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 In this paper, an analytical solution for whirling analysis of axial-loaded Timoshenko rotor is 

presented and corresponding basic functions are derived. The set of governing equations for 

whirling analysis of the rotor consists of four coupled partial differential equations; using 

complex displacements, these equations can be reduced to two coupled partial differential 

equations. The versatility of the proposed solution is confirmed using published results and the 

effect of angular velocity of spin, axial load, slenderness and Poisson's ratio on the natural 

frequencies of the rotor are investigated. 
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1. Introduction 
 

       The Rotor Dynamics is concerned with study of dynamic and stability characteristics of the rotating 

machineries and plays an important role in the improving safety and performance of the systems. As 

the rotational velocity of a rotor increases, its level of vibration often passes through critical speeds, 

commonly excited by unbalance of the rotating structure. If the amplitude of vibration at these critical 

speeds is excessive, catastrophic failure can occur. Axial loads have significant effect on dynamic 

characteristics of structures. In the case of rotors, axial force can be generated by several types of gears 

or thermal effects. Some practical applications of rotor dynamics can be listed as rotating shafts, 

turbines, aerospace devices, etc. In Euler-Bernoulli beam theory, rotary inertia of the beam element is 

not considered; therefore, this theory is unable to model gyroscopic effect and cannot distinguish 

between stationary and rotating beams (Genta, 2007). Hence, to model rotors, it is better to use 

Timoshenko beam theory. This theory can be used for investigating frequency response of both large 

and nano scale structures (Torabi et al., 2013a; Samaei, 2015) at Using finite element method, Nelson 

(1980) studied the vibration analysis of the Timoshenko rotor with internal damping under axial load 

and Edney et al. (1990) proposed dynamic analysis of the tapered Timoshenko rotor. They considered 
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viscous and hysteretic material damping, mass eccentricity and axial torque. Grybos (1991) investigated 

the effect of shear deformation and rotary inertia of a rotor on its critical speeds. An exact solution for 

vibration analysis of the Timoshenko rotor with general boundary conditions proposed by Zu and Han 

(1992). Choi et al. (1992) presented the consistent derivation of a set of governing differential equations 

describing the vibration in two orthogonal planes and the torsional vibration of a straight rotor with 

dissimilar lateral principal moments of inertia, subjected to a constant compressive axial load. Jun and 

Kim (1999) studied free bending vibration of a rotating shaft under a constant torsional torque. They 

modeled rotor as a Timoshenko beam and gyroscopic effect and at each part of the shaft a constant 

torque were considered. Effect of shaft rotation on its natural frequency was investigated by Behzad 

and Bastami (2004). They studied natural frequencies by considering the gyroscopic effect, axial force 

originated from centrifugal force and Poisson’s effect. Banerjee and Su (2006) derived dynamic 

stiffness formulation of a composite spinning beams and studied the vibration analysis of composite 

rotors. The most advantage of their work was the inclusion of the bending-torsion coupling effect that 

arises from the ply orientation and stacking sequence in laminated fibrous composites. Hosseini and 

Khadem (2009) studied vibrations of an in-extensional simply supported rotating shaft with nonlinear 

curvature and inertia. In their research rotary inertia and gyroscopic effects were considered, but shear 

deformation was neglected. For large amplitude vibrations, which lead to nonlinearities in curvature and 

inertia, Hosseini et al. (2014) used method of multiple scales and investigated free vibration and primary 

resonances of an in-extensional spinning beam with six general boundary conditions. Using differential 

quadrature element method, Afshari et al. (2014) presented a numerical solution for whirling analysis of 

multi-step multi-span Timoshenko rotors. In their work no limitation was considered in number of steps 

and bearings. 
 

       In this paper, an exact solution for whirling analysis of Timoshenko rotor subjected to axial load 

is presented. Corresponding basic functions are derived and effect of angular velocity of spin, axial 

load, slenderness and Poisson's ratio on the forward and backward frequencies of the rotor are 

investigated. Regardless using basic functions, the characteristic equation of the rotor depends on a 

determinant solution of order 4; but the presented basic functions reduce order of final characteristic 

determinant to 2. Moreover, the most advantage of the basic functions will appear in analysis of rotors 

with local discontinuities where order of final characteristic determinant be kept as 2 for rotors with 

any number of local discontinuities; e.g. concentrated masses, cracks, interior spans or steps. These 

problems can be considered as interesting topics for future studies. 
 

2. Solution procedure 

      As depicted in Fig. 1, a uniform rotor of length L, diameter d, rotating at constant angular velocity 

Ω, and subjected to uniform axial load P is considered. Using Timoshenko beam theory, the set of 

governing equations of free vibration can be stated as (Genta, 2007) 
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, (1-d) 

where ux(z,t), uy(z,t), φx(z,t) and φy(z,t) are components of displacement and rotation in x and y 

directions, respectively; ρ, E and G are mass density, modulus of elasticity and shear modulus, 

respectively; Also, A, Ix, Iy and Ip are cross-sectional area, moment of inertia about the x and y axis and 
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polar moment of inertia, respectively; and k is shear correction factor which depends on the shape of 

the section and Poisson's ratio of material (Hutchinson, 2001).  

 

 

 

 

 

 

 

 

 

 

Fig. 1. Axial-loaded Timoshenko rotor 

      According to Timoshenko beam theory, components of bending moment (M) and shear force (F) 

in x and y directions are presented as (Genta, 2007) 
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. (2) 

      Using following relation for a circular section: 

2 2 2p x yI I I I   . (3) 

      Eqs. (1-c) and (1-d) can be written as 
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      By introducing following complex variables (i2=-1): 
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      Eq. (1-a), Eq. (1-b), Eq. (4-a) and Eq. (4-b) reduce to 
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and complex forms of bending moment and shear force (Eq. (2)) can be written as 
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     Uncoupling u and φ in Eq. (6-a) and Eq. (6-b) yields the following relations: 
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(8-b) 

        Introducing ω as the circular natural frequency of whirling, ζ=z/L as the dimensionless spatial 

variable and also using the method of separation of variables as 
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        Eq. (8-a) and Eq. (8-b) can be written in the following dimensionless form: 
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where the prime indicates the derivative with respect to the dimensionless spatial variable (ζ) and the 

following dimensionless parameters are defined: 
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     In the whirling analysis of rotors, two kind of frequencies can be considered. When whirling and 

spin of the rotor are in the same direction (Ωω>0), forward whirling occurs and when they are in 

opposite directions (Ωω<0), backward one occurs. Solution of Eqs. (10-a) and (10-b) depends on the 

sign of d2 which differs at low and high modes. In practice, lower frequencies are more important than 

higher ones and d2 is a negative parameter at these modes, thus following solution can be found (Torabi 

et al., 2013b): 
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in which v0 is a complex coefficient and 
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Also, bending moment and shear force can be written as 

       , ,     i t i tEI
m t M e f t kGAF e

L
, (14) 
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3. Basic functions  

      In order to derive basic functions, first, consider following definitions for trigonometric and 

hyperbolic functions: 
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which are defined according to Eq. (12). Geometrical basic functions will be defined to satisfy 

following constraints: 
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      Now, displacement and rotation, can be stated in terms of their values at the left side of the rotor 

(ζ=0) and the geometrical basic functions as: 
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      In order to obtain geometrical basic functions in terms of S1-T4, following relation are considered: 
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      Substituting Eq. (16) and Eq. (17) into the Eq. (19), following relation will be obtained: 
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Using Eq. (20), the coefficients of Eq. (19) can be obtained as 
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which leads to 
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     Eight functions, presented in Eq. (22) are known as geometrical basic functions which are useful 

just for clamped boundary conditions; for convenience in implementation of all boundary conditions, 

it is better to use physical basic functions instead of geometrical ones. Using Eq. (15), one can write 
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substitution of Eq. (24) into the Eq. (18) leads to the following relations: 
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where following natural basic functions are defined: 
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g T g T iT g T g T

 

 

    

    
 (26) 

Using Eq. (22) and Eq. (26), one can write: 
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(27) 

4. Implementation of boundary conditions 

Three standard condition for each end of the rotor is considered as simple (pinned), clamped and free. 

Mathematical model of these conditions are listed in Table 1. 
 

Table 1. Mathematical model of boundary conditions 
Boundary conditions Simple (S) Clamped (C) Free (F) 

Mathematical model 0 0 v M  0 0 v  0 0 M F  
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     For a simply supported rotor, boundary conditions at ζ=0, are v(0)=0 and M(0)=0 which lead to 

2 4

2 4

( ) (0) ( ) (0) ( ),

( ) (0) ( ) (0) ( ).

v f F f

g F g

   
    

 
 

 (28) 

     Substituting Eq. (28) into the boundary conditions at ζ=1 which are v(1)=0 and M(1)=0 leads to 

2 4

2 4

(1) (1) (0) 0

(1) (1) (0) 0

     
          

f f

g g F
. (29) 

      For a simple-clamped rotor, conditions at ζ=0 are same with the simply supported rotor, substituting      

Eq. (28) into the boundary conditions at ζ=1 which are v(1)=0 and ψ(1)=0 leads to 

2 4

2 4

(1) (1) (0) 0

(1) (1) (0) 0

     
    

    

f f

g g F
. (30) 

      In a similar manner, for a clamped-clamped rotor, boundary conditions at ζ=0 are v(0)=0 and 

ψ(0)=0 which lead to 
 

3 4

3 4

( ) (0) ( ) (0) ( ),

( ) (0) ( ) (0) ( ).

v M f F f

M g F g
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 (31) 

substituting Eq. (31) into the boundary conditions at ζ=1 which are v(1)=0 and ψ(1)=0 leads to 

3 4

3 4

(1) (1) (0) 0
.

(1) (1) (0) 0

f f M

g g F

     
    

    
 (32) 

       For a clamped-free rotor, conditions at ζ=0 are same with the clamped-clamped rotor, substituting 

Eq. (31) into the boundary conditions at ζ=1 which are M(1)=0 and F(1)=0 leads to 

   
3 4

* *

3 3 4 4

(1) (1) (0) 0
.

1 (1) (1) 1 (1) (1) (0) 0

g g M

P f ig P f ig F

      
               

 (33) 

       Using Eq. (29), Eq. (30), Eq. (32) or Eq. (33) dimensionless natural frequencies can be obtained 

and also corresponding mode shapes can be derived in an exact closed form for all standard boundary 

conditions. 

 

5. Results and discussion 

      Here the numerical results are presented for the developed analytical solution in the previous 

sections. Consider a simply supported uniform Timoshenko rotor with r=0.03, s=0.05, γ=5, P*=0. In 

Table 2 value of the first four forward and backward frequencies are presented and are compared with 

whose which can be easily derived using sinusoidal modes as (Genta, 2007) 

 2 2 2 2 2 2 4 4
4 3 2

2 2 2 2 2

1
2 2 0.

      
 

    
r s n n n

i i
r s s r s

 (34) 

Table 2. Value of the first four frequencies of a simply supported rotor 

 Forward whirling Backward whirling 

 1  2  3 4 1 2 3  4
Present 9.75293 37.28796 78.62959 129.5721 9.665039 36.94528 77.89286 128.3437 

Genta, 2007 9.751104 37.2636 78.5207 129.316 9.667179 36.9761 78.0016 128.600 
 

      As Table 2 shows, results with high accuracies can be obtained. A rotor with r=0.03, s=0.05 and 

P*=0.1 is considered. For first two modes, Campbell diagram is depicted in Figs. 2.a-2.d for all standard 
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boundary conditions. As shown in these figures, for a stationary rotor, value of the forward and 

backward frequencies have the same values; but because of the gyroscopic effect, as value of the 

velocity of spin grows, forward frequencies increase and backward ones decrease. In other words value 

of the each backward frequency is less than corresponding value of the forward one. This figures also 

show the line of synchronous whirling; intersection of this line with the Campbell diagram determines 

the critical speeds which should be avoided. 

 

 

(a) Clamped-Clamped (b) Simple-Clamped 

(c) Simply supported (d) Cantilever 

Fig. 2. Campbell diagram for first two modes of a rotor in four cases of boundary conditions 

       Also for γ=100, corresponding mode shapes are depicted in Figs (3.a-3.d). Difference between 

forward and backward modes can be easily seen in these figures. 
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(b) Simple-Clamped 

(c) Simply Supported 

(d) Cantilever 

Fig. 3. First two forward and backward mode shapes of rotor for γ=100 
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(c) Third mode (d) Fourth mode 

 
Fig. 4. Effect of axial load on the first four forward and backward frequencies of a clamped-clamped rotor 

      Now, consider a clamped-clamped rotor with r=0.03, s=0.05 and γ=20. Figs. (4.a- 4.d) show value 

of the first four forward and backward frequencies versus value of the axial load. As is anticipated, 

tension load leads to increase in the all frequencies whereas compressive one decreases all frequencies. 

It should be noticed that because of applied compressive load, some lower frequencies reach to zero 

and buckling and instability of the rotor happen. It is obvious that buckling will happen at the first 

backward mode earlier than other modes. 

 

     In order to investigate the effect of slenderness and Poisson's ratio on forward and backward 

frequencies, it is better to use the following new dimensionless frequency: 
2 2

2 2 2L
r

E

      (35) 

A simply supported rotor with γ=50 and P*=0.1 is considered. For various values of Poisson's ratio, 

variation of the first four forward and backward frequencies is illustrated in Figs. 5.a-5.d versus 

slenderness ratio. As shown in these figures, increasing in diameter of the rotor increases value of the 

whole forward and backward frequencies. It should be noted that as value of the diameter increases, 

both stiffness (K) and mass (M) of the rotor increase; but value of the increase for stiffness is more than 

increase in mass (K∝d4, M∝d2). This figures also show that as value of the Poisson's ratio increases, a 

gentle decrease in all forward and backward frequencies can be seen. It can be explained by increasing 

in flexibility of material. 
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(b) Second mode 

  

(c) Third mode 

  

(d) Fourth mode 

Fig. 5. Variation of the first four forward and backward frequencies versus slenderness ratio and 

various values of Poisson's ratio 

       It is worth mentioning that for Figs. 5.a-5.d, shear correction factor is calculated using following 

relation (Hutchinson, 2001): 
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 (36) 
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6. Conclusions 

Basic functions were derived to present an exact solution for whirling analysis of Timoshenko rotor 

subjected to constant axial load. Using presented analytical solution, effect of angular velocity of spin, 

axial load, slenderness and Poisson's ratio on the forward and backward frequencies were investigated. 

Numerical results showed that for a stationary beam, value of the forward and backward frequencies 

have the same values; but as value of the velocity of spin grows, forward frequencies increase and 

backward ones decrease. Numerical examples also confirms that tension axial load leads to increase in 

the all frequencies whereas compressive one decreases all frequencies. It also was concluded that 

increasing in diameter of the rotor increases value of the all frequencies and increase in value of the 

Poisson's ratio decrease all frequencies. 
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