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Exact solution method to solve large scale
integer quadratic multidimensional knapsack

problems1

D. Quadri∗, E. Soutif§, P. Tolla∗

Abstract

In this paper we develop a branch-and-bound algorithm for solving a particular
integer quadratic multi-knapsack problem. The problem we study is defined as the
maximization of a concave separable quadratic objective function over a convex set
of linear constraints and bounded integer variables. Our exact solution method is
based on the computation of an upper bound and also includes pre-procedure tech-
niques in order to reduce the problem size before starting the branch-and-bound pro-
cess. We lead a numerical comparison between our method and three other existing
algorithms. The approach we propose outperforms other procedures for large-scaled
instances (up to2000 variables and constraints).

Key words : Integer programming, separable quadratic function, linearization, sur-
rogate relaxation, branch-and-bound

1 Introduction

We develop in this paper an exact solution method for solvinga particular class of non-
linear knapsack problems. The integer quadratic multidimensional knapsack problem
(QMKP ), which is known to be NP-hard [13] (Lueker, 1975), involves the maximiza-
tion of a concave quadratic and separable function over a convex set of linear constraints

1A extended abstract of this paper appeared in LNCS 4362 pp. 456-464, 2007
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(called knapsack constraints) and bounded (pure) integer variables. It can be written as:

(QMKP )















max f(x) =
∑n

j=1
fj(xj) =

∑n

j=1
cjxj − djx

2

j

s.t.

∣

∣

∣

∣

∣

∣

∑n

j=1
aijxj ≤ bi, i = 1, ..., m

0 ≤ xj ≤ uj, j = 1, ..., n
xj ∈ N, j = 1, ..., n

where the coefficientscj, dj, aij, bi are nonnegative. The boundsuj of variablesxj

are integers such thatuj ≤ (
cj

2dj
) because of the concavity of eachfj , x∗

j ≤ (
cj

2dj
), where

x∗
j is the optimal solution of the programmaxxj≥0 fj(xj).

Problem(QMKP ) has wide applications, including financial models [4] (Djerdjour
et al., 1988), [5] (Faaland, 1974) production and inventorymanagement [2] (Bretthauer
and Shetty, 2002). However, most of the knapsack problems literature has addressed
attention to specialized versions. For instance, there arelarge bodies of literature fo-
cusing on knapsack problems with linear objective functionand a single constraint or
m contraints (see [6] (Fayard and Plateau, 1974), [14] (Martello and Toth, 1983), [7]
(Fréville and Hanafi, 2005), on knapsack problem with the quadratic objective function
of (QMKP ) over a single linear constraint and 0-1 or pure integer variables (see [1]
(Billionnet and Soutif, 2004), [16] (Pisinger et al., 2007), [2], [15] (Mathur and Salkin,
1983)). Nevertheless several applications require the useof pure integer variables andm
capacity constraints, such as capital budgeting.

Even if many theoretical approaches have been proposed to solve integer quadratic
problems (see for instance [3] (Cooper, 1981), [11, 12] (Korner 1985 and 1990), only
few of these methods have been implemented in practice so fewexperimental results can
be found. There have been a limited number of papers studying(QMKP ). Djerdjour
et al. (1988) [4] proposed a branch-and-bound algorithm specifically designed to solve
(QMKP ), unfortunately the computational results were limited to instances up to20
variables and constraints. However, the real-world applications require effective methods
which are able to solve large scale instances of the problems. Since,(QMKP ) is NP-
hard, one should not expect to find a polynomial time algorithm for solving it exactly.
Hence, we are usually interested in developing branch-and-bound algorithm. A key step
in designing an effective exact solution method for such a maximization problem is to
establish a tight upper bound on the optimal value. In a previous study [17] (Quadri et al.,
2007), we present an effective upper bound method based on a linearization and surrogate
relaxation. We have compared analytically and computationally our upper bound to the
bound suggested by Djerdjour et al. (1988) [4], the basic LP-relaxation of(QMKP ), and
the LP-relaxation of the equivalent linearized formulation (MKP ). Simulation results,
over a set of large instances (up to2000 variables and constraints), showed that our upper
bound is of good quality and closer to the optimum than the three other. Finally, the
proposed upper bound can be computed in a very quick CPU time.
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We propose in this present study, using our tight upper bound[17] (Quadri et al., 2007)
to develop an exact solution method to solve(QMKP ). Our algorithm also incorporate
preprocessing procedures in order to reduce the size of the initial problem before start-
ing the branch-and-bound and a heuristic to find a good feasible solution given in [17]
(Quadri et al., 2007). We then compare the computational time of our method with three
other existing methods which include the three upper boundspreviously mentioned. Our
computational testing, presented latter in this paper, over a set of large instances (up to
2000 variables and constraints) evidences the computational performance of our branch-
and-bound and its ability to solve real-sized instances.

The paper is organized as follows. The next section is dedicated to a description of the
existing exact solution methods to(QMKP ). Section 3 summarizes the upper and lower
bounds algorithms we proposed in a previous work and we use inthe proposed branch-
and-bound to solve(QMKP ). Our branch-and-bound also incorporates pre-processing
procedures which are details in Section 3. The computational results are reported in
Section 4. We finally conclude in Section 5.

In the remainder of this paper, we adopt the following notations: letting(P ) be an
integer or a 0-1 program, we will denote by(P ) the continuous relaxation problem of
(P ). We letZ[P ] be the optimal value of the problem(P ) andZ[P ] the optimal value of
(P ).

2 Existing exact solution methods

In this section we describe three existing exact solution methods to tackle(QMKP ).
Each of them include an upper bound whose quality has been established in a previous
work in [17] (Quadri et al., 2007). We will compare the computational performance of the
exact solution method we proposed with these three other branch-and-bound algorithms
in Section 4.

The Djerdjour, Mathur and Salkin exact solution method (DMS) [4]. These authors
develop a branch-and-bound algorithm based on the computation of an upper bound of
better quality than the one provided by solving the LP-relaxation of(QMKP ). This up-
per bound is computed solving a polynomial problem derived from a linearization of the
initial problem and a surrogate relaxation. The authors first use a direct expansion orig-
inally proposed by Glover [8] (Glover, 1975) of the integer variables and apply a piece-
wise linear interpolation to the initial objective function initially used by [15] (Mathur
and Salkin, 1983).

A zero-one linearization branch-and bound (LBB). Mathur and Salkin develop in [15]
(Mathur and Salkin, 1983) an exact solution method for the single constraint integer
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quadratic knapsack problem. These authors transform the initial quadratic problem into a
0-1 linear equivalent formulation by applying a direct expansion on the integer variables
and a linear interpolation on each quadratic functionfj . They simply solve the equivalent
problem using a solver so as to obtain the optimal value of theoriginal problem. The
0-1 linearization branch-and-bound we suggest to test to solve to optimality(QMKP )
is a straightforward application of [15] (Mathur and Salkin, 1983) to the case ofm ca-
pacity constraints. Following the approach of these authors we convert(QMKP ) to a
0-1 multidimensional knapsack problem(MKP ) which optimal value is equal to the one
of (QMKP ) (the formulation of(MKP ) is given in Section 3.1). The corresponding
branch-and-bound algorithm computes at each node of the search tree the LP-relaxation
of (MKP ) which provides an upper bound of the optimal value of(MKP ). This ap-
proach has never been used to solve directly(QMKP ).

A standard branch-and-bound algorithm (SBB). Since the objective function of(QMKP )
is concave and the feasible set is convex the LP-relaxation of this problem can be found
and thus provides an upper bound for(QMKP ). Consequently, a classical branch-and-
bound consists of computed this bound at each node of the search tree.

3 The proposed branch-and-bound algorithm

In this section we develop a branch-and-bound algorithm which key step is the computa-
tion of a tight upper bound [17] (Quadri et al., 2007). This upper bound method involves
two improvements of the algorithm proposed by Djerdjour et al. (1988) [4] summarized
in Section 2. We also develop a heuristic which provides a good feasible solution we use
as a starting point of the process. Before starting the solution procedure we implement
three pre-processing procedures to reduce the problem size. We implemented the pro-
posed branch-and-bound algorithm using a best bound strategy which chooses the node
with the best (the lowest) upper bound.

3.1 Upper bound computation

The proposed upper bound is computed by applying a linearization and a surrogate relax-
ation presented in [17] (Quadri et al., 2007), which is derived from two improvements of
the bound suggested by Djerdjour et al. (1988) [4]. The first one speeds up the computa-
tional time of the bound. The second improvement increase the quality of the bound. We
now summarize the main steps of our method to get a tight upperbound for(QMKP ).

First an equivalent formulation of(QMKP ) is obtained by using a direct expansion
of the integer variablesxj and by applying a piecewise linear approximation to the ini-
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tial problem as employed in [4] (Djerdjour et al., 1988). Consequently,(QMKP ) is
converted into a0 − 1 multidimensional knapsack problem(MKP ):

(MKP )







max
∑n

j=1
(
∑uj

k=1
sjkyjk)

s.t.

∣

∣

∣

∣

∑n

j=1
(aij

∑uj

k=1
yjk) ≤ bi, i = 1, ..., m

yjk ∈ {0, 1}

where
∑uj

k=1
yjk = xj , sjk = fjk − fj,k−1 andfjk = cjk − djk

2.

The second step consists in getting the surrogate problem associated to the LP-relaxation
of (MKP ) as also discussed in [4] (Djerdjour et al., 1988). The resultant problem
(KP, w) can be written as

(KP, w)







max
∑n

j=1
(
∑uj

k=1
sjkyjk)

s.t.

∣

∣

∣

∣

∑n

j=1
[
∑m

i=1
wiaij ]

∑uj

k=1
yjk ≤

∑m

i=1
wibi

yjk ∈ {0, 1}

The LP-relaxation of(KP, w) provides an upper bound for(QMKP ) (a proof is
given in [17] (Quadri et al., 2007)). Nevertheless the quality of this bound depends on the
surrogate vector employed to establish the surrogate problem.

The optimal surrogate multiplier, denoted byw∗, corresponds to the optimal solution
of the dual surrogate problem(SD) (see [9] (Glover, 1975)). The problem(SD) can be
expressed asminw≥0 Z[KP, w]. Since the objective function of(SD) is quasi-convex
Djerdjour et al. (1988) [4] solve(SD) via a local descent method which is shown in [17]
(Quadri et al., 2007) to be very time consuming. We then suggest, in [17] (Quadri et al.,
2007) , an alternative way to computew∗ which is assessed to be quicker than the local
descent method, using the result that the optimal solution of dual of (MKP ) provides an
optimal solution of(SD).

Experiment results assess the computational efficiency of this alternative way for com-
putingw∗ (see [17] (Quadri et al., 2007) ).

The second improvement proceeds from an additional stage inwhich we solve(KP, w∗)
in 0-1 variables rather than in continuous variables as it isdone by Djerdjour et al. (1988)
in [4]. Analytically the quality of the bound is increased. The experiments quantify the
gap provides by this additional step.

3.2 Lower bound computation

In this section we sum up the main steps to get a feasible solution for (QMKP ). This
lower bound is used in [17] (Quadri et al., 2007) to assess thequality of our upper bound.
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In this present work it will be used as a good starting solution. The main idea of the
proposed heuristic is the following. Since it is proved in [17] (Quadri et al., 2007) that the
optimal value of(MKP ) is closer to the optimum of(QMKP ) than the optimal value
of (QMKP ), we start from the optimal solution,y∗, of (MKP ), to tackle a feasible
solution for(QMKP ). Letting

∑

k y∗
jk = αj, for each variablexj of (QMKP ), we add

to (QMKP ) the constraint⌊αj⌋ ≤ xj ≤ ⌊αj⌋+1, where⌊αj⌋ denotes the greatest integer
smaller or equal toαj . Thus, each variable becomes bivalent, and since the objective
function is separable, it can straightforwardly be shown that the resulting problem is a 0-
1 linear multidimensional knapsack problem. Obviously, solving this knapsack problem
yields a feasible solution for(QMKP ) which is not necessarily optimal for(QMKP ).

3.3 Pre-processing techniques

Most commercial integer programming solvers propose a pre-processing phase which
simplifies the problem being solved before starting a branch-and-bound procedure. This
pre-processing phase consists of reducing the number of variables and constraints of the
initial problem, using logical issues and variable fixationtechniques. In this section we
describe the pre-processing procedures we implemented in order to speed up the solution
of (QMKP ) and discuss the utility of such procedures.

We use three pre-processing procedures: the first one detects and discards some re-
dundant constraints, the second one reduces the bound of theinteger variables (using [10]
(Hammer et al., 1975) ), and the third and last one fixes some 0-1 variables to their optimal
values.

3.3.1 Eliminating redundant constraints

We first discard constraints which are trivially implied by astrong one. Since(QMKP )
only includes knapsack constraints, this strong constraint is simply found by considering
the constraint with the smallest right-hand-side, saybi0 . Then we setαi = max1≤j≤n

aij

ai0j
.

Suppose that a constrainti verifiesαi ≤
bi

bi0

, we have:

∀j ∈ {1, . . . , n},
aij

ai0j

≤ αi,

and since for alli andj aij ≥ 0:

∀x verifying constrainti0,
n

∑

j=1

aijxj ≤
n

∑

j=1

αiai0jxj ≤ αi

n
∑

j=1

ai0jxj ≤ αibi0 ≤ bi
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Consequently, when a constrainti satisfiesαi ≤
bi

bi0

, this constraint is immediately sat-
isfied when constrainti0 is verified. This criterion allows us to detect the constraints
obviously dominated by constrainti0.

We could iterate this technique using not only the constraint included the smallest
right-hand-side but also the one with the second smallest right-hand-side (and so on).
However, this idea does not appear experimentally efficient.

This simple technique, whose complexity isO(mn), allowed us to significantly re-
duce the number of constraints of all the considered instances. As discussed in Section
4. its efficiency strongly depends of the structure of the considered instance. Indeed, we
randomly generate three kinds of instances: squared instances (n = m), rectangular in-
stances (m = 5%n) and correlated instances. The reductions obtained are of good quality
(between 52% and 56% of the constraints can be removed) concerning the squared and
correlated instances.

3.3.2 Reducing the bounds of the integer variables

Since the objective functionf of problem(QMKP ) is separable inton concave sub-
functionsfj , each integer variablexj is naturally bounded bycj

2dj
. Consequently, the

bounduj of variablexj is always chosen between1 andmax
(

1,
cj

2dj

)

when instances are

randomly generated. However a high value of parameteruj may considerably increase
the difficulty to solve the problem (for example the most difficult instances generated in
Section 4 involve integer bounds up to70).

Hammer et al. (1975) propose in [10] a technique called constraint pairing to reduce
the bounds of some integer variables verifying a set of linear inequalities. The idea of
this method is to arbitrarily choose two inequalities from the set, say

∑n

j=1
ajxj ≤ a0

and
∑n

j=1
bjxj ≤ b0, and to establish a third surrogate one obtained by multiplying the

second constraint by a positive parametert and by summing it with the first constraint.
The surrogate constraint is:

∑n

j=1
(aj + tbj)xj ≤ (a0 + tb0). When t is judiciously

chosen, the surrogate constraint may allow us to tighten thebounding interval of variable
xj , [0, uj], for instance by noting that variablexj may no more take the value0 or uj

without violating the surrogate constraint. The authors show it suffices to successively
affect onlyn + 2 values tot in order to get as many conclusions as possible about the
bounds of all the variables from the two constraints initially chosen. The complexity of
the whole procedure isO(n2) for each couple of pairing inequalities.

This technique seems relatively useful if we consider the experimental results in Sec-
tion 4. These experiments show for instance that the number of pure integer variables
(those havingui > 1) decrease on average from 70% to 40% for the correlated instances
and from 38% to 21% for the squared instances.
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3.3.3 Fixing some 0-1 variables to their optimal value

When applying the last pre-processing technique, the number of 0-1 variables has prob-
ably increased. Thus, it is natural to try to fix some of the 0-1variables to their optimal
value in order to decrease the problem size. Let a 0-1 variable, sayxi, we first need to
guess its value in the optimal solution. We use the value ofxi in the best known feasible
solution and try to prove thatxi cannot have a different value in any optimal solution.
Considering a setI of variables indices that all are supposed to be equal to 0 in an optimal
solution, we add the following constraint to the problem:

∑

i∈I

xi ≥ 1

then we compute an upper bound UB of the modified problem usingthe method pre-
sented in [17] (Quadri et al., 2007). If the computed upper bound is strictly lower than
the value of the best known feasible solution then we can conclude that all the variables
indexed inI can definitively be fixed to0. A similar constraint can be added for fixing
variables to 1 instead of0 as explained in [1] (Billionnet and Soutif, 2004).

The size of the setI is an important parameter for the success of such a fixation
method. Choosing|I| = 1 comes down to fix variables one by one, and choosing|I|
too large generally fails since no fixation can be done (the quality of the upper bound
does not allow us to simultaneously fix all the variables indexed inI whenI is too large).
Experiments show that for(QMKP ) and the bound used to solve it, a good compromise
consists in choosing|I| = 2.

This procedure allows us to fix on average51% of the 0 − 1 variables. However
it appears much more time-consuming than the two previous ones. It can sometimes
constitute more than10% of the whole CPU-time necessary to find the exact solution
using the branch-and-bound procedure.

4 Computational results

The computational performance of the four branch-and-bound procedures was tested
through a set of100 randomly generated squared problems (i.e.n = m) and corre-
lated problems (i.e.cj =

∑m

i=1
aij anddj = cmin/2, wherecmin is the minimum of

all cj values). The correlated problems are well-known to be more difficult to solve in
practice for0 − 1 linear multidimensional knapsack problem(MKP ), which is a spe-
cial case of(QMKP ), than squared instances. The number of variables take theirval-
ues in the set{100, 500, 1000, 1500, 2000}, with 10 replications per n-value. As in [4]
(Djerdjour et al., 1988) integer coefficientsaij , cj, dj were uniformly drawn at random
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Table 1: Average computational time of the four methods for each problem type
n m SBB LBB DMS Our BB

Squared

100 100 1.31 0.63 2.13 1.5
500 500 120.12 16.1 - 11.5
1000 1000 346.56 283.3 - 50.5
1500 1500 1178.4 392.5 - 183.7
2000 2000 2557.9 1369.4 - 305.2

Correlated

100 100 0.7 0.1 3.35 0.4
500 500 955.7 129.4 - 410.4
1000 1000 1480.24 650.13 - 1280.2
1500 1500 - - - -
2000 2000 - - - -

in the range{1..100}. Coefficientsbi anduj are integers uniformly distributed such that
50 ≤ bi <

∑n

j=1
aijuj and1 ≤ uj ≤ ⌈

cj

2dj
⌉, where⌈x⌉ denotes the smallest integer

greater than or equal tox.

The percentage of pure integer variables (withuj > 1) rises38.6% on average for
squared instances rather than it is equal to70% on average for correlated problems. The
average value of the bounduj for the pure integer variables reaches21.2 with a standard
deviation2.24 over50 instances for squared problems and rises54.1 on average with a
standard deviation6 over50 for correlated problems.

Our branch-and-bound as well asDMS were coded in C language whereas the optimal
solution provided bySBB andLBB were got using a commercial solver ILOG-Cplex9.0.
Simulations were run on a bi-xeon 3.4 Ghz with 4Go of main memory.

4.1 General comments on the comparison of the computational time
of the four methods

Table 1 displays, for the four exact solution methods mentioned in this paper, the average
computational time in CPU seconds over 10 replications for each problem type and size.
We limited to10800 seconds (3 hours) the solution time.

The results in Table 1 indicate clearly the poor performanceof DMS which was not
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able to reach the optimum in the chosen limit time for all problems types with500 vari-
ables and more. It is proved in [17] (Quadri et al.) that is dueto the fact thatDMS employs
a very time consuming local descent search method to obtain the optimal surrogate mul-
tiplier w∗ (see Sections 2 and 3).

Squared instances. Our branch-and-bound clearly outperforms the three otherproce-
dures. For large scaled instances (n ≥ 1000) our exact solution method is approximately4
times quicker than the second best approachLBB and it is almost7 times faster thanSBB.
This conforts the ability of our method to solve large sized problems in a very competitive
time with an average of5′′05 minutes (305 seconds) for the2000-variables instances.

Correlated instances. As expected the correlated problems are difficult to be solved by
the four exact methods. The size of the instances only up to1000 variables and constraints.
Nevertheless, concerning500-variable problemsLBB is the most appropriate algorithm
taking10′′00 minutes on average to find the optimum. Our branch-and-boundstill solves
the same instances in a competitive CPU time (2 times slower thanLBB).

4.2 Analysis of the experiments results

The improvement capability of our branch-and-bound can be explained by three features,
namely: (i) the feasible solution, (ii) the upper bound and (iii) the pre-processing proce-
dures.

Our feasible solution (see [17] (Quadri et al., 2007). Actually, providing to our
branch-and-bound algorithm another feasible solution (ofpoorer quality) did not signif-
icantly debase its solution time. Consequently, the good quality of the initial feasible
solution does not clearly explain the performance of our exact solution method.

Our upper bound and pre-processing procedures: squared instances. The impact of
both the upper bound we proposed in [17] (Quadri et al., 2007)and the pre-procedures
used clearly appear. Indeed, our upper bound is always closer to the optimum than the
three other utilized inDMS, LBB andSBB. Moreover, this bound takes about10 sec-
onds on average to be computed. On the other hand, our method includes part of the
procedure of Hammer et al. (1975) [10] to reduce the boundsuj of the pure variables.
This actually leads to convert many pure integer variables into 0-1 variables. The av-
erage proportion of pure integer variables decreases from38% to 21.02%. The fixation
technique eliminates50.25% of variables which value is fixed to1. Finally, the search of
redundant constraints allows to keep48% of the initial constraints. Consequently, both
the upper bound method and the pre-procedure techniques arevery effective for squared
instances.

Our upper bound and pre-processing procedures: correlated instances. The upper
bound is of poor quality in comparison with the result obtainfor the squared problems.
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Nevertheless, the relative gap is on average20% and the bound is computed in1′′30 on
average (see [17] (Quadri et al., 2007)). On the other hand, the pre-procedure techniques
are quite well effective. Indeed,56.6% of constraints can be removed on average,27%
of variables are fixed to their bound. Before starting the pre-procedure process, only30%
of variables are binaries. The impact clearly appears:60% of variables are0 − 1 after
applying the techniques. In spite of the fact that these results are of good quality, our
branch-and-bound does not solve1000-variable problems faster thanLBB.

5 Conclusion

We develop in this paper a branch-and-bound algorithm to solve the integer quadratic
multidimensional knapsack problem. The upper bound and thepre-procedure techniques
that we incorporate allow us to solve large-sized squared instances, up to2000 variables
and constraints. The classical branch-and-bound, which isusually used to solve such con-
vex problems is of poor quality as well as the method proposedby Djerdjour et al. (1988)
[4]. Moreover, the method suggested by [15] (Mathur and Salkin, 1983) we extended to
the case of(QMKP ), which has never been utilized to solve(QMKP ) directly, outper-
forms the three other branch-and-bound concerning the correlated problems.
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