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Abstract

This paper studies a class of nonlinear problems of convective longitudinal fins with temperature-

dependent thermal conductivity and heat transfer coefficient. For thermal conductivity and heat

transfer coefficient dominated by power-law nonlinearity, the exact temperature distribution is

obtained analytically in an implicit form. In particular, the explicit expressions of the fin tem-

perature distribution are derived explicitly for some special cases. An analytical expression

for fin efficiency is given as a function of a thermogeometric parameter. The influences of the

nonlinearity and the thermogeometric parameter on the temperature and thermal performance

are analyzed. The temperature distribution and the fin efficiency exhibit completely different

behavior for the power-law exponent of heat transfer coefficient being larger or less than negative

unity.

Keywords: exact solution; temperature-dependent thermal conductivity; temperature-dependent

heat transfer coefficient; nonlinear fin problem.
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Nomenclature

A Cross-sectional area
L Axial length
P Perimeter of cross-section
M Dimensionless thermogeometric parameter
m Power exponent of variable thermal conductivity
n Power exponent of variable heat transfer coefficient
Ta Temperature of a surrounding fluid
Tb Temperature at fin’s base
k (T ) Temperature-dependent thermal conductivity
ka Thermal conductivity at temperature of a surrounding fluid
h (T ) Temperature-dependent convection heat transfer coefficient
hb Convection heat transfer coefficient at the base
X Axial distance measured from the fin’s tip
x Dimensionless axial distance measured from the tip

Greek symbols
α A measure of thermal conductivity variation with temperature
δ Dimensionless constant of thermal conductivity
η Fin efficiency
θ Dimensionless temperature excess
θ0 Dimensionless temperature excess at the fin tip

1 Introduction

Heat transfer is a typical phenomenon encountered frequently in both engineering application and

daily life, and it has a long history of research [1]. Great progress in this area has made in re-

cent decades. As an indispensable part in heat transfer problems, fins have been widely used in

refrigeration and air conditioning and are capable of significantly enhancing heat transfer efficien-

cy. Therefore, seeking the influence factors of heat transfer process and studying the method of

enhancement of heat transfer efficiency are fundamental subjects in this field. To increase the

heat transfer efficiency, many researches have been conducted in experiment and theory [2]. Heat

transfer and pressure drop phenomena over a bank of micro pin fins were investigated [3]. Local

heat transfer coefficient and fin efficiency of wavy fin-and-tube heat exchangers were studied via a

numerical approach [4]. The effects of radiation and convection heat transfer in a rectangular pro-

file fin were analyzed [5]. The thermal performance and efficiency of convective–radiative straight

fins with various profiles were tackled [6].

For some fins, the thickness or cross-section is relatively small than the length, and the temper-

ature change along the fin thickness-wise direction or cross-section is small and simply neglected.
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Significant temperature change only occurs along the longitudinal direction. Such fins may be

understood as one-dimensional (1D) fins, in which the temperature distribution is a function of

one spatial variable, in addition to time variable unless for transient fin problems. On the other

hand, due to large temperature change or temperature difference occurring for most fins, the heat

transfer coefficient and the thermal conductivity cannot be assumed to be constant, but change

with temperature. In other words, the thermal conductivity, heat transfer coefficient, and so on

are dependent on temperature, and are nonlinear functions of unknown temperature. This leads

to a difficulty in seeking an exact temperature distribution in the fins. Hitherto, many numerical

methods have been presented to solve the temperature change of 1D fins. For instance, the fin

efficiency of convective straight fins with temperature-dependent thermal conductivity was ana-

lyzed by the Adomian decomposition method [7–10], the homotopy analysis method [11, 12], the

differential transformation method [6, 13–15], the variational iteration method [16, 17], the Taylor

series method [18], the least squares method [19], the singular boundary method [20], the Variation

of Parameters Method [21]. Besides, the effects of some physical parameters for the temperature

distribution have been analyzed by using a hybrid approximate technique based on the differential

transform method and finite difference method [15]. Owing to the difficulty of nonlinear fin prob-

lems, the above-mentioned researches mainly focus on numerical analysis. However, closed-form

exact solutions are much desired since they are not only useful to design engineers but also to re-

searchers as benchmark solutions for checking the convergence, validity, and accuracy of numerical

methods. Therefore, to date some efforts have been made to obtain exact solutions of nonlinear fin

problems with temperature-dependent thermal conductivity and/or heat transfer coefficient. Along

this line, Moitsheki et al. employed the classical Lie symmetry technique to derived exact solutions

of a nonlinear fin problem with power-law dominated temperature-dependent thermal conductivity

and heat transfer coefficient [22]. For power-law temperature-dependent heat transfer coefficient,

some exact solutions have been obtained and they are expressed in terms of the hypergeometric

function [23], or in implicit form by solving a functional equation[24–26]. Furthermore, for power-

law type temperature-dependent heat transfer coefficient and thermal conductivity, Abbasbandy

and Shivanian also formulated several exact solutions of the fin temperature distribution for 1D

straight fins [27].

In this paper, a more generalized and more realistic nonlinear problem for 1D straight fins is

considered, where thermal conductivity and heat transfer coefficient are two power-law functions
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of temperature distribution. Various cases are discussed and analytical solutions are derived. In

certain cases, explicit expressions for temperature are obtained. Finally, the fin efficiency is accu-

rately evaluated. The influences of the power-law index in the thermal conductivity and the heat

transfer coefficient on the temperature distribution and the fin efficiency are displayed graphically.

2 Statement of the problem

Consider a nonlinear heat transfer problem of a 1D convective longitudinal straight fin with cross-

sectional area A, length L, and perimeter P, as shown in Fig. 1. The fin is attached to a base

surface of temperature Tb, extends into a surrounding fluid of temperature Ta, and its tip is assumed

to be insulated since heat transfer through the tip end is relatively small and is negligible. Namely,

we have the following boundary conditions

dT

dX
= 0, at X = 0, (1)

T = Tb, at X = L. (2)

When surface heat radiation is neglected and only surface heat convection through the surface is

considered, the 1D steady-state heat balance equation reads

d

dX

[

k (T )A
dT

dX

]

− Ph (T ) (T − Ta) = 0, 0 < X < L (3)

where the thermal conductivity k (T ) and the convection heat transfer coefficient h (T ) of the fin

material are assumed to be temperature-dependent. In the present study, we assume that both of

them are power-law functions of temperature, i.e.

k (T ) = ka

[

δ + α

(

T − Ta

Tb − Ta

)m]

, (4)

h (T ) = hb

(

T − Ta

Tb − Ta

)n

, (5)

where ka is the thermal conductivity when temperature takes Ta, δ is a dimensionless constant

that takes 0 or 1 without loss of generality (δ = 0 is often adopted in the previous studies for

simplicity [27], and δ = 1 is more realistic since the thermal conductivity takes ka in the case of

T = Ta, rather than zero), m and α are two parameters to describe the variation of the thermal

conductivity depending on varying temperature, hb is the convection heat transfer coefficient at

the base surface, and the exponent n depends on the heat transfer mode and may vary in a wide

4

Page 4 of 27

https://mc06.manuscriptcentral.com/cjp-pubs

Canadian Journal of Physics



For Review
 O

nly

range between −6.6 and 5. For example, n = −4 for R113, n = −3 for transition boiling, n = 0 for

film boiling, n = 1 for convection, n = 2 for nucleate boiling, n = 3 for radiation into free space

at zero absolute temperature [28–30]. For the power-law exponent of the thermal conductivity, a

linear thermal conductivity is reduced if choosing m = δ = 1 [25]. For other nonlinear thermal

conductivity with δ = 1, relative work is very limited, although some work in the case of δ = 0 has

been reported [22]. For the constant thermal conductivity with δ = 1 and α = 0, the nonlinear

dependence only arises from the convection heat transfer coefficient. Obviously, if m ̸= 0, n ̸= 0,

the above fin problem is related to multi-nonlinearity. Conversely, if m = n = 0, the problem

reduces to a linear fin problem. The latter is quite simple. On the other hand, for practical

problems, the thermal conductivity is positive, which implies that the parameters α and m must

meet necessary conditions. Many studies focus on constant and linearly temperature-dependent

thermal conductivity, in fact nonlinearly temperature-dependent thermal conductivity often takes

place [31, 32]. Here more generalized nonlinearly temperature-dependent thermal conductivity and

convection heat transfer coefficient will be treated.

For convenience of later analysis, let us introduce the following dimensionless parameters

θ =
T − Ta

Tb − Ta
, x =

X

L
, k (θ) =

k (T )

ka
, M = L

√

hbP

kaA
, (6)

where the dimensionless parameter M is a thermogeometric parameter, and it plays a significant

role in the design and application of fins. In fact, its physical significance is seen from the following

relationship

M =

√

L/ (kaA)

1/ (hbPL)
=

√

internal thermal resistance along the fin length L direction

gross external thermal resistance
. (7)

Using the above-introduced these dimensionless parameters, the 1D nonlinear heat transfer balance

equation (3) may be rewritten as

d

dx

[

k(θ)
dθ

dx

]

−M2θn+1 = 0, 0 < x < 1 (8)

or

(δ + αθm)θ′′ −M2θn+1 +mαθm−1(θ′)2 = 0, (9)

where the prime denotes differentiation with respect to the argument, i.e. θ′ (x) = dθ/dx. The

boundary conditions (1) and (2) can be stated in the dimensionless form:

θ′ (0) = 0, θ (1) = 1. (10)
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3 Exact solutions

In order to solve the above-stated problem more conveniently, we introduce a new unknown function

through u = dθ/dx. Then we find

d2θ

dx2
=

du

dx
=

du

dθ

dθ

dx
= u

du

dθ
. (11)

With the above result, after some manipulation the ordinary differential equation (9) can be con-

verted to the following form:

(δ + αθm)udu+ (mαθm−1u2 −M2θn+1)dθ = 0. (12)

Next, after multiplying both sides of the above differential equation (12) by δ+αθm, from (12)

we readily get

(δ + αθm)2udu+mαθm−1u2(δ + αθm)dθ −M2(δθn+1 + αθm+n+1)dθ = 0. (13)

In the following, we seek exact solutions for some combined cases of the power-law exponents m

and n.

3.1 The case of n ̸= −2

3.1.1 m+ n ̸= −2

Firstly, we consider the case of n ̸= −2 and m+ n ̸= −2. For this case, after integrating both sides

of equation (13), one has

1

2
(δ + αθm)2 u2 − M2δ

n+ 2
θn+2 − M2α

m+ n+ 2
θm+n+2 = C, (14)

where C is an unknown integration constant. Taking into account u = dθ/dx, one may rewrite the

above-resulting equation (14) as follows

1

2
(δ + αθm)2

(

dθ

dx

)2

− M2δ

n+ 2
θn+2 − M2α

m+ n+ 2
θm+n+2 = C. (15)

Now, using the first boundary condition in (10), one acquires

− M2δ

n+ 2
θn+2
0 − M2α

m+ n+ 2
θm+n+2
0 = C, (16)

where θ0 is specified by θ (0) . Eliminating the constant C through subtracting (16) from (15) leads

to

1

2
(δ + αθm)2

(

dθ

dx

)2

=
M2δ

n+ 2
(θn+2 − θn+2

0 ) +
M2α

m+ n+ 2
(θm+n+2 − θm+n+2

0 ), (17)
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which is further rewritten as

(δ + αθm)dθ
√

2M2δ
n+2 (θn+2 − θn+2

0 ) + 2M2α
m+n+2(θ

m+n+2 − θm+n+2
0 )

= dx, (18)

where another equation with a negative sign before dx is removed since it has no physical meaning

in practical application.

Integrating both sides of equation (18) and imposing the boundary condition we get

√
2Mx =

∫ θ

θ0

(δ + αzm)dz
√

δ
n+2(z

n+2 − θn+2
0 ) + α

m+n+2(z
m+n+2 − θm+n+2

0 )
. (19)

Notice that in the above equation, θ0 is still unknown. To determine it, in view of the boundary

condition θ (1) = 1, one finds that θ0 must satisfy the following equation

√
2M =

∫ 1

θ0

(δ + αzm)dz
√

δ
n+2(z

n+2 − θn+2
0 ) + α

m+n+2(z
m+n+2 − θm+n+2

0 )
. (20)

Equation (20) provides us with a relation between θ0 and M in terms of integration, and its solution

is easily determined through commercial software such as Mathematica and Matlab, provided that

the parameters α, δ,m, n are prescribed. Once the θ0 value is determined via (20), we put its value

into (19) to obtain the dependence of the temperature change on the certain physical quantities of

interest.

In the following let us further consider a special case of δ = 0 and m = n. we denote

M∗ =
M√
α
. (21)

Under such circumstances, the parameter α is required to be positive, and equation (19) then

reduces to

M∗x√
n+ 1

=

∫ θ

θ0

zndz
√

z2n+2 − θ2n+2
0

, (22)

for n > −1, and

M∗x
√

|n+ 1|
=

∫ θ

θ0

zndz
√

θ2n+2
0 − z2n+2

, (23)

for n < −1. It is noted that owing to our assumption in the present case under scrutiny, the case

of m = n = −1 does not occur and will be considered in the subsequent analysis. A straight

integration allows us to arrive at

√
n+ 1M∗x = ln

θn+1 +
√

θ2n+2 − θ2n+2
0

θn+1
0

, if n > −1, (24)

√

|n+ 1|M∗x = cos−1

(

θn+1

θn+1
0

)

, if n < −1. (25)
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If expressing the temperature change in terms of x, from the above results we easily obtain

θ =







































[

cosh
(√

n+ 1M∗x
)

cosh
(√

n+ 1M∗
)

]1/(n+1)

, if n > −1,

e
M

2
∗
(x2−1)

2 , if n = −1,




cos
(

√

|n+ 1|M∗x
)

cos
(

√

|n+ 1|M∗
)





1/(n+1)

, if n < −1,

(26)

where the solution for n = −1 will be given in the following, i.e. (36). In the above solution, besides

the parameter n, the temperature distribution is expressed explicitly in terms of the parameters

M and α. It is interesting to note that when n < −1, the parameter M must satisfy M ≤

π
√
α/2

√

|n+ 1| to avoid multivalue appearance.

It is pointed out that our solution with α = 1 for n ≥ −1 are in exact agreement with those

derived in [22]. However, the solution for n < −1 seems not to be reported before, to the best of

the authors’ knowledge. In an alternative way, we also give the temperature distribution θ as a

function of θ0 at the fin tip, and the parameters M and α do not appear, namely

θ =























θ1−x
0

[
(

1+
√

1−θ2n+2
0

)

x

+
(

1−
√

1−θ2n+2
0

)

x

2

]1/(n+1)

, if n > −1,

θ1−x2

0 , if n = −1,

θ0 cos
1/(n+1)

(

x cos−1
(

θ−n−1
0

))

, if n < −1,

(27)

if θ0 is prescribed. Of course, θ0 is dependent on the parameters M and α, which can be seen by

setting x = 0 in (26) or (24) and (25). That is, the dependence of θ0 on M and α is given by

M =



















√

α
n+1 ln

[

θ−n−1
0 +

√

θ
−2(n+1)
0 − 1

]

, if n > −1,
√
−2α ln θ0, if n = −1,

√

α
|n+1| cos

−1
(

θ−n−1
0

)

, if n < −1,

(28)

where a negative M value has been removed since it has no physical meaning.

3.1.2 m+ n = −2

Both sides of the ordinary differential equation (13) are integrated, yielding

1

2
(δ + αθm)2u2 +

M2δ

mθm
−M2α ln θ = C. (29)

Imposing the boundary condition at x = 0 can get

M2δ

mθm0
−M2α ln θ0 = C. (30)
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We plug equation (30) into equation (29) to eliminate the constant C,

1

2
(δ + αθm)2u2 +

M2δ

m
(
1

θm
− 1

θm0
)−M2α ln (θ/θ0) = 0. (31)

In view of u = dθ/dx in equation (31), we immediately obtain

(δ + αθm)dθ
√

α ln θ
θ0

− δ
m

(

1
θm − 1

θm0

)

=
√
2Mdx. (32)

Integrating both sides of equation (32) results in

√
2Mx =

∫ θ

θ0

(δ + αzm)dz
√

α ln z
θ0

− δ
m

(

1
zm − 1

θm0

)

. (33)

Taking the boundary condition θ (1) = 1 in the above resulting equation, one has

√
2M =

∫ 1

θ0

(δ + αzm)dz
√

α ln z
θ0

− δ
m

(

1
zm − 1

θm0

)

. (34)

Once the θ0 value is determined via (34), we put its value into (33) to obtain the dependence of

the temperature change on certain physical quantities of interest.

In particular, consider a special case of δ = 0 and m = −1, meaning m = n = −1. Under such

circumstances, the above exact solution (33) further becomes

x =

√

2 ln (θ/θ0)

M∗
. (35)

Expressing the temperature change in terms of x, equation (35) can be transformed into the fol-

lowing form

θ = e
M

2
∗
(x2−1)

2 . (36)

3.2 The case of n = −2

3.2.1 m ̸= 0

For this case, we integrate both sides of the ordinary differential equation (12), yielding

1

2
(δ + αθm)2u2 −M2δ ln θ − M2α

m
θm = C. (37)

The first boundary condition in (10) allows us to obtain

−M2δ ln θ0 −
M2α

m
θm0 = C. (38)
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Eliminating the constant C from (37) and (38) leads to

1

2
(δ + αθm)2u2 = M2δ ln

θ

θ0
+

M2α

m
(θm − θm0 ). (39)

Bearing u = dθ/dx in mind, the above ordinary differential equation (39) can be rewritten as

follows:

1

2
(δ + αθm)2

(

dθ

dx

)2

= M2δ ln
θ

θ0
+

M2α

m
(θm − θm0 ), (40)

or
√
2Mdx =

(δ + αθm)dθ
√

δ ln θ
θ0

+ α
m(θm − θm0 )

. (41)

Integrating both sides of equation (41) and imposing the boundary condition θ = θ0 as x = 0,

one finally obtains
√
2Mx =

∫ θ

θ0

(δ + αzm)dz
√

δ ln z
θ0

+ α
m(zm − θm0 )

. (42)

Inserting the boundary condition θ (1) = 1 into equation (42), the undetermined parameter θ0

should meet the following equation

√
2M =

∫ 1

θ0

(δ + αzm)dz
√

δ ln z
θ0

+ α
m(zm − θm0 )

. (43)

Once the θ0 value is determined via (43), we put its value into (42) to obtain the dependence of

the temperature change on certain physical quantities of interest.

In the following, we consider a special case δ = 0. In this case, equation (42) simplifies to

√
2M∗x =

∫ θ

θ0

√

m

zm − θm0
zmdz. (44)

Next, we also give explicit expressions for the exact solution of several values of m. For m = −2,

equation (44) can be integrated in a closed form:

x =
1

M∗
cos−1 θ0

θ
, (45)

which further gives an explicit expression below

θ =
cos (M∗)
cos (M∗x)

. (46)

In the case of m = −1, omitting the detail, one finally obtains the exact solution as follows:

x =

√
2θ0
M∗

ln

(

√

θ

θ0
+

√

θ

θ0
− 1

)

, (47)
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which can be further rewritten as the function of θ

θ =





cosh
(

M∗x√
2θ0

)

cosh
(

M∗√
2θ0

)





2

, (48)

where θ0 satisfies the following equation

M∗√
2θ0

= ln

(
√

1

θ0
+

√

1

θ0
− 1

)

, (49)

which is further rewritten as

θ0 =
2

1 + cosh
(√

2
θ0
M∗
) . (50)

In the case of m = 1, using the same procedure one gets the exact solution below

x =
(θ + 2θ0)

√

2 (θ − θ0)

3M∗
. (51)

Furthermore, θ may be rewritten as a cubic equation

y3 + 3θ0y − t = 0, (52)

with

y =
√

θ − θ0, t =
3M∗√

2
x. (53)

With the aid of the roots of a cubic equation, a real root is found to be

√

θ − θ0 =

(

t+
√

4θ30 + t2

2

)1/3

− θ0

(

2

t+
√

4θ30 + t2

)1/3

, (54)

or

θ =

(

t+
√

4θ30 + t2

2

)2/3

+ θ20

(

2

t+
√

4θ30 + t2

)2/3

− θ0. (55)

In particular, if letting x = 1, from θ (1) = 1 one gets

θ0 =
1

2

(

B +
1

B

)

, (56)

where

B =



1− 9M2
∗

2
+

√

(

9

2
M2∗

)2

− (3M∗)
2





1/3

. (57)

Once substitution of the expression (57) for B into (55), an explicit expression for temperature θ

depending on M is derived, which is omitted here for saving space. Alternatively, by eliminating

the parameter M we express θ in terms of θ0 below

θ = E2/3 + θ20E
−2/3 − θ0, (58)
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with

E =

√

1 + 3θ0 − 4θ30x+
√

(1 + 3θ0)x2 + 4θ30 (1− x2)

2
(59)

Finally, let us consider the case of m = 2. After integration of (44) we obtain an exact solution

x =
1

2M∗

(

θ
√

θ2 − θ20 + θ20 ln
θ +

√

θ2 − θ20
θ0

)

. (60)

For the above result, it is inconvenient to express θ as an explicit function of x. However, we still

may plot the dependence of θ on x only if θ0 is determined by taking x = 1 in (60). In other words,

the θ0 value is related to M through the following relationship

2M∗ =
√

1− θ20 + θ20 ln
1 +

√

1− θ20
θ0

. (61)

Thus, from (60) one can give the dependence relationship of θ as a function of x. An alternative

dependence of θ on θ0 is easily determined from (60) and (61), viz.

x =
θ
√

θ2 − θ20 + θ20 ln
θ+
√

θ2−θ20
θ0

√

1− θ20 + θ20 ln
1+
√

1−θ20
θ0

. (62)

3.2.2 m = 0

The remaining case is n = −2 and m = 0, which in fact corresponds to a constant thermal

conductivity. Equation (12) in this case reduces to

(δ + α)udu−M2θ−1dθ = 0. (63)

A straight integration leads to

(δ + α)

(

dθ

dx

)2

− 2M2 ln θ = C. (64)

Obviously, setting x = 0 in the above equation, due to θ′ (0) = 0, we have C = −2M2 ln θ0.

Subsequently, the above first-order ordinary differential equation (64) can be further rewritten

dθ
√

ln (θ/θ0)
= M

√

2

δ + α
dx. (65)

Introducing θ = θ0e
s2 , from (65) one sees

es
2
ds =

√

1

2(δ + α)

M

θ0
dx, (66)
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or

x =
θ
√

2(δ + α)D
(

√

ln (θ/θ0)
)

M
, (67)

where D (x) is the Dawson function, defined by

D (x) = e−x2

∫ x

0
es

2
ds. (68)

Finally, in terms of θ0, we easily give the relationship of θ as follows:

x

∫

√
ln(1/θ0)

0
es

2
ds =

∫

√
ln(θ/θ0)

0
es

2
ds. (69)

4 Fin efficiency

The fin efficiency is the ratio of the actual heat transferred from the fin surface to the surrounding

liquid to the amount of heat to be transferred if the entire fin area is at the base temperature. In

fact, the actual heat transferred from the fin surface to the surrounding liquid is equal to the heat

conducted through the base at the position X = L or x = 1 through the fin, the fin efficiency can

be written as follows

η =
k (Tb)A

dT
dX

∣

∣

X=L

PLh (Tb) (Tb − Ta)
=

δ + α

M2
θ′(1). (70)

Therefore, θ′ (1) can be directly obtained from the previous results. That is, with the help of (18),

(41), (32), and (65) one has

dθ

dx
=



































































M

√

2(m+ n+ 2)δ(θn+2 − θn+2
0 ) + 2α(n+ 2)(θm+n+2 − θm+n+2

0 )
√

(m+ n+ 2)(n+ 2)(δ + αθm)
, n ̸= −2, n ̸= −m− 2

M

√

2mα(ln θ − ln θ0)− 2δ

(

1

θm
− 1

θm0

)

√
m(δ + αθm)

, n ̸= −2, n = −m− 2

M
√

2mδ(ln θ − ln θ0) + 2α(θm − θm0 )
√
m(δ + αθm)

, n = −2,m ̸= 0

M

√

2 ln (θ/θ0)
δ + α

, n = −2,m = 0

(71)

Putting the above results (71) into (70) leads to the fin efficiency as follows:

η =































1
M

√

2δ
n+ 2(1− θn+2

0 ) + 2α
m+ n+ 2(1− θm+n+2

0 ), n ̸= −2, n ̸= −m− 2

1
M

√

2δ
(

θ−m
0 − 1

)

m − 2α ln θ0, n ̸= −2, n = −m− 2

1
M

√

2α(1− θm0 )
m − 2δ ln θ0, n = −2, m ̸= 0

1
M

√

−2 ln θ0(δ + α), n = −2,m = 0.

(72)
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In what follows, we turn our attention to a special case of δ = 0. For this special case, some

explicit expressions for the fin efficiency can be given. For instance, for m = n, we take the

derivative of both sides of equation (26), and get the following results

dθ

dx
=







































M∗ sinh
(√

n+ 1M∗x
)

√
n+ 1 cosh

(√
n+ 1M∗

)

[

cosh
(√

n+ 1M∗x
)

cosh
(√

n+ 1M∗
)

]−n/(n+1)

, if n > −1,

M2
∗xe

M
2
∗
(x2−1)

2 , if n = −1,

M∗ sin
(

√

|n+ 1|M∗x
)

√

|n+ 1| cos
(

√

|n+ 1|M∗
)





cos
(

√

|n+ 1|M∗x
)

cos
(

√

|n+ 1|M∗
)





−n/(n+1)

, if n < −1.

(73)

By substituting the above equation (73) into equation (70), we can obtain the following exact

expressions for the fin efficiency

η =



























tanh
(√

n+ 1M∗
)

√
n+ 1M∗

, if n > −1,

1, if n = −1,

tan
(

√

|n+ 1|M∗
)

√

|n+ 1|M∗
, if n < −1.

(74)

From the above results, one readily finds that if n < −1, the fin efficiency is larger than unity,

whereas n > −1, it is less than unity. For frequently encountered situations, we have n > −1

[29, 30], and the fin efficiency is always lower than the unity. In an alternative manner, we have

η =



























√

1−θ
2(n+1)
0

ln

[

θ−n−1
0 +

√

θ
−2(n+1)
0 −1

] , if n > −1,

1, if n = −1,
√

θ
2(n+1)
0 −1

cos−1(θ−n−1
0 )

, if n < −1.

(75)

Furthermore, we omit the detail and give the fin efficiency in the case of δ = 0 and n = −2,

η =



















































√
θ−2
0 −1

cos−1 θ0
, if m = −2,√
θ−1
0 −1

√
θ0 ln

(√
θ−1
0 +

√
θ−1
0 −1

) , if m = −1,
√
− ln θ0

D
(√

ln(1/θ0)
) , if m = 0,

3
1+2θ0

, if m = 1,
2
√

1−θ20√
1−θ20+θ20 ln

(

θ−1
0 +

√
θ−1
0 −1

) , if m = 2.

(76)

5 Results and discussion

Based on the results derived above, the exact analytical solutions were obtained in implicit form

for most cases. For certain special cases, explicit expressions for the fin temperature distribution
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and the fin efficiency are possible. For the case of m = n, Fig. 2(a,b) shows the temperature

distribution for a given thermogeometric parameter M/
√
α = 1.1 or tip temperature θ0 = 0.6. The

temperature at each position on the fin increases with n rising. From a physical viewpoint, it is

because the increase of parameters m and n implies that the thermal conductivity and heat transfer

coefficient become lower, then the heat emitted to the external environment decreases or less heat

is dissipated. This conclusion is in agreement with that obtained for linear thermal conductivity

in [6]. In particular, if choosing M/
√
α = 1.1, the temperature excess θ may arrive at a value

lower than 0.2 for n = −3, which is much less than those for other n values. On the other hand,

if limiting the dimensionless tip temperature excess θ0 = 0.6, from Fig. 2b one also finds that a

less n value causes a lower temperature excess. For the case of unequal m and n, Fig. 3 shows

the temperature distribution along the fin length if taking n = −2, δ = 0. The increase of m also

causes the fin temperature to rise, and the reason is the same as the above. That is, the increase

of m indicates a reduction in the property of thermal conductivity.

The fin efficiency is also discussed for the above cases. Fig. 4 shows the fin efficiency η as a

function of M for different n values when α = 0.4, δ = 0,m = n. From Fig. 4, it is seen that

the fin efficiency strongly depends on the index n. With M rising, the fin efficiency significantly

increases if n < −1 such as transition boiling, decreases if n > −1 such as film and nucleate

boiling, and remains unchanged if n = −1. Such a trend is similar to that observed for a linear

thermal conductivity in [25]. In other words, the contribution mainly arises from the convection

heat transfer. For a special case of n = −2, Fig. 5 displays the variation of the fin efficiency η

against θ0 for different m values with α = 0.4. With the increase of temperature θ0 at the fin tip,

there is a declination in the fin efficiency, irrespective of the thermal conductivity index parameter

m. Moreover, the smaller the m value, the larger the η value. It turns out that a fin with lower

thermal conductivity index m corresponding to strong thermal conductivity has larger fin efficiency.

Next, we examine the influence of the power-law index in the thermal conductivity and heat

transfer coefficient on the temperature distribution and the fin efficiency. Here, we only consider

several typical cases of the thermal conductivity: m = 0, 1, 2, where m = 0 corresponds to constant

thermal conductivity, m = 1 to a linear dependence on varying temperature, and m = 2 to a

parabolic or nonlinear dependence on varying temperature.

In order to examine the temperature distribution and the fin efficiency, there is a need to get

the θ0 value for prescribed parameters M and α. For temperature variation in a fin of 500 K, the
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value of α takes approximately 0.4 for AISI 302 stainless steel, and about −0.4 for aluminum [33].

For this reason, in what follows, we take α = ±0.4, unless otherwise stated. Fig. 6(a-c) displays

the variation of the dimensionless temperature θ0 at the fin tip as a function of the parameter M if

taking α = 0.4. Obviously, by comparing solid lines (for δ = 1) with dashed lines (for δ = 0) in Fig.

6(a-c), for each given θ0 value, the M value as a function of θ0 for δ = 0 is much underestimated as

compared to that for δ = 1 for a large range of θ0. This reveals that the neglect of the parameter

δ in the thermal conductivity may give rise to large errors.

In the case of δ = 1, Fig. 7(a-c) gives a comparison of the temperature excess θ0 at the fin tip

against the parameter M when taking α = ±0.4. By inspection, one finds that for each θ0 value, the

M values corresponding to α = −0.4 are always lower than those to α = 0.4. Moreover, from Figs.

6 and 7, the fin tip temperature θ0 is sensitive to the magnitude of M . That is, for different values

of n, the role of M affecting θ0 is completely different. For n < −1, there are two corresponding

temperature values θ0 for each curve if M is lower than a critical value, denoted as Mcr, while

there is only a temperature value θ0 for each M value and the above-mentioned critical value Mcr

disappears. For convenience, we list several pairs of such points, denoted as (Mcr, θ
∗
0) in Tables

1 and 2. Such a phenomenon only occurs in the case of the convection heat transfer coefficient

behaving like θn with n < −1. For n ≥ −1, a unique temperature value θ0 corresponds to each M

value. For the same n value, the change in thermal conductivity index m slightly affects the tip

temperature. Nonetheless, for the same m value, the change in convection heat transfer coefficient

index n strongly alters the tip temperature. This also implies a larger influence of convection heat

transfer coefficient than thermal conductivity in changing the tip temperature.

Only if the dimensionless temperature θ0 at x = 0 is obtained, the temperature distribution

along the length direction of the fin can be determined. Fig. 8(a,b) shows the dimensionless

temperature distribution for a fin with m = 2, M = 0.4, δ = 1,and α = ±0.4. As pointed out

above, for certain cases, e.g. n < −1, there are two corresponding temperature excess values if

M < Mcr. Fig. 8a presents the distribution of a unique temperature and the larger temperature

value if two temperature excess values occur if M < Mcr, and Fig. 8b only displays the lower

temperature excess value if two temperature excess values occur if M < Mcr. From Fig. 8a, the

fin temperature increases with n rising, which is due to less heat loss on the fin surface.

Fig. 9 examines the effect of the parameter M on the dimensionless temperature distribution

for a fin with nonlinearly temperature-dependent thermal conductivity (m = 2) and nonlinearly
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temperature-dependent convection heat transfer coefficient (n = 2) with δ = 1, α = ±0.4. Since

m = 0 corresponds to constant thermal conductivity, and m = 1 to linearly temperature-dependent

thermal conductivity, some analyses for both cases have been reported in [12, 27]. Here for both

nonlinear thermal properties: m = n = 2, Fig. 9 presents an illustration of the effect of the

parameter M on the dimensionless temperature distribution. Clearly, the larger the parameter M

is, the less the temperature θ at any position of the fin. This provides us with choosing appropriate

M values to achieve an optimal state.

Figs. 10 and 11 depict the influence of the parameter M on the fin efficiency for various values

m and n and given α and δ, respectively. For comparison, α = 0.5 is chosen, and the fin efficiency

is computed for δ = 0, 1. Clearly, our results with m = 1 in Fig. 10b are in agreement with those in

[25]. For the case of δ = 1, the fin efficiency is displayed in Fig. 11. The fin efficiency is significantly

larger than unity for n < −1, irrespective of constant, linear, or nonlinear thermal conductivity:

m = 0, 1, 2. If n = −1, the fin efficiency is always equal to unity for any m,α and δ, and in this

case, the values of m,α and δ do not affect the fin efficiency. Nevertheless, for most practical cases,

n > −1, and the fin efficiency is lower than unity [1].

6 Conclusions

In this paper, the temperature distribution and the fin efficiency for a nonlinear fin problem were an-

alyzed. The nonlinearity contains temperature-dependent thermal conductivity and temperature-

dependent convection heat transfer coefficient, both of which exhibit a generalized power-law form.

Exact analytical solutions in the implicit form were given. For certain special cases, the fin temper-

ature distribution and the fin efficiency were obtained explicitly. The influence of the parameters

on the temperature distribution and the fin efficiency were presented graphically and discussed.

The temperature distribution and the fin efficiency strongly depend on the power-law index of the

convection heat transfer coefficient. The distinct differences of the temperature and the fin efficien-

cy under the assumptions of constant, linearly, and nonlinearly temperature-dependent thermal

conductivity and convection heat transfer coefficient were displayed.
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List of Figure Captions

Fig. 1. Schematic of a convecting fin with an insulated tip.

Fig. 2. Temperature distribution of a fin with m = n, δ = 0 for different exponents; (a)

M/
√
α = 1.1, (b) θ0 = 0.6.

Fig. 3. Temperature distribution of a fin with n = −2, δ = 0 for different exponents with

θ0 = 0.6.

Fig. 4. The fin efficiency η as a function of M for different exponents with m = n, δ = 0 and

α = 0.4.

Fig. 5. The fin efficiency η as a function of θ0 for different exponents with n = −2, δ = 0.

Fig. 6. The dimensionless temperature θ0 at the fin tip x = 0 with α = 0.4 and different values

of n; a) m = 0, b) m = 1, c) m = 2.

Fig. 7. The dimensionless temperature θ0 at the fin tip x = 0 with δ = 1, α = ±0.4 and

different values of n; a) m = 0, b) m = 1, c) m = 2.

Fig. 8. The dimensionless temperature distribution in the fin with M = 0.4, δ = 1,m = 2, and

α = ±0.4; a) for unique θ0 if n ≥ −1 or the greater θ0 if n < −1, b) for the lower θ0 if n < −1.

Fig. 9. The effect of the parameter M on the dimensionless temperature distribution for

m = n = 2, δ = 1, α = ±0.4.

Fig. 10. The fin efficiency η for different values of n with α = 0.5; a) m = 0, b) m = 1, c)

m = 2.

Fig. 11. The fin efficiency η for different values of n with δ = 1; a) m = 0, b) m = 1, c) m = 2.
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Table 1. Critical parameter Mcr and corresponding temperature θ∗0 pair: (Mcr, θ
∗
0) with α = 0.4

δ n m = 0 m = 1 m = 2

0 −4 (0.3162, 0.707) (0.2959, 0.732) (0.2794, 0.752)
−3 (0.3742, 0.612) (0.3420, 0.666) (0.3177, 0.683)
−2 (0.4839, 0.426) (0.4216, 0.500) (0.3794, 0.552)

1 −4 (0.5916, 0.707) (0.5806, 0.714) (0.5716, 0.719)
−3 (0.7000, 0.612) (0.6827, 0.622) (0.6694, 0.628)
−2 (0.9053, 0.426) (0.8718, 0.443) (0.8495, 0.450)

Table 2. Critical parameter Mcr and corresponding temperature θ∗0 pair: (Mcr, θ
∗
0) with δ = 1

α n m = 0 m = 1 m = 2

−0.4 −4 (0.3873, 0.707) (0.4042, 0.692) (0.4179, 0.685)
−3 (0.4583, 0.612) (0.4848, 0.590) (0.5043, 0.581)
−2 (0.5927, 0.426) (0.6432, 0.394) (0.6737, 0.391)

0.4 −4 (0.5916, 0.707) (0.5806, 0.714) (0.5716, 0.719)
−3 (0.7000, 0.612) (0.6827, 0.622) (0.6694, 0.628)
−2 (0.9053, 0.426) (0.8718, 0.443) (0.8495, 0.450)
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