical analysis can be useful for models
without translation invariance. In Fig. 2 we show that for
a strong long-range model the eigenvalues bunch around
zero as N increases, whereas they remain more uniformly
distributed in the weak long-range regime. This can be
condensed into a criterion for determining whether arbi-
trary models are tractable: knowing that the eigenvalues
of J are non-negative and bounded by construction, if
only a vanishingly small fraction M/N are non-zero for
N → ∞, then their average will tend to zero and vice
versa. Thus, for an arbitrary interaction matrix J , if

lim
N→∞

1

N

M−1∑
k=0

Dk = lim
N→∞

1

N
Tr(J) = 0 (9)

the model is tractable, i.e. the number M of non-zero
eigenvalues scales as limN→∞M/N = 0. If we apply
this criterion to translation invariant models we find
limN→∞ 1/N

∑
kDk = limN→∞ Γb/Ñ , which is zero for

α < 1 and non-zero otherwise (See Apps. A 1 and A 2.).

Once it is established that a given model has a suf-
ficiently small number of non-zero eigenvalues, one can
sort them by decreasing value and truncate the sum in
Eq. (7) to consider only the first M terms for which
Dk 6= 0. For these remaining non-zero eigenvalues, we
can identify ωk = 1/Dk. This, together with the rescaled

elements of the change of basis matrix, λik =
√
NΛik,

leads to Eq. (6) and effectively defines the mode struc-
ture for the associated Dicke model (5).

In summary, models for which limN→∞M/N = 0,
in particular strong long-range models, can be mapped
to generalized Dicke models via the effective theory de-
scribed in [29, 30]. To gain further insight, it is useful to
compare Hamiltonians (5) and (6) with the system de-
picted in Figure 3, which outlines our procedure. The
interacting model, shown in the left-hand side of the fig-
ure, where constituents are depicted as blue nodes and
interactions as black edges, is mapped to a larger system
where the physical (matter) degrees of freedom are un-
coupled and interact with auxiliary bosonic modes repre-
sented as red squares [32]. Integrating out these bosonic
modes would lead back to the desired interactions Jij .
The parallelism between the auxiliary bosonic modes in
the effective theory and the auxiliary classical fields in
the standard HST motivates the claim of a generalized
Hubbard-Stratonovich transformation.

IV. EXACT SOLUTION OF STRONG
LONG-RANGE MODELS

At this point we have shown how to map a strong long-
range quantum model (1) to a generalized Dicke model
(5) as illustrated in Fig. 3. To solve the latter, we will
follow the steps outlined in the original solution of the
Dicke model by Wang and Hioe [27, 28]. In the ther-
modynamic limit, the trace over the photonic degrees of
freedom is replaced by a collection of complex Gaussian
integrals and the bosonic creation and annihilation oper-

ators, a†k, ak, are replaced by complex fields, α∗k, αk

Z =

∫ M−1∏
k=0

d2αk
π

Trm

exp

−β
M−1∑

k=0

ωk|αk|2 +H0 +
∑
k,i

2λikxk√
N
Ci

 , (10)

where αk = xk + iyk. At this point, the parallelism with
the standard Hubbard-Stratonovich transformation used
in the classical model is even more explicit. The Gaussian
integral over the imaginary parts {yk} yields an unim-
portant constant. To tackle the integration over the real
parts, we perform a change of variables u2

k = x2
k/N and

define

Zm[uk] ≡ Zm(u0, . . . , uM−1)

= Trm

{
e−β(H0+

∑
k,i 2λikukCi)

} (11)

and fm[uk] = ln(Zm[uk])/N . In the resulting integral

Z =

∫ M−1∏
k=0

√
N

πωk
duk exp (Nφ[uk]) , (12)
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where

φ[uk] = −β
M−1∑
k=0

ωku
2
k + fm[uk] , (13)

the exponent depends explicitly linearly on N , allowing
one to use the saddle-point method (exactly for N →
∞) to express the partition function as the value of the
integrand at the maximum of φ[uk]

Z =

M−1∏
k=0

√
N

πωk
exp (Nφ[ūk]) , (14)

with,

φ[ūk] = max
{uk}

φ[uk] . (15)

Computing the partition function is thus reduced to a
multivariate maximization problem. In order for the
zero-order saddle-point approximation to be exact, one
has to verify that there exists a maximum {ūk}, i.e. that
φ admits a stationary point {ūk} and the eigenvalues of
the Hessian of φ at the stationary point, Hφ[ūk], are all
negative. In the presence of several maxima, one has to
find the global maximum. Finding global extrema of a
multivariate scalar function is normally a complex task,
without guarantee or provability of success, but in the
present case it is greatly facilitated for homogeneous or
near-homogeneous systems (See Sec. V). Additionally,
the second-order corrections to the partition function in
the form of a factor (detHφ[ūk])−1/2 must be negligible
with respect to the zero-order term, exp {Nφ[ūk]}, but
this is generally true, see App. B. This is the main result
of this paper, i.e. the exact expression for the partition
function of strong long-range models (14).

In the next section and in order to give concrete for-
mulas, we particularize for the case of the Ising model in
transverse field. However, the ideas presented here can
be applied to other models. For instance, our next sec-
tion generalizes easily to a spin-s system where s > 1/2
and also to the inclusion of a longitudinal field, such
that H0 = ωz

∑
i S

z
i + ωx

∑
i S

x
i and Ci = 2Sxi with

[Sαi , S
β
j ] = iεαβγS

γδij spin-s operators. The Fermi-
Hubbard model with long-range interactions could also

be treated with our method. Here H0 = tijc
†
i cj and

Ci = c†i ci with {ci, c†j} = δij fermionic operators. Fi-
nally, we could consider for H0 any model such that
H0+

∑
i ξiCi is solvable, where the ξi are constants. In do-

ing so, we could combine short-range models (as the one-
dimensional short-range Ising model in transverse field,
the XY model, and so on) with strong long-range inter-
actions. This is because our method requires knowledge
of the eigenstates of H0 +

∑
k,i 2λikukCi, Cf. Eq. (11).

We have, thus far in the paper, focused only on fer-
romagnetic (attractive) models. However, the discussion
of the applicability and generalizations of our method
demands that we consider antiferromagnetic (repulsive)

models [33, 34]. Frustrated antiferromagnetic long-range
models cannot be tackled with our method. To see why,
it suffices to look at Fig. 2, frustrated antiferromagnetic
models arise from changing the global sign of the inter-
action in Eq. (1), which in turn results in a change of
sign of the eigenvalues of the coupling matrix. For a
general model, a shift to render the smallest eigenvalue
equal to zero is not possible as it would require a b of
the order of Ñ , leading to non-vanishing diagonal ele-
ments even in the N → ∞ limit. For a model in which
C2
i = 1, the shift is possible, but after a shift to ren-

der the smallest eigenvalue equal to zero, we find that
the majority of the eigenvalues are non-zero, regardless
of the range of interactions α. In contrast, it is possible
to define unfrustrated long-range antiferromagnetic mod-
els, Jij = Γ(−1)i+j J̃(rij)/Ñ , as an extension of unfrus-
trated nearest-neighbour antiferromagnetic interactions
[35]. Here, the sign change is alternating, rather than
global, effectively defining two sublattices. The interac-
tion matrix defined this way shares the eigenvalues of its
ferromagnetic counterpart and the corresponding model
can thus be tackled with our method. However, a num-
ber of interesting subtleties arise later on in the solution
that deserve a detailed discussion, we reserve this for a
future publication.

V. SOLUTION OF THE LONG-RANGE ISING
MODEL IN A TRANSVERSE FIELD.

To showcase the effectiveness of the formalism pre-
sented in the previous sections, we particularize now to
an Ising chain in transverse field

H =
ωz
2

N∑
i

σzi −
N∑
ij

Jijσ
x
i σ

x
j , (16)

where σx,z are the usual Pauli matrices and Jij is given
by Eq. (2). This corresponds to setting d = 1, H0 =
ωz
2

∑
i σ

z
i and Ci = σxi . In App. C 1 we show that this

leads to

φ[uk] = −β
M−1∑
k=0

ωku
2
k +

1

N

N∑
i

ln [2 cosh(βεi)] , (17)

with 2εi[uk] =
√
ω2
z + 4 (2

∑
k λikuk)

2
.

In the case of a homogeneous H0 we show in Apps. C 2
and C 3 that the global maximum is homogeneous in the
lattice. In terms of the minimization variables, homo-
geneity implies that u0 = u 6= 0 and uk 6=0 = 0, see App.
C 2. This means that only the zero mode, which is con-
stant on the lattice, λi0 = 1 ∀i, is relevant in determining
the thermodynamic properties of the model. In turn, one
finds that the critical properties of the model are inde-
pendent of the decay rate of interactions α, since the lat-
ter only determines the degree to which higher-frequency
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modes (k > 0) have to be considered in the diagonaliza-
tion of J . In more intuitive terms, homogeneity is re-
vealed in the fact that 2εi = 2ε =

√
ω2
z + 16u2, ∀i. In

any case, the multivariate maximization problem simpli-
fies to a single variable maximization problem maxu φ(u).
Taking the derivative of φ with respect to u yields the
condition

ūε̄ = 2Γū tanh (βε̄) , (18)

which is manifestly α-independent. Note that ε̄ = ε(ū).
For Γ < ωz/4, ū = 0 is the only solution. For Γ > ωz/4,
the solution depends on β, for β > βc, with βc given by
ωz = 4Γ tanh (βcωz/2), there is another solution to Eq.
(18) given by ε̄ = 2Γ tanh (βε̄). The solution ū = 0 corre-
sponds to a maximum in the regime where it is the only
solution and becomes a minimum for β > βc with the
maximum given by the other solution [27]. This marks
the paramagnetic-ferromagnetic transition point. This is
the well-known mean-field critical behaviour of the stan-
dard (single-mode homogeneous coupling) Dicke model
[27, 36], which is shared by the LMG model (all-to-all
homogeneous Ising) [37, 38] and, as we just showed, is
also universal to all strong-long-range Ising models and
their associated Dicke models, i.e. we have demonstrated
that the critical point is independent of α. This can be vi-
sualized in Fig. 4 where the vertical line marks the phase
transition, located at the maximum for the susceptibility
(see below), and is independent of α. Besides, in Fig. 5
we compute the critical line, in red, in the (Γ, 1/β)-plane
and compare it against the simulations in Ref. [21]. We
find excellent agreement with their numerical results and
showcase that the critical point is independent of α and
coincides with the mean-field value.

In terms of observables, we focus now on the calcula-
tion of magnetization. In order to do so from the par-
tition function, we introduce a perturbative longitudinal
field to the Hamiltonian, such that H → H −

∑
i hiσ

x
i .

Then one can compute the order parameter β〈σxi 〉 =
∂ lnZ/∂hi and the susceptibilities [39]

χij = lim
{hn}→0

∂〈σxi 〉
∂hj

. (19)

The introduction of longitudinal fields leads to the sub-
stitution 2

∑
k λikuk → 2

∑
k λikuk+hi in Eq. (17). The

magnetization is then

〈σxi 〉 = tanh (βεi[ūk])
2
∑M−1
k=0 λikūk + hi
εi[ūk]

. (20)

Here, the magnetization appears as a function of the
maximization variables {ūk}. However, it is possible to
show that

∑
k λikūk =

∑
j Jij〈σxj 〉, rewriting Eq. (20)

as a self-consistent equation on {〈σxi 〉} which is precisely
the self-consistent equation that arises in a mean-field so-
lution. Our exact analytical method is thus equivalent to
mean-field theory, proving that mean-field theory is exact
for strong long-range models and any lattice dimension-
ality d. Anecdotally, our theory evidences that the self-
consistent solution from mean-field theory is redundant,
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102
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FIG. 4. Susceptibility for maximally separated spins χN/2 for
strong long-range quantum Ising models as a function of the
interaction strength Γ. The parameters used were ωz = 1,
βωz = 10 and N = 100.

in the sense that the solution involves a transcenden-
tal equation of N variables (the magnetizations {〈σxi 〉}),
whereas the same problem can be rewritten in terms of
M variables (the {uk}), with limN→∞M/N = 0.

A. Decay of correlations

Our final result concerns the decay of correlations. In
weak long-range and short-range systems correlations de-
cay exponentially at long distances. Only at the critical
point do these systems exhibit power law decay of cor-
relations [14–16]. Conversely, strong long-range systems
exhibit power law decay of correlations at all distances.
In the absence of exponential decay, the concept of cor-
relation length cannot be straightforwardly defined, al-
though there have been some attempts [40]. Here we
study the susceptibility χij (19) as a measure of corre-
lations between spins, as it is proportional to the Kubo
correlator [41][Chap. 4]

χij = β

(
1

Z

∫ β

0

Tr
(
e−(β−s)Hσxi e

−sHσxj

)
− 〈σxi 〉〈σxj 〉

)
.

(21)
The susceptibility can be computed analytically from Eq.
(19) for a translation invariant model [42] (See. App. D
for a derivation) or numerically otherwise. The analytical
derivation yields

χij = Y δij +
1

N

M−1∑
k=0

λij (χk − Y )λjk , (22)

where Y is a quantity that depends on ū (D4) and {χk}
are the Fourier modes of the susceptibility (D7). Eq. (22)
evidences that χi6=j goes to zero in the thermodynamic
limit with a speed that is determined by the ratio M/N
and thus ultimately by α (by its relation to d).

For a numerical calculation, the introduction of a site-
dependent field hi breaks the homogeneity of the model
and the multivariate maximization of φ is carried out nu-
merically, 〈σxi 〉 is then computed according to Eq. (20)
and χij is computed as a finite difference. We have ver-
ified that both methods yield the same results for the
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current model. This is noteworthy because the numeri-
cal calculation relies on a multivariate optimization which
could, a priori, converge to an incorrect result corre-
sponding to a local maxima. We believe the success is
due to the fact that the only deviation from homogeneity
stems from the introduction of a perturbative field and is
thus small. Hence, although the optimization is strictly
multivariate, the landscape does not differ much from the
univariate case.

Despite the fact that the analytical results have been
obtained under the assumption that we worked in the
thermodynamic limit N → ∞. The computation of the
susceptibility, whether numerically or according to Eq.
(22), requires us to fix a finite value of N and M . For
each value of α and N , we increase the value of M until
convergence is reached while enforcing the constraint that
limN→∞M(N)/N = 0.

Because the model is translation invariant, the sus-
ceptibility is only a function of distance, allowing us to
define χii+r ≡ χr. In Fig. 4 we study the susceptibility
at a fixed distance: we plot the half-chain susceptibility
χN/2 as a function of the interaction strength Γ for dif-
ferent decay rates α < 1 at zero temperature β → ∞.
The half-chain susceptibility displays α-independent di-
vergence at the critical point and some dependence on α
away from it. Intuitively, the correlations remain larger
for longer-ranged models. We now turn to the spatial de-
pendence of the susceptibility. In the absence of a corre-
lation length, we study the susceptibility decay rate, αχ,
defined from the relation χr = A · r−αχ . Interestingly,
one finds that αχ depends linearly on α, αχ = aα + b.
In Fig. 5 we plot the slope a as a function of interaction
strength Γ and inverse temperature 1/β. Close to the
critical line, the susceptibility decay rate αχ becomes in-
dependent of the interaction decay rate α, in agreement
with Fig. 4. As one moves further from the critical line,
a→ 1, varying continuously from 0 to 1 in intermediate
regions. In all cases we find b ≈ 0. Similar algebraic
decays have been described previously for the connected
correlator 〈σx1σxr 〉 − 〈σx1 〉〈σxr 〉 in the paramagnetic phase
[14]. There, a linear relation between αχ and α is also
reported. Here we extend those findings to the full phase
diagram.

VI. CONCLUSIONS

In this paper, we have presented a novel method for
solving strong long-range models in the quantum domain
based on the Hubbard-Stratonovich transformation for
classical systems. Our method is a physics-based solu-
tion rooted in light-matter interaction models in which,
in the thermodynamic limit, light can be integrated out
leaving an effective long-range model. Solutions of the
former, i.e. Dicke models, are due to Hepp and Lieb
[43, 44], and Wang and Hioe [27, 28], which we have re-
cently generalized [29, 30].

We have shown that our method can be applied in the

FIG. 5. Phase diagram of the strong long-range Ising chain
in transverse field. The red line corresponds to the universal
critical line for α < 1. The numerical data is taken from Ref.
[21]. The colormap shows the slope of the linear dependence
αχ = aα + b, where αχ is susceptibility decay rate and α is
the rate of decay of interactions, computed with parameters
ωz = 1 and N = 100.

strong long-range regime and confirmed that mean field
is exact in this regime. Cf. Fig. 1 Eqs. (2), (5) and
(6). In doing so, this paper complements the work of
Mori [22]. Besides, it extends the work of Campa and
coworkers for classical strong long-range models to the
quantum case [1].

Our method is flexible and could be applied e.g. to
spin-s systems where s > 1/2, to models with a longitu-
dinal field, such as the long-range XXZ model, or to the
Fermi-Hubbard model with long-range interactions. Ad-
ditionally, many exactly solvable models could be com-
plemented with long-range interactions and solved with
our method, since it relies on knowing the eigenvalues of
the system without long-range interactions and with a
“field” term proportional to the long-range coupling op-
erator. Unfrustrated antiferromagnetic systems are also
within the scope of the method. In conclusion, our work
provides a new and powerful tool for solving quantum
long-range models.
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Appendix A: Properties of the long-range
interaction matrix

1. Loss of extensivity

In Fig. 6 we illustrate the extensivity (or lack thereof)
of a model with power-law decaying interactions in d = 1.
We compute Ñ =

∑
j J̃ij as a measure of the coupling

energy per spin. In the absence of Kac’s rescaling, this
quantity must not scale with the number of spins N to
keep the total coupling energy extensive. Fig. 6 shows
that this is not the case for α < 1. The threshold case
α = 1 is highlighted for clarity and corresponds to a
logarithmic dependence of Ñ on N . For α > 1 the de-
pendence is sublogarithmic, i.e. Ñ becomes independent
of N at large N . As discussed in the main text, loss of
extensivity is prevented with Kac’s rescaling, which we
can know understand as a renormalization of the total
coupling energy by the energy per spin.

2. Diagonal terms can be neglected in strong-long
range models

Setting b 6= 0 introduces a new diagonal term in the
Hamiltonian

−
N∑
i

Γb/ÑC2
i . (A1)

Importantly, this term contains a factor b/Ñ . We know

from App. A 1 that limN→∞ Ñ = ∞ for α < d. So if
b is independent of N for N → ∞, the diagonal term
vanishes in the thermodynamic limit.

It can be shown analytically that this is the case for
d = 1 and 0 < α < 1. From Eq. (8) we see that the
smallest eigenvalue of J when N →∞ is given by

Dmin =
Γ

Ñ

∑
r

J̃ (r) (−1)
r

=
Γ

Ñ

(
b+ 2

∞∑
r=1

(−1)
r
r−α

)
.

(A2)
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FIG. 6. Scaling of Ñ =
∑N
j J̃ij (left) and b (right) for a one

dimensional model (d = 1) with power-law decaying interac-
tions (1). Here b is fixed such that the smallest eigenvalue of

J̃ is zero. The dotted lines indicate the analytical asymptote.

Here r = |r|. Hence, setting Dmin = 0 fixes

b = −2

∞∑
r=1

(−1)rr−α . (A3)

The convergence of this series is proven by means of
the alternating series test, since the absolute value of
its terms monotonically decrease to 0. For α = 0 and
finite N , as J̃i6=j = 1, b must be fixed to 1 to ensure that

the smallest eigenvalue of J̃ is zero. This is manifestly
independent of N .

In other dimensions or other models, this test can be
done graphically. In Fig. 6 we show the value of b, for
a model with power-law decaying interactions in d = 1,
computed numerically for different values of N when b is
chosen so that the smallest eigenvalue of J is zero. One
can see that in this case the numerical results converge
to the analytical prediction. The same behaviour is ob-
served in other dimensions.

Appendix B: Negligible second order corrections to
the saddle point method

The second order term of the saddle-point expansion
is proportional to (detHφ[ūk])−1/2. Accordingly, it cor-
responds to a correction to the free energy per particle
of the form

1

N
ln(detHφ[ūk]) =

1

N

M−1∑
k=0

ln νk ∝
M

N
, (B1)

where the {νk} are the eigenvalues of detHφ[ūk]. This
correction scales as M/N and thus vanishes in the ther-
modynamic limit. Notably, if the applicability of the ef-
fective theory to map a long-range interacting model to a
generalized Dicke model constitutes the first appearance
of the restriction limN→∞M/N = 0, the argument con-
tained in this Appendix constitutes a second independent
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one. In fact, this second occurrence of the restriction also
appears in classical systems, where it is actually the only
restriction to limN→∞M/N = 0, as in classical systems
an unrestricted standard HST can be used, as outlined
in Sec. II.

Appendix C: Solving the long-range Ising model in
transverse field

1. Solving the associated Dicke model

Particularizing Eq. (11) for the Ising model, we have
to compute

Zm[uk] = Trm

{
exp

[
−β

N∑
i

(
ωz
2
σzi

+

M−1∑
k=0

2λikukσ
x
i

)]}
.

(C1)

Because the spins are now decoupled, the trace over spins
factorizes. The resulting single spin Hamiltonian has
eigenvalues

ε±i = ±εi = ±1

2

√√√√ω2
z + 4

(
M−1∑
k=0

2λikuk

)2

. (C2)

Accordingly,

Zm[uk] =
∏
i

2 cosh(βεi) , (C3)

fm[uk] =
1

N

∑
i

ln(2 coshβεi) , (C4)

φm[uk] = −β
∑
k

ωku
2
k +

1

N

∑
i

ln(2 coshβεi) . (C5)

2. Existence of a homogeneous maximum of φ

To find the maximum of φ[uk] we impose a vanishing
gradient: ∇φ = 0, which translates to the following con-
dition for the maximization variables

ūkωk =
1

N

N∑
i

tanh(βε̄i)
λik2

∑M−1
l=0 λilūl
ε̄i

. (C6)

From here, let us consider a solution that is homogeneous
in the lattice, we will later prove that possible inhomoge-
neous maxima are only local maxima C 3. Let us define
µi = 2

∑
k λikuk and consider it as an alternate optimiza-

tion variable. Homogeneity implies that µ̄i ≡ µ̄, to see
how this affects the variables {ūk} it is useful to invert
the relation and write uk in terms of the {µi}, yielding

uk =
1

2N

N∑
i

λikµi . (C7)

Now, homogeneity implies

ūk =
µ̄

2N

N∑
i

λik . (C8)

Since the {λik} are the Fourier modes resulting from the
diagonalization of J , we have

∑
i λik = Nδk0. Accord-

ingly, we find ūk 6=0 = 0 and 2ū0 = µ̄. So, if the solution
is homogeneous, the only relevant mode is the zero mode
ū0 ≡ ū and the rest of the maximization variables are
zero, with ū satisfying the condition

ūω0 =
2ū

ε̄
tanh(βε̄) . (C9)

From Eq. 8 we have ω0 = 1/Γ, which when replaced in
Eq. (C9) yields Eq. (18).

At this point we can compute the Hessian of φ, Hφ.
As we have shown, for a homogeneous solution, the op-
timization problem becomes single-valued such that

Hφ =
∂2φ

∂u2
=− 2βω0 +

[
1− tanh2(βε)

](4βu

ε

)2

+ β tanh(βε)

(
4

ε
− 16u2

ε3

)
.

(C10)

If we evaluate the Hessian at ū = 0, which is always a
solution of Eq. C9 we obtain

Hφ(ū = 0) = −2βω0 + β tanh
(
β
ωz
2

) 8

ωz
, (C11)

which is always negative for Γ < ωz/4, i.e. for ω0 =
1/Γ > 4/ωz. For ω0 > 4/ωz, the sign depends on β, being
negative for β < βc with ω0ωz = 4 tanh (βcωz/2). So in
the regime where ū = 0 is the only solution to Eq. (C9),
it is a maximum. For ω0 < 4/ωz and β > βc a non-trivial
solution given by ω0ε̄ = 2 tanh(βε̄) appears and can be
shown graphically to be the maximum. Therefore, Eq.
(C9) always has a solution that is a maximum of φ.

3. Proof that the homogeneous solution is the
global maximum

We cannot rule out the existence of inhomogenoeus
extrema of φ, i.e. inhomogeneous solutions of Eq. (C6).
Instead, we show that if there exists an inhomogeneous
solution and it is a maximum, it is a local maximum, with
the global maximum given by the homogeneous solution.

Let us express the self-consistent condition for the ex-
trema of φ given in Eq. (C6) in terms of {µi} and {εi}

1

2N

N∑
i

λikµ̄iωk =
1

N

N∑
i

tanh(βε̄i)
λikµ̄i
εi

. (C12)

Isolating the {µ̄i} yields the self-consistent condition

µ̄i = 2

N∑
j

tanh(βε̄j)
µ̄j
ε̄j
Jij , (C13)
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which is simply a reformulation of the maximization
problem in terms of new variables. Accordingly, φ reads

φ[µi] = − β

4N

N∑
ij

µiJ
+
ijµj +

1

N

N∑
i

ln [2 cosh(βεi)] ,

(C14)
with NJ+

ij =
∑
k λikωkλjk. Note that JJ+J = J . Sub-

stituting Eq. (C13) in Eq. (C14) yields

φ[µ̄i] = − β

2N

N∑
i

tanh(βε̄i)

ε̄i
µ̄2
i +

1

N

N∑
i

ln [2 cosh(βε̄i)]

=
1

N

N∑
i

ξ(µ̄i) .

(C15)

We can particularize this expression for the homogenous
solution, µ̄i ≡ µ̄,

φ(µ̄) = −β
2

tanh(βε̄)

ε̄
µ̄2 + ln [2 cosh(βε̄)]

=
1

N

N∑
i

ξ(µ̄) .

(C16)

Note that because µ̄ maximizes φ, it also maximizes ξ.
Therefore, an inhomogeneous maximum of φ given by
{µ̄i} cannot maximize ξ for all µ̄i (to the extent that some
µ̄i must deviate from µ̄ in order for the configuration to
be inhomogeneous) and thus φ(µ̄) ≥ φ[µ̄i]. The global
maximum of φ is given by the homogeneous solution.

Appendix D: Analytical calculation of
susceptibilities

From Eqs. (20) and (C6) we realize that

ūkωk =
1

N

N∑
i

〈σxi 〉λik (D1)

and thus

∂ūk
∂hj

ωk =
1

N

N∑
i

χijλik . (D2)

From Eq. (19) we have

χij = lim
{hn}→0

(
2

M−1∑
k=0

λik
∂ūk
∂hj

+ δij

)
Yi , (D3)

with

Yi =
(
1− tanh2(βε̄i)

)
β

(
µ̄i + hi
ε̄i

)2

+ tanh(βε̄i)
1

ε̄i

[
1−

(
µ̄i + hi
ε̄i

)2
]
.

(D4)

From Eqs. (D2) and (D3) and after some manipulation,
we find

χij =

(
2

N∑
r

Jirχrj + δij

)
Y , (D5)

where Y = lim{hn}→0 Yi. For a translation-invariant
model, Eq. (D5) can be solved in Fourier space. We
define

χij =
1

N

N−1∑
k=0

λikχkλjk (D6)

and find

χk =
Y

1− 2Y Dk
. (D7)

Here Dk are the eigenvalues of J , Cf. Eq. (7). The
susceptibilities in real space are thus given by

χij =
1

N

(
M−1∑
k=0

λikχkλjk + Y

N−1∑
k=M

λikλjk

)

=
1

N

[
M−1∑
k=0

λikχkλjk + Y

(
Nδij −

M−1∑
k=0

λikλjk

)]
.

(D8)

leading to Eq. (22).
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