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Magnetohydrodynamic (MHD) mixed convection flow of a viscous, incompressible and electrically 
conducting fluid in a vertical channel is analyzed analytically. A magnetic field of uniform strength is applied 
perpendicular to the planes of the channel walls. The fluid is acted upon by a periodic variation of the pressure 
gradient in the vertically upward direction. The temperature of one of the plates is non-uniform and the 
temperature difference of the walls of the channel is high enough to induce heat transfer due to radiation. The 
fluid and the channel rotate in unison with an angular velocity about the axis normal to the plates of the channel. 
An exact analytical solution of the problem is obtained. Two cases of small and large rotation have been 
considered to assess the effects of different parameters involved in the flow problem. The velocity field, the 
amplitude and the phase angle of the shear stress are shown graphically and discussed in detail. During analysis it 
is found that the flow problem studied by Makinde and Mhone (2005) is incorrect physically and mathematically. 
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1. Introduction 
 
 The hydrodynamic rotating flow of electrically conducting viscous incompressible fluids has gained 
considerable attention because of its numerous applications in physics and engineering. In geophysics it is 
applied to measure and study the positions and velocities with respect to a fixed frame of reference on the 
surface of earth which rotates with respect to an inertial frame in the presence of its magnetic field. The 
subject of geophysical dynamics nowadays has become an important branch of fluid dynamics due to the 
increasing interest to study the environment. In astrophysics it is applied to study the stellar and solar 
structure, inter planetary and inter stellar matter, solar storms and flares, etc. In engineering it finds its 
application in MHD generators, ion propulsion, MHD bearings, MHD pumps, MHD boundary layer control 
of reentry vehicles etc. Several scholars viz. Crammer and Pai (1973), Ferraro and Plumpton (1966), 
Shercliff (1965) have studied such flows on account of their varied importance. MHD channel or duct flows 
are important from the practical point of view. Chang and Lundgren (1961) studied a hydromagnetic flow in 
a duct. Yen and Chang (1964) analyzed the effect of wall electrical conductance on the 
magnetohydrodynamic Couette flow. Attia and Kotb (1996) investigated on MHD flow between two parallel 
porous plates. 
 In recent years a number of studies have also appeared in the literature on the fluid phenomena on 
earth involving rotation to a greater or lesser extent, viz. Vidyanidhu and Nigam (1967) Gupta (1972) Jana 
and Datta (1977). An unsteady MHD Couette flow of a viscous incompressible electrically conducting fluid 
in a rotating system is analyzed by Seth et al. (1982). Chandran et al. (1993) studied the rotational effect on 
an unsteady hydromagnetic Couette flow. The transient effect on a magnetohydrodynamic Couette flow with 
rotation is investigated by Singh et al. (1994). An exact solution of an oscillatory Couette flow in rotating 
system in the presence of transverse magnetic field has been investigated by Singh (2000). Prasad Rao et al. 
(1982) studied the combined effect of free and forced convection on an MHD flow in a rotating porous 
channel. Soundalgekar and Pop (1973) analyzed a hydromagnetic flow in a rotating fluid past an infinite 
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porous plate. Singh et al. (2005) studied a periodic solution of an oscillatory Couette flow through a porous 
medium in a rotating system. Transient effects on a magnetohydrodynamic Couette flow with rotation such 
as: accelerated motion is analyzed by Singh et al. (1994). Singh and Kumar (2009) studied theoretically the 
combined effects of rotation and Hall current on free convection of an MHD flow in a vertical porous 
channel. Singh and Garg (2010) also obtained an exact solution of an oscillatory free convection MHD flow 
in a rotating channel in the presence of heat transfer due to radiation. Makinde and Mhone (2005) 
investigated the combined effects of the transverse magnetic field and radiative heat transfer in an unsteady 
flow of a conducting optically thin fluid through a channel filled with a porous medium. Singh (2011) 
obtained an exact solution of an oscillatory MHD flow in a channel filled with a porous medium. Singh and 
Reena (2010) conducted an analysis of an oscillatory rotating MHD Poiseuille flow with injection/suction 
and Hall currents. 
 The purpose of the present analysis is to study an oscillatory mixed convection of an electrically 
conducting viscous incompressible flow in a vertical channel. The entire system rotates about an axis 
perpendicular to the planes of the plates of the channel and a uniform magnetic field is also applied along 
this axis of rotation. The magnetic Reynolds number is assumed to be small enough so that the induced 
magnetic field is neglected. During mathematical analysis it is found that the study presented by Makinde 
and Mhone (2005) is incorrect. 
 
2. Formulation of the problem 
 
 Consider the flow of a viscous, incompressible and electrically conducting fluid in a rotating vertical 
channel as shown in Fig.1. 
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Fig.1. Physical configuration of the physical problem. 
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 In order to derive basic equations for the problem under consideration the following assumptions are 
made: 
(I)  The flow considered is unsteady and laminar. 
(II)  The fluid is finitely conducting and with constant physical properties. 
(III)  A magnetic field of uniform strength is applied normal to the flow. 
(IV)  The magnetic Reynolds number is  taken to be small enough so that the induced magnetic field is 

neglected. 
(V)  Hall effect, electrical and polarization effects are neglected. 
(VI)  It is assumed that the fluid is optically thin with relatively low density. 
(VII)  The entire system (consisting of channel plates and the fluid) rotates about an axis perpendicular to 

the plates. 
(VIII)  Since the plates are infinite so all physical quantities except pressure depend only on z*and t*. 
 Under these assumptions, we write hydromagnetic equations of continuity, motion and energy in a 
rotating frame of reference as 
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 In Eq.(2.2) the last term on the left hand side is the Coriolis force. On the right hand side of Eq.(2.2) 
the last term F � 
*g T� �  accounts for the force due to buoyancy and the second last term is the Lorentz force 

due to magnetic field B and is given by 
 
  � 
 ,� � � � �J B V B B  (2.4) 
 

and the modified pressure, � 
* ,2p p
2

�� � � R�  where R denotes the position vector from the axis of 

rotation, p�  denotes the fluid pressure, J is the current density and all other quantities have their usual 
meanings and have been defined in the text. Following Cogley et al. (1968) the last term in the energy 
Eq.(2.3) stands for the radiative heat flux, which is given by 
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 In the present analysis we consider an unsteady flow of a viscous incompressible and electrically 
conducting fluid bounded by two infinite insulated vertical plates distance ‘d’ apart. A coordinate system is 
chosen such that the X* -axis is oriented upward along the centerline of the channel and the Z*-axis is taken 

perpendicular to the planes of the plates lying in * dz
2

� �  planes. The non-uniform temperature of the plate 

at * dz
2

� �  is assumed to be varying periodically with time. The Z*- axis is considered to be the axis of 

rotation about which the fluid and the plates are assumed to be rotating as a solid body with a constant 
angular velocity �*. A transverse magnetic field of uniform strength B (0, 0, B0) is also applied along the 
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axis of rotation. The velocity may reasonably be assumed with its components along x*, y*, z* directions as 
V(u*, v*, 0). The equation of continuity is then satisfied identically. Using the velocity and the magnetic field 
distribution as stated above the magnetohydrodynamic (MHD) flow in the rotating channel is governed by 
the following Cartesian equations 
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where ��is the density � is the kinematic viscosity, p* is the modified pressure, t* is the time,�� is the electric 
conductivity, g is the acceleration due to gravity, k is the thermal conductivity, cp is the specific heat at 
constant pressure and � is the mean radiation absorption coefficient. Equation (2.8) shows the constancy of 
the hydrodynamic pressure along the axis of rotation. We shall assume now that the fluid flows under the 
influence of the pressure gradient varying periodically with time in the X*-axis which is of the form 
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where A is a constant. 
 The boundary conditions for the problem are 
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where T0 is the mean temperature and �* is the frequency of oscillations. 
 Introducing the following non-dimensional quantities into Eqs (2.4) and (2.5) 
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we get 
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where U is the mean axial velocity, ‘*’ represents the dimensional physical quantities, 
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�  is the radiation parameter. 

 
 The boundary conditions in the dimensionless form become 
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 For the oscillatory internal flow we shall assume that the fluid flows only under the influence of a 
non-dimension pressure gradient oscillating in the direction of the x-axis only which is of the form 
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3. Solution of the problem 
 
 Now combining Eqs (2.14) and (2.15) into a single equation by introducing a complex function of 
the form F = u + iv, we get  
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with corresponding boundary conditions as 
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 In order to solve Eqs (3.1) and (2.16) under boundary conditions Eqs (3.2) and (3.3) we assume in 
complex notations the solution of the problem as 
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 The boundary conditions Eqs (3.2) and (3.3) in complex notations can also be written as 
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 Substituting these expressions in Eqs (2.16) and (3.1), we get 
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where  
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 The transformed boundary conditions reduce to 
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 The ordinary differential Eqs (3.7) and (3.8) are solved under the boundary conditions Eqs (3.9) and 
(3.10) for the velocity and temperature fields. The solution of the problem is obtained as 
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 The validity and correctness of the present solution is verified by taking Gr = � = M =0 i.e. for the 
horizontal channel in the absence of rotation and the magnetic field. In this case the solution reduces to  
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which is the well known solution reported by Schlichting and Gersten (2001) for a periodic variation of the 
pressure gradient along the axis of the channel. 
 From the velocity field we can now obtain the skin-friction L+  at the left plate in terms of its 
amplitude and phase angle as 
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 From the temperature field given in Eq.(3.12) the heat transfer coefficient Nu (Nusselt number) in 
terms of its amplitude and the phase angle can be obtained as 
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where    .
sinh( )r i

nH iH
n
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 The amplitude 	
	 and the phase angle � of the heat transfer coefficient Nu (Nusselt number) are 
given by  
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 During mathematical analysis it is found that the mathematical formulation of the problem by 
Makinde and Mohne (2005) is not in consistency with the geometry of the physical problem shown in their 
Fig.1. Geometrically the channel is horizontal whereas the mathematical formulation is for the vertical 
channel where the Boussinesq incompressible fluid model is assumed to include buoyancy force in 
momentum Eq.(2.1). Boundary conditions Eqs (2.3) and (2.4) are not according to the choice of the 
Cartesian coordinate system with Ox-axis lying along the centerline of the channel. The temperatures of the 
walls are also not non-uniform as mentioned in the abstract. For this purely oscillatory flow the boundary 
conditions Eqs (2.13) and (2.14) cannot be obtained after the substitution of Eq.(2.11) into the boundary 
conditions Eqs (2.9) and (2.10). The energy Eq.(2.8) is incorrect and its solution Eq.(2.15) obtained under 
wrong boundary conditions Eqs (2.13) and (2.14) is obviously incorrect. This solution is further used in the 
equation of motion Eq.(2.12) which consequently yields a wrong solution again. For � = 0 in Eq.(3.11) of 
the present analysis gives the correct form of the velocity distribution and Eq.(3.12) gives the correct form of 
temperature distribution of the problem by Makinde and Mhone (2005) for the case of an ordinary medium. 
 
4. Discussion of the results 
 
 The hydrodynamic mixed convection flow in an infinite vertical channel is analyzed when the entire 
system rotates about an axis perpendicular to the planes of the plates. In the presence of a transverse 
magnetic field an exact solution of the problem is obtained. The velocity field and �, the shear stress in 
terms of its amplitude and phase angle are evaluated numerically for different sets of the values of rotation 
parameter �, Reynolds number Re, Hartmann number M, pressure gradient A, Grashof number Gr, Peclet 
number Pe, radiation parameter N and the frequency of oscillations �. These numerical values are then 
shown graphically to assess the effect of each parameter for the two cases of small (� = 5) and large (� = 
20) rotations.  
 Figure 2 illustrates the variation of the velocity with the increasing rotation of the system. It is quite 
obvious from this figure that velocity goes on decreasing with increasing rotation � of the entire system. The 
velocity profiles initially remain parabolic with maximum at the centre of the channel for small values of the 
rotation parameter � and then as rotation increases the velocity profiles flatten. For a further increase in � (= 
20) the maximum of velocity profiles no longer occurs at the centre but shifts towards the walls of the 
channel. It means that for large rotation there arise boundary layers on the walls of the channel. The variation 
of the velocity profiles with the Reynolds number Re is presented in Fig.3. Two cases of small rotation 
(�=5) and (�=20) are considered to ascertain the effect of the Reynolds number. For small � (=5) velocity 
goes on increasing with increasing Re and remains parabolic with the maximum at the centerline. However, 
for large � (=20) although velocity increases with increasing Re but the maximum of velocity shifts towards 
the walls of the channel. From Fig.4 it is evident that velocity goes on increasing with the increasing 
favorable pressure gradient A (�0). The velocity profiles for small rotation (�=5) remain parabolic with the 
maximum at the centerline. But for large rotation (�=20) the maximum of velocity shift towards the walls of 
the channel.    
 The effects of the magnetic field on the velocity field are depicted in Fig.5. It is observed that for both 
cases of small (�=5) and large (�=20) rotations velocity increases with the increasing Hartmann number M. 



Exact solution of MHD mixed convection periodic flow … 861 

This means that the increasing Lorentz force due to increasing magnetic field strength resists the backward flow 
caused by the rotation of the system. The variations of the velocity profiles with the Grashof number Gr are 
presented in Fig.6. For small rotations (�=5) velocity increases with the increasing Grashof number. 
 

 
 

Fig.2. Velocity profiles for Re=1, A=5, M=2, Gr=1, Pe=0.7, N=1, � =5 and t=0. 
 

 
 

Fig.3. Velocity profiles for A=5, M=2, Gr=1, Pe=0.7, N=1, � =5 and t=0. 
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Fig.4. Velocity profiles for Re=1, M=2, Gr=1, Pe=0.7, N=1, � =5 and t=0. 

 
The maximum of the velocity profiles shifts toward the right half of the channel due to the greater buoyancy 
force in this part of the channel due to the presence of the hotter plate. For large rotation (�=20) the Grashof 
number has an opposite effect on the velocity profiles in the right half and the left half of the channel. In the 
right half there lies the hot plate at � = 1/2 and heat is transferred from the hot plate to the fluid and 
consequently the buoyancy force enhances the flow velocity further. In the left half of the channel the 
transfer of heat takes place from the fluid to the cooler plate at � = -1/2. Thus, the effect of the Grashof 
number on velocity is reversed, i.e., velocity decreases with increasing Gr. 
 

 
Fig.5. Velocity profiles for Re=1, A=5, Gr=1, Pe=0.7, N=1, � =5 and t=0. 
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Fig.6. Velocity profiles for Re=1, A=5, M=2, Pe=0.7, N=1, � =5 and t=0. 

 

 We find from Fig.7 that with the increase of the Peclet number Pe velocity decreases for the case of 
small rotation (�=5) while for large rotation (�=20) velocity increases slightly in the left half but decreases 
in the right half of the channel. For Re=1 the two values of Pe (= 0.7 and 7) have been chosen to represent 
real fluids, i.e., air and water, respectively. Figure 8 shows that velocity decreases with the increasing 
radiation parameter for small rotations. For large rotation, velocity slightly increases in the left half then 
decreases in the right half of the channel. The effect of the frequency of oscillations � on velocity is 
exhibited in Fig.9. It is noticed that velocity decreases with increasing frequency � for either case of channel 
rotation, large or small. 
 

 
Fig.7. Velocity profiles for Re=1, A=5, M=2, Gr=1, N=1, � =5 and t=0. 
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Fig.8. Velocity profiles for Re=1, A=5, M=2, Gr=1, Pe=0.7, � =5 and t=0. 

 

 
Fig.9. Velocity profiles for Re=1, A=5, M=2, Gr=1, Pe=0.7, N=1 and t=0. 

 
 The skin-friction L+ in terms of its amplitude F  and phase angle � has been shown in Figs 10 and 
11, respectively. The effect of each of the parameters on F  and -  is assessed by comparing each curve 
with dotted curves I in these figures. In Fig.10 the comparison of the curves III, IV and VIII with the dotted 
curve I indicate that the amplitude increases with the increase of the Grashof number Gr, Reynolds number 
Re and the pressure gradient parameter A. Physically, it is also expected because due to the increase of these 
parameters for small rotation (�=5) velocity increases and consequently the faster flows gives rise to more 
skin-friction. Similarly the comparison of curves II, V, VI and VII with the dotted curve I shows that the 
skin-friction amplitude decreases with the increase of the rotation parameter �, Hartmann number M, 
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radiation parameter N and the Peclet number Pe because velocity due to these parameters decreases and for 
slow flows skin-friction is less. It is obvious that F  goes on decreasing with increasing frequency of 
oscillations �. From Fig.11 showing the variations of the phase angle of the skin-friction it is clear that there 
is always a phase lag because the values of � remain negative throughout. Comparing curves II, III, IV and 
VII with the dotted curve I it is observed that the phase lag increases with the increase of the rotation 
parameter �, Grashof number Gr, Reynolds number Re and the pressure gradient parameter A. Also, the 
comparison of curves V, VI and VII with the dotted curve I indicates that the phase lag decreases with the 
increase of the Hartmann number M, radiation parameter N and the Peclet number Pe although the decrease 
due to N and Pe is not significant. The phase angle goes on increasing with increasing frequency of 
oscillations � but the trend reverses slightly for large frequency. 
 

 
 

Fig.10. Amplitude of the skin-friction for t=0. 
 

 
Fig.11. Phase angle of the skin-friction for t=0. 
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 The temperature profiles are shown in Fig.12 for various values of the parameters involved. This 
figure reveals that the temperature decreases with the increase of either of the parameters, may it be the 
Peclet number (Pe), or radiation parameter (N) or the frequency of oscillations (�). The decrease in 
temperature is noticed more in the left half of the channel. The temperature field is influenced more by the 
conduction heat than the radiation heat and becomes negative near the left plate due to the increase of Pe. 
 

 
 

Fig.12. Temperature profiles for t=0. 
 
 The amplitude  of the Nusselt number is presented in Fig.13. This figure shows that  decreases 
with the increase of the radiation parameter N and the Peclet number Pe. The phase angle � of the rate of 
heat transfer is depicted in Fig.14. It is noticed that there is a phase lag initially for small values of the 
frequency of oscillation � and thereafter the phase oscillates between the phase lag and the phase lead. 
 

 
 

Fig.13. Amplitude H  of the Nusselt number. 
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Fig.14. Phase angle � of the Nusselt number. 

 
Nomenclature 
 
 A – a constant 
 B0 – magnetic field applied 
 cp – specific heat at constant pressure  
 e – electric charge 
 F  – amplitude of skin friction 
 Gr – Grashof number 
 g – gravitational force 
 H  – amplitude of Nusselt number 
 J – current density                                                                        
 k – thermal conductivity                                                                                  
 M – Hartmann number                                                    
 N – heat radiation parameter                                          
 Nu – Nusselt number                                                                                       
 Pe – Peclet number                                                                                                  
 p – pressure                                                                                                                               
 Re – Reynolds number                                                                
 T – fluid temperature                                                                                                                   
 T0 – constant temperature                                
 t – time variable                                                                                                                       
 U – mean flow velocity                                                                          
 u, v, w – velocity components                          
 x, y, z – axial variables                                             
 �  – mean radiation absorption coefficient 
 �  – coefficient of volume expansion   
 0�  – mean non-dimensional temperature                                                                                     
 	 – viscosity             
 
  – fluid density             
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 – electric conductivity                          
 L+  – skin-friction at the left wall                                           
 -  – phase angle of the  skin-friction                                         
 ,  – phase angle of Nusselt number                                                          
 � – angular velocity                                                   
 �  – frequency of oscillations                                                                                                        
 * – superscript representing dimensional quantities 
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