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ABSTRACT 

The nonlinear differential equation governing the periodic motion of the one-dimensional, undamped, 

unforced cubic-quintic Duffing oscillator is solved exactly, providing exact expressions for the period 

and the solution. The period is given in terms of the complete elliptic integral of the first kind and the 

solution involves Jacobi elliptic functions. Some particular cases obtained varying the parameters that 

characterize this oscillator are presented and discussed. The behaviour of the period as a function of 

the initial amplitude is analysed, the exact solutions and velocities for several values of the initial 

amplitude are plotted and the Fourier series expansions for the exact solutions are also obtained. All 

this allows us to conclude that the quintic term appearing in the cubic-quintic Duffing equation 

makes this nonlinear oscillator not only more complex but also more interesting to study. 
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1. Introduction 

Nonlinear oscillators in physics, engineering, mathematical and related fields have been the 

focus of attention for many years and several methods have been used to find approximate 

solutions to these dynamical systems [1,2]. In conservative nonlinear oscillators the restoring 

force is not dependent on time, the total energy is constant [2,3] and any oscillation is 

stationary. An important feature of the solutions of conservative oscillators is that they are 

periodic and range over a continuous interval of initial values [2]. The cubic-quintic 

nonlinear oscillator is described by a differential equation with third- and fifth-power 

nonlinearity. As Lai et al. pointed out [4], the cubic-quintic Duffing equation can be found in 

the modelling of different systems and we advise readers to consult this paper to learn more 

about these applications and obtain a good set of references in which this strongly nonlinear 

equation can be found. The systems modelled by the cubic-quintic Duffing equation include 

the nonlinear dynamics of a slender elastica, the compound KdV equation in nonlinear wave 

systems, or the propagation of a short electromagnetic pulse in a nonlinear medium [4-6]. 

Due to the presence of the fifth-power nonlinearity added to the third nonlinearity of the 

common Duffing equation, this oscillator is difficult to handle and has not been studied as 

extensively as the Duffing oscillator with cubic nonlinearity. For this reason, several 

techniques have been used to obtain analytical approximate expressions for the period and 

the solution of the cubic-quintic Duffing oscillator.  

Lin [7] proposed a new parameter iteration technique to solve the Duffing equation with 

strong and higher order nonlinearity. Ramos [6] approximately solved the quintic Duffing 

equation using some Linstedt–Poincaré techniques and Pirbodaghi et al. [8] obtained an 

accurate analytical approximate solution to Duffing equations with cubic and quintic 

nonlinearities using the homotopy analysis method and homotopy Padé technique. Wu et al. 

[9] approximately solved this nonlinear oscillator using a method that incorporates salient 

features of both Newton’s method and the harmonic balance method. Later, Lai et al. [4] 

used a Newton-harmonic balancing approach to obtain accurate approximate analytical 

higher-order solutions for strong nonlinear Duffing oscillators with cubic-quintic restoring 

force. They also discussed the effect of strong quintic nonlinearity on accuracy as compared 

to cubic nonlinearity. Beléndez et al. [10,11] approximately solved the quintic and the cubic-

quintic Duffing oscillators using a cubication method which allowed them to obtain 

approximate analytical expressions for the period and the solution in terms of elementary 

functions. Scarpello [12] exactly solved the quintic Duffing oscillator. He obtained the 
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closed form relationship between the period and the initial motion amplitude as well as the 

exact expression for the solution which is written in terms of the cs Jacobian elliptic function 

and the complete elliptic integral of the first kind. Chua [13] investigated unforced and 

forced cubic-quintic Duffing oscillators, finding their equilibrium points and employing 

perturbative analytical techniques. In particular Chua derived approximate periodic solutions 

and period-amplitude relations. Elías-Zúñiga [14] derived the exact solution of the cubic-

quintic Duffing equation based on the use of Jacobi elliptic functions. However, he does not 

solve the nonlinear differential equation but assumed that its exact solution is given by a 

rational equation which includes the cn Jacobian elliptic function and five unknown 

parameters that need to be determined. Based on his previous results, Elías-Zúñiga obtained 

the analytical approximate solution of the damped cubic-quintic Duffing oscillator [15] and 

also developed a “quintication” method [16] to obtain approximate analytical solutions of 

conservative nonlinear oscillators. 

In this paper we obtain the exact expressions for the period and the solution of the 

undamped, unforced cubic-quintic Duffing oscillator modelled by the second-order nonlinear 

differential equation 0
d
d 5

5
3

312

2

=+++ xaxaxa
t
x . Unlike the procedure considered by 

Elías-Zúñiga [14], we do not assume an expression for the solution but solve the nonlinear 

differential equation exactly. This is done by using elliptic functions so that, after inversion, 

the solution x is provided as an explicit function of time t. The direct symbolic integration 

performed in this paper can partly be seen as a generalization of the integration for the purely 

cubic restoring force performed by Starossek [17]. Once the exact expressions for the period 

and the solution have been obtained, the solutions for the linear, cubic and Duffing 

oscillators are derived as particular cases of these expressions. Although exact expressions 

are obtained taking into account that all the coefficients for the first, cubic and fifth terms are 

positive, under certain conditions these expressions can also apply even if some of these 

coefficients are negative.  

  

2. Formulation and solution procedure 

Consider the cubic-quintic nonlinear oscillator, which is modelled by the following second-

order differential equation 

 0
d
d 5

5
3

312

2

=+++ xaxaxa
t
x  (1) 
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with initial conditions 

  0)0( >= Ax
          

0)0(
d
d

=
t
x

 (2) 

In Eq. (1) x and t are generalized dimensionless displacement and time variables, and we 

assume that the coefficients for the linear and the nonlinear terms satisfy 

 01 ≥a          03 ≥a           05 ≥a  (3) 

considering that the three coefficients can not be zero simultaneously. This system 

corresponds to a nonlinear oscillator for which the nonlinear function 
5

5
3

31)( xaxaxaxf ++=  is odd, i.e. )()( xfxf −=−  and satisfies 0)( >xxf   for ],[ AAx −∈ , 

x ≠ 0, where A > 0 is the oscillation amplitude. All the solutions are periodical and the phase-

space diagram is made up of an infinite number of closed orbits, each of them for each value 

of the initial amplitude A. This system oscillates around the equilibrium position x = 0 and 

the period, T, and periodic solution, x, are dependent on A.  

In order to obtain the exact period and periodic solution for Eq. (1), we take into account that 

this is a conservative system and has the following first integral 

  
0

3
1

2
1

3
1

2
1

d
d 6

5
4

3
2

1
6

5
4

3
2

1

2

≥++=+++⎟
⎠

⎞
⎜
⎝

⎛ AaAaAaxaxaxa
t
x  (4) 

which can be written as follows 

  
)(

3
1)(

2
1)(

d
d 66

5
44

3
22

1

2

xAaxAaxAa
t
x

−+−+−=⎟
⎠

⎞
⎜
⎝

⎛  (5) 

From this equation we obtain 

 
))((

d3d
42

20
22

5 xxbbxA
x

a
t

++−
±=  (6) 

where the sign (±) is chosen taking into account the sign of dx/dt in each quadrant and b0 and 

b2 are defined as follows 

 42

5

3
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1
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a
a

a
ab ++=  (7) 
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Integrating Eq. (6) we obtain 

∫∫∫ ++−
=

++−
−==

A

x

x

A

t

zzbbzA

z
azzbbzA

z
a

tt
))((

d3

))((

d3d
42

20
22

5
42

20
22

50
 (9) 

The change of variable z2 = u gives 

  ∫ ++−
=

2

2 )()(

d3
2
1

2
20

2
5

A

x uubbuuA

u
a

t  (10) 

This is an improper integral which contains a square root of a four-degree polynomial in the 

denominator and so its solution can be expressed as a function of an elliptic integral. 

 

3. Calculation of the exact period 

The symmetry of the problem indicates that the period of the oscillation T is four times the 

time taken by the oscillator to go from u = 0 to u = A2. Therefore, from Eq. (10) it follows 

that 

  ∫ ++−
=

2

0 2
20

2
5 )()(

d32
A

uubbuuA

u
a

T  (11) 

We consider the definite integral [18, section 3.145, formula 2, pages 270-271] 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−−

−

−
=

+−−−∫ pq
qp

yp
yqF

pquuu

uy 22

22

)()(
4
1,

)(
)(arccot21

]))[()((

d βα
β

α

ρσβαβ

   
(12)

 
where β < u < α, F(ϕ,m) is the incomplete elliptic integral of the first kind defined as follows 

[19] 

 ∫ −
=

φ

θ

θ
φ

0 2sin1

d),(
m

mF  (13) 

and p, q and m are defined as 

  22)( ρασ +−=p  (14) 

  22)( ρβσ +−=q  (15) 
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pq

qpkm
22

2 )()(
4
1 −−−

==
βα  (16) 

In Eq. (16), m and k are the parameter and the elliptic modulus, respectively. By comparing 

the integrals in Eqs. (11) and (12) we obtain y = A2, α = A2, β = 0, as well as the following 

values for the different parameters which appear in Eq. (12)  
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As y = α = A2, then )(2),(),0arccot2( mKmFmF == π , where K(m) is the complete elliptic 

integral of the first kind defined as [19] 

  ∫ −
=

2/

0 2sin1

d)(
π

θ

θ

m
mK   (22) 

From Eqs. (11)-(22) we conclude that the exact period of the undamped, unforced cubic-

quintic nonlinear oscillator can be written in the compact form 

  )(64
4/1

21

mK
qq

T ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=   (23) 

where m is given as  

  
21

3

2
3

42
1

qq
qm −=  (24) 

and q1, q2 and q3 –which depend on a1, a3, a5 and A– are defined as follows 
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  4
5

2
311 AaAaaq ++=  (25) 

  4
5

2
312 236 AaAaaq ++=  (26) 

  4
5

2
313 234 AaAaaq ++=  (27) 

As mentioned above we consider the signs shown in Eq. (2) for a1, a3 and a5. However, other 

combinations of signs are possible for these coefficients provided they lead to positive real 

values for the period T. In particular, from Eqs. (23) and (24) it is required that q1q2 > 0. 

 

4. Calculation of the exact periodic solution 

From Eq. (6) we can obtain t as a function of x for the following cases: 

(a) Trajectory 1 → 2 (0 ≤ t ≤ T/4 and A ≥ x ≥ 0), x > 0 and dx/dt < 0. 

(b) Trajectory 2 → 3 (T/4  ≤ t ≤ T/2 and 0 ≥ x ≥ −A), x < 0 and dx/dt < 0. 

(c) Trajectory 3 → 4 (T/2 ≤ t ≤ 3T/4 and −A ≤ x ≤ 0), x < 0 and dx/dt > 0. 

(d) Trajectory 4 → 1 (3T/4 ≤ t ≤ T and 0 ≤ x ≤ A), x > 0 and dx/dt > 0. 

From Eq. (6), and taking into account the change of variable z2 = u, it follows that for 

trajectory 1 → 2 we have 

  ∫∫ ++−
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The definite integral in Eq. (28) can be split as follows  
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The values of the two integrals on the right-hand side of Eq. (29) can be calculated taking 

into account Eqs. (11) and (12) and their values are 
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Substituting Eqs. (35) and (36) into Eq. (29) gives  

 
⎟
⎟

⎠
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and using Eqs. (19), (20), (23), (25), (26) and (27), Eq. (32) can be written as 

 
⎟
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The inverse function of F (ϕ ,m)  is the Jacobi amplitude ϕ [19,20] 

 ),(am),(1 mumuF ==− φ   (34) 

whose cosine is the Jacobi cosine function, cn [20] 

 ),(cn)),(amcos(cos mumu ==ϕ   (35) 

In order to introduce an “arccos” function in Eq. (14) we take into account that 

 φ=zarccot2  (36) 

where  
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From Eq. (35) we obtain 

 2
2 1
2
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z
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φ  (38) 

Taking into account the relation 
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we can finally write 
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which allows us to write Eq. (14) as follows 

 
⎟
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and from Eqs. (34), (35) and (41) we can write, after some simplifications 

 
( )( ) ( )( )mtqqmtqqmK

xqxAq
xqxAq

,cn,)(2cn
6)(
6)( 4/1

213
84/1

213
8

2
1

22
2

2
1

22
2 −=−=

+−

−−
 (42) 

where the relation ( ) ),(cn,)(2cn mumumK −=−  [20] has been taken into account. 

Finally we can write 
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which is valid for 0 ≤ t ≤ T/4. 

From Eq. (6), it follows for trajectory 2 → 3 
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and for trajectory 3 → 4 (T/4 ≤ t ≤ T/2)  
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Proceeding in the same manner as for trajectory 1 → 2, it is follows that )()( 12 txtx −=  

which is valid for T/4 ≤ t ≤ 3T/4, because x < 0 for these values of time. 

Finally, for trajectory 4 → 1 we have 
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and we obtain the same value for the solution as that given in Eq. (43). 

The exact solution of the undamped, unforced cubic-quintic oscillator can be written as 

follows 
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Taking into account the relation [20, formula 16.18.4, page 574] 
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and Eqs. (43) and (47), the exact periodic solution of undamped, unforced the cubic-quintic 

oscillator can be can be written in compact form as follows 
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which is valid for all values of t and where cn, sn and dn are the basic Jacobi elliptic 

functions [20]. 

 

5. Particular cases 

In Eq. (3) we assumed the condition that coefficients a1, a3 and a5 must satisfy. However, 

Eqs. (23) and (43) can be applied for other values of these coefficients as we shall now show. 

Firstly we consider the linear oscillator which satisfies 

 01 >a          03 =a           05 =a  (50) 

From Eqs. (25)-(27) we obtain q1 = a1, q2 = 6a1 and q3 = 4a1, and substituting these values in 

Eq. (24) we obtain m = 0. From Eq. (23), and taking into account that K(0) = π/2, we obtain  
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Substituting Eq. (50) into Eqs. (43) and (46) and taking into account that cn(u,0) = cosu [20], 

we can write 
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As can be seen, Eqs. (51) and (54) are the period and the solution of the linear oscillator 
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with the initial conditions given in Eq. (2). 

Now we consider the following particular case 

 01 ≥a          03 >a           05 =a  (56) 

which corresponds to the Duffing oscillator with cubic nonlinearity. Substituting Eq. (56) 

into Eq. (23) we obtain 
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It is well known that the exact period for the Duffing oscillator with cubic nonlinearity is 

given by the following equation [2] 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

++
=

)(2
4

2
31

2
3

2
31

Aaa
AaK

Aaa
T  (58) 

which is formally different from Eq. (57). However, Eqs. (57) and (58) are equivalent as we 

shall demonstrate. From Abramowitz and Stegun [19], formula 17.3.29, page 591, the 

following relation can be written 
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where K(m) is defined in Eq. (22) and m1 is the parameter of the complete elliptic function of 

the first kind which appears in Eq. (58), i.e. 
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Taking into account Eqs. (59) and (60), and after some mathematical operations, Eq. (58) 

can be written as follows 
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Once again, from Abramowitz and Stegun [19], formula 17.4.17 (negative parameter), page 

593, we can write 
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where m2 > 0. From this equation it is possible to obtain 
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From Eq. (61) we define  
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which allows m2  to be obtained as follows 
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From Eqs. (61), (63) and (65) we finally obtain 

 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

++

+
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

++
=

=−+
+++

=

2
)36)((2

)34(3
4
1

)36)((
64

)(1
2
1

242
16

2
31

2
31

2
31

4/1

2
31

2
31

222
31

2
31

AaaAaa
AaaK

AaaAaa

mKm
AaaAaa

T

 (66) 

which is the period given in Eq. (57). This means that Eq. (57) provides the exact period of 

the cubic Duffing oscillator. To obtain the solution for the undamped, unforced Duffing 

oscillator with cubic nonlinearity, we substitute Eq. (56) into Eqs. (43) and (48) and obtain 
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where m2 is given in Eq. (65). The exact solution for the Duffing oscillator is [2] 
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Eqs. (67) and (68) give the same result and the two equations are equivalent; however, it is 

much more complex to demonstrate this equivalence than it is to demonstrate the 

equivalence between the periods given in Eqs. (57) and (58) and we have to admit that we 

were not able to do so. Nevertheless, we believe it is possible to demonstrate this 

equivalence using Eq. (68) and taking into account the descending Landen transformation 

(Gauss’ transformation) [19, formula 16.12, page 573], the change of parameter (negative 

parameter) [19, formula 16.10, page 573] as well as the different relations between the 

Jacobi elliptic functions. 

Finally we consider the following set of parameters 

 01 ≥a          03 =a           05 >a  (69) 

which corresponds to the quintic Duffing oscillator. This oscillator was approximately 

solved using a cubication method [10] and exactly solved for a1 = a5 = 1 [12]. From Eqs. 

(23)-(27) and taking into account the parameters in Eq. (69), we can obtain the exact period 

for the undamped, unforced quintic Duffing oscillator 
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(70) 

 

6. Some simulations 

Knowing the exact expressions for the period and the solution of the undamped, unforced 

cubic-quintic oscillator allows us to determine in the detail the behaviour of this nonlinear 

oscillator as a function of a1, a3, a5 and A. In this section we present some numerical results 

corresponding to the period and the solution for different values of parameters a1, a3 and a5, 

as well as the oscillation amplitude A.  
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As we pointed out in section 5, the exact period and solution given in Eqs. (23), (43) and 

(49) are valid for all values of parameters a1, a3 and a5 satisfying a1 ≥ 0, a3 ≥ 0 and a5 > 0. 

Figure 1 shows the variation of the period as a function of A for a1 = a3 = 1 and three values 

of a5 (5, 10 and 30). As can be seen, the period decreases when A increases and the 

maximum value for the period is 2π which is obtained when A → 0 (linear oscillator). On the 

other hand, for oscillators with strong nonlinearity (large values of a5), the period decreases 

more quickly than for oscillators with less nonlinearity. Figure 2 shows the values for 

parameter m (Eq. (24)) as a function of A for a1 = a3 = 1 and three values of a5 (5, 10 and 

30). For large values of a5 and A, all curves for parameter m tend to the same value. From 

Eq. (24) we obtain 

 0669873.0
4
32lim ≈

−
=

∞→
m

A
 (71) 

and from Eq. (23), we can do the following series expansion for large values of A 
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≈  (72) 

which is the period for the truly nonlinear “quintic” oscillator [21] 

 0
d
d 5

52

2

=+ xa
t
x  (73) 

and satisfies that 

 41309.8lim 2
52

5

≈
∞→

TAa
Aa

 (74) 

The results obtained in this paper are always valid for a1 ≥ 0, a3 ≥ 0 and a5 ≥ 0. However, the 

exact expressions for the period and solution can also be used when one or two of these 

coefficients are negative, depending on the values of these coefficients and the oscillation 

amplitude.  

We shall now analyse the set of parameters a1 = 1, 324555.6403 −≈−=a  and a5 = 10 

which gives us the following value for parameter q1 (Eq. (25)) or the nonlinear function 
53 1040)( xxxxf +−=  

 53
1 1040)()( AAAAqAf +−==  (75) 
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From this equation it is easy to verify that f(A) = q1(A) = 0 for A = 0 and 562.010 4/1 ≈= −A . 

Figure 3 shows the variation of the nonlinear function f (or parameter q1) as a function of the 

initial amplitude A for (a) a1 = 1, 403 −=a  and a5 = 10, and for (b) the quintic oscillator 

(a1 = 1, a3 = 0 and a5 = 10). As can be seen, in the case of the quintic oscillator, the function 

f increases as A increases. However, if 403 −=a the effect of the cubic term is to make f 

increase initially since the linear term prevails over the cubic term, then as A continues to 

increase, the linear function f (and therefore q1) begins to decrease until it is cancelled out 

when 4/110−=A . In this case the movement is no longer oscillatory and it is easy to verify 

that the period T in Eq. (23) is not defined for 4/110−=A . To demonstrate this, in Figure 4 

we plotted the variation of the period as a function of A for a1 = 1, a5 = 10 and five values of 

a3 = 0, −3, −5 and 40− . As can be seen, the behaviour of the period is different to that 

shown in Figure 1. In fact, for a3 < 0, when A increases the period also increases, reaches a 

maximum value, and then decreases. For a1 = 1 and a5 = 10, the exact equations for the 

period and the solution are applicable for all values of A only if 403 −>a , as we can see in 

Figure 5 in which the white zone is a “forbidden” area because for these values of a3 and A 

the period does not take real values but a complex or infinite value. In Figures 6 and 7 we 

plot the period T and the parameter m, respectively, as a function of A for parameters a1 =1, 

403 −=a  and a5 = 10. In Figure 7 we can see that m is discontinuous when 4/110−=A and 

it is satisfied that 

 ( ) 0669873.032
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 (76) 
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  (77) 

Now we shall analyse the behaviour of the cubic-quintic oscillator for a1 = 1 and a5 = 10 and 

a value of a3 close to but slightly lower than 324555.640 −≈− . In particular, we consider 

a3 = −6.324. Figures 8 and 9 show the period and parameter m as a function of the initial 

amplitude. Now the period reaches a maximum value of 88.73 for A = 0.564 and the 

parameter m, whose behaviour is very different to that shown in Figure 2, shows an abrupt 

variation around A ≈ 0.55 but, as compared with Figure 7, it is no longer a discontinuous 

function. In Figure 10 we plot the period as a function of a3 and A for a1 = 1, a3 ≥ −6.324 and 
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a5 = 10. Figures 11 and 12 show the exact solution and the exact velocity for a1 = 1, a3 = 

−6.324 and a5 = 10, and for values of A, 0.1, 0.5, 0.564 (at which the period is maximum), 

0.65, 0.725 and 1, respectively. The effect of parameter a3 when it is < 0 is clearly seen in 

these figures. Comparing Figure 11 (a) in which the linear term prevails with Figure 11 (f) in 

which the quintic term prevails, if a3 were also positive, as A increased the sinusoidal 

function in (a) would contract until it reached the curve shown in (f). However, the effect of 

parameter a3 = −6.324 means that for an interval of values of A the sinusoidal function in (a) 

begins to widen until it approximates a crenel function and then decreases as the quintic term 

begins to prevail over the other two. As can be seen in Figure 13, the effect is even more 

interesting in the case of velocity. The phase plot for a1 = 1, a3 = −6.324 and a5 = 10 and for 

A = 0.1, 0.5, 0.75 and 1 is shown in Figure 13. 

Finally, since the nonlinear function in Eq. (1) is an odd function of x, the periodic solution 

x(t) in Eq. (49) can be represented by a Fourier series containing only odd multiples of 2πt/T, 

i.e.  

 ∑
∞
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This equation allows us to obtain the values of the coefficients c2n+1 of the Fourier series 

expansion of the exact periodic solution x(t). The integral in Eq. (79) must be computed 

numerically and this was done with the help of symbolic computation software such as 

MATHEMATICA. Figure 14 shows the first four Fourier coefficients c1, c3, c5, and c7 as a 

function of A for a1 = 1, a3 = −6.324 and a5 = 10. In this figure horizontal dashed lines 

correspond to c1 = 1, c3 = 0 and c7 = 0. Once again, it can be seen that the oscillator has a 

strange behaviour close to A ≈ 0.55. On the other hand, when A tends to infinity these 

Fourier coefficients (which correspond to the truly nonlinear “quintic” oscillator, Eq. (73)) 

are positive and their values are 

 926430.0lim 1 ≈
∞→
c

A
 (80) 

 0633949.0lim 3 ≈
∞→
c

A
 (81) 
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 00877599.0lim 5 ≈
∞→
c

A
 (82) 

 000172526.0lim 7 ≈
∞→
c

A
 (83) 

which coincide with the values that can be numerically calculated [21]. However, for other 

values of A some of these Fourier coefficients take negative values and this fact explains the 

different behaviour of the exact solution which can be seen in Figure 11. In fact, from Figure 

14 and Eqs. (80)-(83) we conclude that c1 > 0 and c5 > 0 for all values of A, whereas c3 < 0 

for A < 0.7257 and c7 < 0 for A < 0.7123. On the other hand, c1 > 1 for A < 0.6872. Finally, 

Table 1 shows the values of the four Fourier coefficients of the series expansion of the exact 

solution corresponding to Figure 11. 

 

7. Conclusions 

The period and exact solution of the undamped, unforced nonlinear cubic-quintic Duffing 

oscillator have been obtained. Unlike Elías-Zúñiga’s procedure [14], we do not assume any 

expression for the solution but exactly solve the nonlinear differential equation, which allows 

us to obtain the period and, after inversion, the solution for this conservative nonlinear 

oscillator. The exact period is given in terms of a complete elliptic integral of the first kind 

and the solution is a piecewise function involving cn Jacobi elliptic functions which is valid 

for all periods of the motion. Some particular cases are analysed and discussed and the 

Fourier series expansion of the exact solution has been calculated for some of them. 

Knowing the Fourier coefficients is useful for examining resonance phenomena under 

periodic or quasiperiodic forcing [4]. Our future work will focus on investigating cubic-

quintic Duffing oscillators which have more than one equilibrium point, in particular, to 

obtain the period and the exact solution for periodic motions around an equilibrium point 

other than (0,0). In this case, the maximum displacements to the right and to the left of the 

equilibrium point are not of the same magnitude. Finally, the exact expressions obtained is 

this paper may be used in a “quintication” method based on the Chebyshev expansion of the 

restoring force [16, 22] to obtain highly accurate analytical approximate solutions for 

conservative nonlinear oscillators. 
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FIGURE CAPTIONS 

 

Figure 1.-  Exact period of the cubic-quintic oscillator as a function of the initial amplitude 

A for a1 = a3 = 1 and three values of a5: (a) 5, (b) 10, and (c) 30.  

Figure 2.-  Parameter m (Eq. (24)) as a function of the initial amplitude A for a1 = a3 = 1 and 

three values of a5: (a) 5, (b) 10, and (c) 30. 

Figure 3.-  Variation of the nonlinear function f (or parameter q1) as a function of the initial 

amplitude A for (a) a1 = 1, 403 −=a  and a5 = 10 and for (b) the cubic-quintic 

oscillator  a1 = 1, a3 = 0 and a5 = 10. 

Figure 4.-  Period as a function of A for a1 = 1, a5 = 10 and five values of a3: (a) 0, (b) −3, 

(c) −5, (d) −5, and (e) 40− . 

Figure 5.- Period for a1 = 1 and a5 = 10, as a function of A and a3, where it can be seen that 

the exact equations for the period are applicable for all values of A only if 

403 −>a . 

Figure 6.-  Period for a1 = 1, 403 −=a  and a5 = 10, as a function of the initial amplitude 

A. 

Figure 7.- Parameter m for a1 = 1, 403 −=a  and a5 = 10, as a function of the initial 

amplitude A. 

Figure 8.- Period for a1 = 1, a3 = −6.324 and a5 = 10, as a function of the initial amplitude 

A. The period reaches a maximum value of 88.73 for A = 0.564 

Figure 9.- Parameter m for a1 = 1, a3 = −6.324 and a5 = 10, as a function of the initial 

amplitude A. 

Figure 10.- Period for a1 = 1 and a5 = 10, as a function of A and a3, with a3 ≥ −6.324. 

Figure 11.- Exact periodic solutions for the cubic-quintic Duffing oscillator for a1 = 1, a3 = 

−6.324 and a5 = 10, and different values for the initial amplitude: (a) A = 0.1, (b) 

A = 0.5, (c) A = 0.564, (d) A = 0.65, (e) A = 0.725, and (f) A = 1. 
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Figure 12.- Exact velocity of the cubic-quintic Duffing oscillator for a1 = 1, a3 = −6.324 and 

a5 = 10, and different values for the initial amplitude: (a) A = 0.1, (b) A = 0.5, (c) 

A = 0.564, (d) A = 0.65, (e) A = 0.725, and (f) A = 1. 

Figure 13.- Phase plot for a1 = 1, a3 = −6.324 and a5 = 10 and for (a) A = 0.1, (b) A = 0.5, (c) 

A = 0.75, and (d) A = 1. 

Figure 14.- First four Fourier coefficients as a function of A for a1 = 1, a3 = −6.324 and a5 = 

10. (a) c1, (b) c3, (c) c5, and (d) c7 
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TABLES 

 

Table 1. Values of the first four coefficients of the Fourier series expansion of the exact 

solution for values of A corresponding to in Figure 11.  

 

 (a) A = 0.1  (b) A = 0.5  (c) A = 0.564  (d) A = 0.65 (e) A = 0.725 (f) A = 1 

c1 1.00203 1.11964 1.25004 1.05331 0.961324 0.904146 

c3 −0.00203238 −0.143846 −0.373948 −0.106919 −0.000747937 0.073435 

c5 6.85722 x 10-6 0.029753 0.197055 0.0589628 0.0342675 0.0179816 

c7 −2.50124 x 10-8 −0.006890971 −0.120240 −0.0100617 0.00277384 0.00347569 
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FIGURE 1 
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FIGURE 2 
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FIGURE 3 
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FIGURE 4 
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FIGURE 5 
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FIGURE 6 
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FIGURE 7 
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FIGURE 8 
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FIGURE 9 
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FIGURE 10 
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FIGURE 11 
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FIGURE 12 

 

1 2 3 4 5 6
t

-0.10

-0.05

0.00

0.05

0.10
v

(a)

5 10 15
t

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

v
(b)

20 40 60 80
t

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

v
(c)

5 10 15 20
t

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

v
(d)

2 4 6 8 10 12 14
t

-0.4

-0.2

0.0

0.2

0.4
v

(e)

1 2 3 4
t

-1.0

-0.5

0.0

0.5

1.0

v
(f)

 



	 37	

FIGURE 13 
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FIGURE 14 

 

0.0 0.2 0.4 0.6 0.8 1.0
A

1.0

1.1

1.2

1.3
c1

(a)

0.0 0.2 0.4 0.6 0.8 1.0
A-0.4

-0.3

-0.2

-0.1

0.0

0.1
c3

(b)

0.0 0.2 0.4 0.6 0.8 1.0
A

0.05

0.10

0.15

0.20
c5

(c)

0.0 0.2 0.4 0.6 0.8 1.0
A-0.15

-0.10

-0.05

0.00

c7
(d)

 

 


