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Abstract  
This work is the continuation of  the discussion q/rd;  [11. In rcf [1] we applied the 

theo O' qffimctions o[a complex variable under Dirac-Pmdi representation, intmuhwed the 

Kaluza "Ghost" coordinate, and turned Navier-Stok es equations ~lviscqlluid ~ll'namic.v ~![̀  

homogeneous and incompressible fluid into nonlinear, equation with only a pair r comph'x 

unknown [unctions. In this paper we again combine the comple.v independent variable 

except time. and cause it to decrease in a pair to the number o]" complex independent 

variables. Lastly, we turn Navier-Stokes equations into classical Burgers equation, Tile 

Cole-Hopf transformation join up ~ith Burgers equation and the, d([]i~sion equation is 

Bbcklund transformation in fact. attd the d({]}tsion eqttatiott has the general solution as 

everyone knows. Thus. we obtain the exact solution o[ Navier-Stokes equations hv 

B'acklund transformation. 

I. Introduct ion  

In ref. [1] we cast aside the traditional quaternion theory and build up the theory of functions of 

a complex variable under Dirac-Pauli representation, then the multivariate Navier (1822)-Stokes 

(1845) equations become as nonlinear equation with only a pair of complex unknown functions. In 

fact, Sylvester I21 discovered the relation on the four elements of traditional quaternion with the 

Pauli matrix and 2 • 2 unit matrix long ago. Afterwards, A.S. Eddingtont-~l(1946) again discovered 

that, these elements could be expressed by four 4 x 4 matrixes. Now we know that, these four 4 x 4 

Eddington's matrixes relate to Dirac matrix t4-51. 
Despite the discovery by Sylvester and Eddington, Cayley-Klein 16-71 and Branetz- 

Shmouglevsky tsl had only limited achievements in scientific res+arch. Now, with the establishment 

of the theory of functions of a complex variable under Dirac-Pauli representation we conveniently 

solve the real mechanical and physical problems with it. 
The solution of Navier-Stokes equations of viscofluid dynamics of homogeneous and 

incompressible fluid is the key problem of fluid dynamics 191. At tb,r time this group of equations 

must be satisfied by the instant parameters of the turbance t~~ t~ad  so is of great importance. It is a 

pity that we've not obtained te general solution of Navier-Stokes equations up to now. In normal 

textbooks only some special solutions (or simple exact solutions) for concrete flow problems are 

given. 
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Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 
an analytic solution only when the polytropic index of detonation products equals to three. In 
general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 
behavior of the reflection shock in the explosive products, and applying the small parameter pur- 
terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 
plate driven by various high explosives with polytropic indices other than but nearly equal to three. 
Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 
an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 
index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 
materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 
cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 
approach of solving the problem of motion of flyor is to solve the following system of equations 
governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 
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where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 
trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 
meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 
D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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In this paper  we try the (general) exact solution of  Navier-Stokes equations and cast a brick to 

attract jade. From ref. [1] we have a possibility for the achievement of this plan. From rcf. [I] under 

introduction of kaluza "Ghos t "  coordinate we can write tile Navier-Stokcs equations in the theory 

of functions of complex variables under Dirac-Pauli representation as 

Ou~ O~tk = 0 
Oz~ + O~h 

Ot + uh Ozk +ak  u i = - -  + 2 v  u~ (i k = l , 9 )  O~h p 05~ OzhO=~ ' ~ . 

(1.1) 

and its conjugate equations. Where v is thc viscid coefficient and is constant under condition of 

constant temperature:z~ and fk ( k = l . 2 )  are two pairs o fcomplex  conjugate space coordinate: 

u~ and o~ (K = 1.2) are two pairs of complex conjugate velocity components of fluid. 

In ref. [1] we turn the above-mentioned N avier-Stokes equations into nonlinear equation with 

only a pair of complex conjugate unknown functions and two pairs of complcx conjugate 

independent variables except time t. I:or this reason, our first problem is the great number of  

independent variables. In this paper we first combine tile two pairs of complex conjugate 

independent variables into one pair, and from this turn the equation into nonlinear equation fbr 

only one real unknown functions. Second, we combine the pair of  complex conjugate independent 

variables except time t into one real independent variable, and change the equation into a simple 

form. This \~ay of combining independent variables again is not an essential condition. So our 

solution is only the exact solution, and is not the general solution. But, from unapplication of initial- 

boundary conditions this exact solution has widespread applicability' in this paper. 

In this paper we simplil}' the Navier-Stokes equations into classical Burgers equation in final 

stage.It is well-known that M,J. Lighthill IHI approached the equations of  ideal gas dynamics with 

one-dimension to the Burgers equation. His result is a perturbation soultion, and is not an exact 

solution. But, his result is as important as that obtained in this paper, 

Owing to smooth conduct of the transfer of the Burgers equation into the diffusion equation by 

Cole-Hopf  transformation,  i.e. B/icklund transformation,  in fact, we can obtain the exact solution 

of the Navier-Stokes equations from the general solution of the diffusion equation by the B/,icklund 

transforation. 

We do not set special limit to the Reynolds number in this paper. 

The dummy index is the summation and depends on Einstein convention in this paper. 

I I .  S e c o n d  S i m p l i e i t y  for  N a v i e r - S t o k e s  E q u a t i o n s  

In ref. [I] we applied the theory of functions of a complex variable under Dirac-Pauli 

representation, introduced the Kaluza " 'Ghost"  coordinate, and turned the Navier-Stokes 

equations into nonfinear equation will a pair of complex unknown functions ~ and ~; , i.e. 

o o ~ ,~ o~ o o,b 0,/, 
OzlOzk Oz z Oz I Oz2Oz~ 

o o~ o~s + a ~ [  ( ~ ) -  ( a~~ )] (~.1) 
O~ ~Ozk O~zOzk O~.z 

where ~ is the "flow function",  u~=O~/Oz2, u2=--o~/az~ "and ~ is complex conjugatc 

function of 
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In Eq.(2.1), there is only one pair of  complex unknown functions go and ~/~ , but two pairs 

ofcomplexindependentvar iables-~  and ~ (k=1.21except t imet .  And we have the condit~on to 

combine the two pairs of complex independent wmables into one pair, and lose no generality. The 

sole principle for the new combination of complex independent variables is to preserve basic form of 

Eq.{2.1). This method for new combination of" complex independent variables corresponds to 

d 'Alembert  solution of wave equation. The multidilnensional wave equation and diffusion equation 

both face a similar problem. This new combination of independent variables is appropriate, but not 

csscnliul. 

h ~>, flmnd that the new combinatitm l\~r preservation of paste lkwm of Eq.(2.1) is 

W=z~-,Li~ z (Z.2)  

and 

then 

y-=~--iz,, (2 .3 )  

From (2171 of ref. [I] (22) and (2 3) lose no gencrahty. 

From the condition of complete diffcrential v,e have 

Oy = 1 ,  O.t/ = i ,  O.q = 1 ,  O q 
Oz~ 0~., 02 t Oz.,~ = - i  (2 . . I )  

a z 0 z 
=2 (k=l  2 )  Oz~O~.h O qOg (2.5) 

We substitute (2.4) and (2.5) into (2.1), and have 

0 z 0 z 

at ouay r 

a a 9 a2go ] - i  a a a~q, i a~ [ (r  ~ au [ au (~+~;) ] = . ag' (2.6) 

O Oz? ]--i  a O Oz9 
+i Oy [Og (~+~) Oya~ ~ Og [ Oy (~0+~) Oy-O~ ] 

We add the Eq.(2.6) to its complex conjugate equation, and let 

q~=go+~ (2.7) 

and obtain the nonlinear equation with only one real unknown function 9v 

(9 O z Ot--4v-ayO~ ) Ozcp : i (  a(p (3 O(p o ayOy O~ ay ay ag ) a2rp - auay (z, 8) 

We notice that ~P is a real unknown function from (2.7). Eq.(2.8) degenerates into the flow 

function equation for incompressible planar flows or axisymmetric flows. 

If we get the solution of Eq.(2.8), then from Eq(2.6). i.e. from 

2 (  a a z at --4v OyO~ ) az~ = 2 i (  &p 0 Ocp O auay ag au - au oy ) a~go auag 

�9 / a2~ a2~ @z~ 02~ +'i,-ay~ au' au ~ a~' ) (2.9) 
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0 
( ot 

i,e. 

we can obtain the complex unknown function ~ . We notice that Eq.(2.9) is a linear equation 

under premise for known function (p 

Thus we have 

T h e o r e m  1 The exact solution of Navier-Stokes equations can be obtained by linear Eq.(2.9). 

Where q0 satisfies nonlinear Eq (2.8), and the complex independent variable is given by (2.2) and 

(2.3). 

Now we build the whole problem into a solution for nonlinear Eq.(2.8) with only one real 

unknown function r 

I I I .  E x a c t  S o l u t i o n  of  Nav ier -Stokes  Equat ion  

Wc investigate Eq.(2.8) and find that. it is the sum of the two complex conjugate equation. One 

of the equation is 

0z = 2  - "ajov) 02 _ ;[ 0 c0> 
0yog o y - 0 y  ,, 0yo  j ,, oyog 

0 O ~ 

0y0~ (3.1) 

The other cquation is complex conjugate equation of (3.1). At separation of Eq.(2.8) into (3.1) and 

its con ugatc equation, we notice (2.7), i.e. ,4 ~ is a real function. Eq.(3.1 ) can be written (in full 

condition) as 

Let 

0 02 
( 3 . 2 )  

then Eq.(3.2) be comes as 

(fi =._O_q! 0.,/ ( i n  this time d~ = -~-~- ) (3,,3) 

(-a~- - 4" -ayoY) ~ = - 2 / ~  og (~.4) 

In Eq.(3.4) the complex unknown function ~b is only one, but the number of the complex 

independent variables y and ~ except time t is two. And we have the condition for combination of 

two complex independent variables into one real independent variable, and lose no generality. The 

sole principle for new combination of complex independent variables preserve the same basic form 

of  Eq.(3.4). This new combination of  independent variables is also appropriate, but not essential. 

It is found that the new combination for preservation of basic form of Eq.(3.4) is 

~=u+~ 

From (2.17) of ref. [1], (3.5) loses no generality. And we must notice that ~ is a real 
independent variable. 

From conditions of complete differential we have 
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.a~ 
Oy = 1 ,  ~ - - = 1  (3.6) aft 

then 

0 z 0 z 

oUo~ = ~ (3.7) 

We substitute (3.6) and (3.7) into Eq.(3.4), and have the classical Burgers equation 

0r 0r a'r 
a ~ - + 2 i r  at - 4 " o ~ - = ~  (3.8) 

By the Cole-Hopf transformation 

r  1 0 w  
w 0~5 (3.9) 

the Burgers equation is related to the di ffusion equation 

Ow OZw 
-Or- = 4 , ,  O~ z - (3.10) 

and the Burgers Eq.(3.8) can be solved. From the result of refs. [I], [17] and this paper, we call 

diffusion equation (3.10) the course equation of incompressible viscofluid dynamics. 

In fact we can write the Cole-Hopf transformation as [~sj 

Ow i aqb 1 q~2)w (3.11) 0-~- = -  -4-,, Cw, -a-at- = ( -  i o~ ,v 

Eq.(3.11) is the B/icklund transformation. Thus we have 
T h e o r e m  2 The exact solution of Navier-Stokes equations of incompressible viscofluid 

dynamics can be obtained by the linear equation 

O Oz 2 

�9 a~; o'q, _0r a~q, 
~yf .m 

(3.12) 

and the Burgers equation 
ar ar a~$ 
at +2ir  a~ -4"a~  =~ (3.13) 

and its conjugate equation. Where 

u=z,+i~.~, g=~.~-iz~, ~ = u + g  (3.14) 

The exact solution of the Burgers equation is related to the general solution of the diffusion equation 

by Cole-Hopf transformation. And the exact solution of the Navier-Stokes equation can be 

obtained by the general solution of the diffusion equation 

Ow Ozw 
Or- =4~ 0-~ (3. is) 
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amt the Biicklund lransl"ormation 

( 0,,, , ) or,, --:-- i ,/,r~, Or~, -- i ' --  d, z rv (3 .16)  
O~ '1~' ' d t  =- Ot~ ,h' 

I-ronl Ihc Biicklund translbrmation in Theorem 2 we can solve the Navier-Stokes equation by 
in~crsc scattering translbrmation. Thus. the problem for exact solution of Navier-Stokes equations 

is related to the guantum cigcnvalues problem. 
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