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The bulk of stochastic gene expression models in the literature do not have an explicit description of the age

of a cell within a generation and hence they cannot capture events such as cell division and DNA replication.

Instead, many models incorporate the cell cycle implicitly by assuming that dilution due to cell division can

be described by an effective decay reaction with first-order kinetics. If it is further assumed that protein

production occurs in bursts, then the stationary protein distribution is a negative binomial. Here we seek to

understand how accurate these implicit models are when compared with more detailed models of stochastic

gene expression. We derive the exact stationary solution of the chemical master equation describing bursty

protein dynamics, binomial partitioning at mitosis, age-dependent transcription dynamics including replication,

and random interdivision times sampled from Erlang or more general distributions; the solution is different for

single lineage and population snapshot settings. We show that protein distributions are well approximated by

the solution of implicit models (a negative binomial) when the mean number of mRNAs produced per cycle is

low and the cell cycle length variability is large. When these conditions are not met, the distributions are either

almost bimodal or else display very flat regions near the mode and cannot be described by implicit models. We

also show that for genes with low transcription rates, the size of protein noise has a strong dependence on the

replication time, it is almost independent of cell cycle variability for lineage measurements, and increases with

cell cycle variability for population snapshot measurements. In contrast for large transcription rates, the size of

protein noise is independent of replication time and increases with cell cycle variability for both lineage and

population measurements.

DOI: 10.1103/PhysRevE.101.032403

I. INTRODUCTION

It is well known that gene expression is stochastic [1]. The

randomness in the time at which each reaction occurs leads

to fluctuations in the molecule number of gene products such

as mRNA and proteins. Hence, over the past two decades

there has been considerable effort devoted to constructing and

solving stochastic models of gene expression [2,3]. The exact

solution of the chemical master equation (CME) describing

the standard models of stochastic gene expression is currently

unknown except in certain limiting cases such as when mRNA

degrades much faster than protein [4].

The majority of gene expression models in the literature

do not have a description of cellular age and hence do not

explicitly describe the cell cycle [4–12]. Rather, it is assumed,

following [13,14], that protein dilution effects due to cell

division can be implicitly included via an effective first-order

decay reaction. The rate of this reaction is chosen such that the

*ramon.grima@ed.ac.uk

half-life of protein numbers corresponds to the mean cell cycle

length. This approximation is thought to be reasonable since

active protein degradation timescales are considerably longer

than the cell cycle time [15,16] and hence dilution occurring

during cell division is the dominant means of protein removal.

Since these effective models do not have a description of

the cell age within a cell cycle, they also cannot take into

account events which happen at specific points during the

cycle, e.g., the replication of the genome which leads to an

increase of the transcription rate. The main advantage of these

models is the relative ease with which they can be analyti-

cally solved, approximated, and simulated. In particular, the

chemical master equation of the most commonly used model

of this type, which describes proteins produced in bursts

whose size is sampled from the geometric distribution and

protein decay via an effective first-order reaction (modeling

dilution as described above), can be solved exactly, leading to

a negative binomial distribution (or a gamma distribution, its

continuous analog) of protein numbers [4,14].

In contrast to this implicit model, more sophisticated mod-

els have been developed during the past few years that include

2470-0045/2020/101(3)/032403(22) 032403-1 ©2020 American Physical Society
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an explicit description of the cell cycle. Curiously, results

for the case of periodic cell division were first obtained by

Berg [17], about 20 years before the explosion of interest in

stochastic gene expression [1]. More recently, Johnston and

Jones obtained the distribution of protein numbers assuming

nonbursty production, binomial partitioning at cell division,

and regularly spaced (periodic) cell division events [18].

Since experimental data clearly show that the time between

two successive cell division effects is a random variable

[19,20], models were also devised to study how dynamics

are influenced by this extra source of randomness. Antunes

and Singh [21] obtained the moments of mRNA and protein

numbers in a simplified model of gene expression which

ignores intrinsic noise (due to the stochastic birth-death of

individual molecules) and that due to binomial partitioning but

takes into account noise stemming from the random timing

of cell division events. Soltani et al. [22,23] obtained the

mean and variance of protein numbers in a considerably more

detailed model for stable protein (one that is degraded only by

dilution) that includes intrinsic noise, stochastic partitioning

of molecules at cell division, a cell cycle that is divided in a

number of phases whose duration is exponentially distributed

and also can include replication. In these studies, the for-

mulas are obtained assuming single lineage measurements,

i.e., upon cell division, one of the daughter cells is followed

(the other discarded) such that one obtains information about

the stochastic dynamics of a cell’s protein contents along an

arbitrarily chosen lineage (measurements done using a mother

machine such as in Ref. [24]). The two major disadvantages

of the latter two papers are that they do not derive results

for the protein number distributions and also they do not

calculate statistics in a growing population of cells, the most

common experimental scenario (measurements done using

flow cytometry such as [25]). Jędrak et al. [26] derived an

explicit expression for the protein distribution solution of a

stochastic model where protein fluctuations are treated con-

tinuously, there are no gene duplication effects, and where the

cell cycle is assumed to be exponentially distributed. These

results analyze the behavior of a single lineage (as previous

papers), and also for a whole proliferating population, i.e.,

both daughter cells are followed upon cell division such that

one obtains information about the stochastic dynamics of a

cell’s protein contents across a growing population. Note that

lineage and population statistics are not generally equivalent,

unlike what one may assume based on the ergodic hypothesis

[27]. The major limitations of the model in Ref. [26] are the

large protein approximation implicit in the continuous ap-

proximation, the lack of DNA replication, and the assumption

that cell cycle duration is exponentially distributed, which is

contrary to experimental evidence that reveals distributions

comparable to Erlang, gamma, or lognormal distributions or

variations thereof [20,28].

Given these two different approaches including implicit

and explicit description of the cell cycle, a question arises:

How well can the negative binomial distribution of implicit

models describe the protein distribution of more detailed mod-

els of gene expression? This question remains unanswered

because, as discussed above, none of the current literature

derives the protein distribution in a model that explicitly

includes dilution due to stochastic partitioning of molecules at

cell division, random interdivision times, and age-dependent

transcription. In this paper, we answer this question by deriv-

ing expressions for the distributions of proteins in models that

incorporate explicit descriptions of the cell cycle. For the sake

of clarity, instead of starting from the most general model, our

presentation considers a set of simpler models which gradu-

ally build up to it. The three models that we study, in order of

complexity, have the following properties: (i) no replication

and a cell cycle of fixed duration; (ii) no replication and

an Erlang distributed cell cycle duration; (iii) age-dependent

transcriptional dynamics including replication and a cell cycle

described by a number of phases, each of which has an expo-

nentially distributed duration (hypoexponential distribution).

All the models consider proteins that are produced in bursts

[29], degraded only via dilution (stable proteins [14]) and

assume binomial partitioning of proteins at cell division [17].

We study the relationships between the solutions of all models

for both single lineage and population snapshot statistics, and

identify conditions under which the protein distributions can

be well approximated by the negative binomial solution of the

conventional model of gene expression with an implicit cell

cycle description.

II. MODEL I: STOCHASTIC GENE EXPRESSION WITH

AN IMPLICIT DESCRIPTION OF THE CELL CYCLE

It is well known that under the assumptions that mRNA

degrades much faster than protein and that promoter switching

is also much faster than protein decay, the stochastic dynamics

of protein P can be effectively described by the reaction

scheme [4]

G
r−→ G + mP, P

d−→ ∅, (1)

where G denotes a single gene copy, r is the effective burst

production rate, and d is the protein degradation rate. Note

that protein is produced in bursts of size m, which follows a

geometric distribution (in accordance with experiments [29]),

i.e., m ∼ Geom(p) with a mean burst size α = (1 − p)/p =
h/dm where h is the protein translation rate and dm is the

mRNA degradation rate. This burstiness implicitly describes

the mRNA dynamics since a burst in protein expression occurs

due to rapid translation of proteins by a single short-lived

mRNA. Hence, within this context, the parameter r is also the

same as the effective mRNA transcription rate which is given

by r = ρuσu/(σb + σu) where ρu is the mRNA transcription

rate, σb is the rate of switching from the active state to the

inactive state, and σu is the rate of switching from the inactive

state to the active state.

Note that this model has been rigorously derived from a

three-stage model of gene expression that does not take the

cell cycle explicitly into account [4]. However, it is commonly

assumed that the protein degradation reaction effectively mod-

els the dilution which occurs due to binomial partitioning at

cell division. The question then is how we should choose

the effective protein degradation rate. A simple argument is

as follows. Since the protein decays exponentially via an

effective first-order reaction, its half-life is td = log(2)/d;

we also know that the protein concentration is on average

halved at cell division due to binomial partitioning and hence

td = T , where T is the cell cycle length. Hence, it follows
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that the effective protein degradation rate should be chosen as

d = log(2)/T . The effective model given by reaction scheme

(1) and d chosen as aforementioned is one of the standard

models of gene expression in the literature [14].

In Appendix A 1, we show that the effective model de-

scribed above provides an accurate description of the mean

number of proteins in a three-stage model of gene expression

with explicit mRNA and protein dynamics, binomial partition-

ing, and fixed cell cycle length T , provided (i) the mRNA

degrades much faster than protein; (ii) promoter switching

is much faster than protein decay; (iii) mRNA degrades on

a much shorter timescale than the cell cycle length T ; (iv)

the mean number of proteins is calculated from population

measurements. Note that if instead the mean number of pro-

teins is calculated from single lineage measurements then

we arrive at model (1) but with effective protein degrada-

tion rate given by d = ( 2
3

)/T (see Appendix A). Note that

effective degradation rates derived for lineage data are slightly

smaller than their population snapshot equivalent because
2
3

< log 2. This discrepancy stems from the fact that the mean

number of proteins calculated from population measurements

is smaller than the mean number of proteins calculated in

single lineage measurements. This is because in population

snapshots, all cells are tracked and hence due to a doubling

of the number of cells at cell division, there is a bias toward

observing young cells with small protein counts. In contrast,

in lineage measurements since only one cell is tracked, the

probability of observing a cell of any age is the same and

hence the protein counts on average are higher than in pop-

ulation measurements. A detailed discussion of the differ-

ence between these two types of measurement can be found

in [27].

The CME of model I whose reactions are given by (1)

is straightforward to solve using the method of generating

functions. In steady state, its solution reads as

G(z) =
[

1

1 − α(z − 1)

]β

, (2)

where G(z) =
∑

n znP(n) is the probability generating func-

tion (PGF), P(n) is the steady-state protein distribution of

protein number n, and β = r/d . Note that β is the average

number of mRNA molecules produced in the protein life-

time. In the case of stable proteins (which degrade only by

dilution) it follows from our previous results for effective

degradation rates that β = 3y/2 for lineage measurements and

β = y/ log 2 for population snapshot measurements, where

we have defined y = rT as the average number of mRNA

produced in a cell cycle. The distribution can be obtained

using P(n) = (1/n!)dGn/dzn|z=0 which leads to a negative

binomial NB(β, α/(1 + α)).

III. MODEL II: STOCHASTIC GENE EXPRESSION

WITH EXPLICIT MODELING OF A FIXED

LENGTH CELL CYCLE

Next, we consider a model where protein production oc-

curs in bursts as in model I but there is no effective first-order

reaction modeling protein degradation. Instead, we explicitly

model binomial partitioning of the proteins at cell division.

The major assumption of this model is that cell division occurs

at regular time intervals of length T . This is often referred to

as a “timer” mechanism and has been found in certain types of

cells, e.g., early frog embryos [30]. In what follows, we will

find an exact steady-state solution of the CME for this model

and compare it with that of model I.

Let t ∈ [0, T ] be the age of a given cell, namely, t = 0

corresponds to its birth and t = T corresponds to the time at

which it divides into two. The CME describing bursty protein

expression and no active degradation in a cell is given by

dP j (n, t )

dt
= r

∞
∑

m=0

P j (n − m, t )Q(m) − rP j (n, t )

∞
∑

m=0

Q(m),

(3)

where P j (n, t ) is the probability that at cell age t in generation

j there are n proteins observed. Here, Q(m) = p(1 − p)m with

α = (1 − p)/p is the geometric distribution with mean α.

Note that each time cell division occurs, the generation num-

ber j is increased by one. The PGF equation corresponding to

the CME is

∂G j (z, t )

∂t
= −rG j (z, t )

[

1 −
1

1 + α(1 − z)

]

, (4)

which has a time-dependent solution

G j (z, t ) = F j (z) exp

[
−αrt (1 − z)

1 + α(1 − z)

]

. (5)

Note that F j (z) =
∑

n znP j (n, 0), namely, the PGF cor-

responding to the protein distribution at cell birth in

generation j.

Introducing binomial partitioning at mitosis leads to a

simple relationship between the protein distribution at cell

division of a cell in generation j and the distribution observed

at the birth of the daughter cell in generation j + 1,

P j+1(n, 0) =
∞
∑

i=0

(
i

n

)

2−iP j (i, T ), (6)

which implies for the PGF

F j+1(z) = G j+1(z, 0) = G j

(
1 + z

2
, T

)

. (7)

Note that in Eq. (6) we used the convention that i choose

n equals zero when n > i. In this case, we cannot impose

steady state as in model I because cell division occurs at

regular time intervals. Rather, we consider cyclostationary

conditions which are achieved when the probability that a

cell of age t has a given number of proteins is independent

of which generation it belongs to, i.e., the superscript j

in Eqs. (3)–(7) can be ignored. Hence, substituting Eq. (7)

in Eq. (5) we obtain

G(z, t ) = G

(
1 + z

2
, T

)

exp

[
−αrt (1 − z)

1 + α(1 − z)

]

. (8)

Next, we proceed to solve Eq. (8) by substituting t = T in

this equation to obtain

G(z, T ) = G

(
1 + z

2
, T

)

f (z), (9)
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where f (z) = exp{−αrT (1 − z)/[1 + α(1 − z)]}. Equation

(9) can be solved by iteration as follows:

G(z, T ) = f (z) f

(
1 + z

2

)

G

(
3 + z

4
, T

)

= f (z) f

(
1 + z

2

)

f

(
3 + z

4

)

G

(
7 + z

8
, T

)

= G(1, T )

∞
∏

s=0

f

(
2s + z − 1

2s

)

=
∞
∏

s=0

f

(
2s + z − 1

2s

)

.

(10)

Note that here we used G(1, T ) = 1 which follows from the

normalization of the distribution. Substituting Eq. (10) in

Eq. (9) we obtain G((1 + z)/2, T ) which after substituting

in Eq. (8) leads us to an explicit solution of the generating

function for model II in cyclostationary conditions:

G(z, t ) =
[ ∞
∏

s=0

f

(

1 +
z − 1

2s+1

)
]

exp

[
−αrt (1 − z)

1 + α(1 − z)

]

= exp

(

rxt

1 − x
+ rxT

∞
∑

s=0

1

21+s − x

)

, (11)

where in the last line we used the definition of the function f

and the definition x = α(z − 1). Note that the sum over s in

the argument of the exponent can be written in terms of the

q-digamma function.

The solution we have computed corresponds to the PGF

of the protein distribution computed from an ensemble of

identical cells, all of which are at the same cell age t . However,

distributions are often calculated from experimental measure-

ments of time traces of the fluorescent protein molecules along

a cell lineage or else from population snapshots. Considering

the single lineage case, the corresponding PGF is given by a

time average of the generating function calculated earlier:

Gs(z) =
∫ T

0

1

T
G(z, t )dt

=
x − 1

xy

[

exp

(
xy

x − 1

)

− 1

]

exp

(

xy

∞
∑

s=0

1

2s − x

)

,

(12)

where we have used y = rT as we did for model I. Note that

the subscript s will henceforth be used to denote single lineage

measurement. Note also that the time average is computed

since the probability of observing cells of any age is uniform

in lineage measurements. Comparing this PGF to that of

model I, i.e., Eq. (2), it is clear that in model II the protein

distribution is generally not equal to the negative binomial

distribution of model I.

To understand the differences between these two distribu-

tions, we next use the PGF’s given by Eq. (2) (with β = 3y/2)

and Eq. (12) to compute the mean 〈n〉 and variance σ 2 in

stationary conditions

〈n〉NB,s =
3

2
αy, (13)

σ 2
NB,s =

3

2
αy +

3

2
α2y = 1.5αy + 1.5α2y, (14)

〈n〉s =
3

2
αy, (15)

σ 2
s =

3

2
αy + α2

(
5y

3
+

y2

12

)

≈ 1.5αy + 1.67α2y + 0.08α2y2. (16)

It is clear that while the mean of the two distributions is the

same, the variances are generally different. In Appendix A,

we clarify the origin of this discrepancy. In particular, model I,

under certain conditions described earlier, can match the mean

number of proteins in a three-stage model of gene expression

with explicit mRNA and protein dynamics, binomial parti-

tioning, and fixed cell cycle length T whereas model II can

match the full PGF of the three-stage model under the same

conditions (see in particular Appendix A 2). The variance of

model II is always greater than that of model I (σ 2
s > σ 2

NB,s).

Furthermore, while the two variances are both quadratic in

α, σ 2
NB,s is linear in y while σ 2

s is quadratic in y. The relative

error between the two variances computed as (σ 2
s − σ 2

NB,s)/σ 2
s

increases monotonically with α and y but is mostly determined

by the value of y, i.e., the average number of mRNA pro-

duced in a cell cycle, as illustrated in Fig. 1(a). Expressions

for the skewness squared can also be easily derived from

the PGF

S2
NB,s =

2(2α + 1)2

3α(α + 1)y
, (17)

S2
s =

108[2α2(7y + 54) + 7α(y + 20) + 42]2

49αy[α(y + 20) + 18]3
. (18)

For small y, both of these expressions are proportional to

1/y while for large y, we have S2
NB,s ∝ 1/y while S2

s ∝ 1/y2,

i.e., for large enough y model II will predict a less skewed

distribution than model I. Generally, the skewness of the

distribution of model II can be larger or smaller than that of

model I depending on the values of α and y [Fig. 1(b)].

To get a fuller picture of the differences between the two

models (assuming lineage measurements), we plot in Fig. 2

the distributions for various values of y while keeping the

value of α fixed. Note that the distribution of protein numbers

for model II is constructed by first expanding the generating

function (12) as a Taylor series using a symbolic computation

software and then P(n) is simply given by the nth coefficient

of this series. The theoretical predictions for model II are

also verified by means of the stochastic simulation algorithm

(SSA, see Appendix B for a full description of the algorithm).

The negative binomial distribution of model I (red line) is a

good approximation of the distribution of model II (black line)

for small y but clearly is inappropriate for large y; it can also

be shown that the difference between distributions becomes

more pronounced if α is increased.

A visual inspection of the distribution of model II

(black line) leads one to believe that one can likely fit

well an effective negative binomial for the cases shown in

Figs. 2(a)–2(c) but not for 2(d). This intuition is verified in

Fig. 2 by plotting an effective negative binomial of the same

mean and variance (green open circles) as the distribution of

model II; in Fig. 2(d), the distribution is considerably flatter
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FIG. 1. (a) Plot of the relative error between the steady-state variance of model I and the cyclostationary variance of model II as a function

of the mean burst size (α) and the mean number of mRNAs produced in one cell cycle (y), assuming lineage measurements. (b) Plot of

the relative error between the skewness of models I and II as a function of α and y. Note that for burst sizes α � 10, the relative errors

are a strong function of y, with only a weak dependence on α. Model I in all cases underestimates the variance of model II. In contrast,

model I underestimates the skewness of model II for small y and overestimates it for large y. The relative error in the variance is defined as

(σ 2
s − σ 2

NB,s)/σ 2
s and the relative error in the skewness is defined as (Ss − SNB,s)/Ss.

near the mode than the fitted negative binomial. Note that the

effective negative binomial is given by NB(z1, z2) where

z1 =
27y

y + 20
, (19)

z2 =
α(y + 20)

α(y + 20) + 18
. (20)

Since model I has a negative binomial solution, it follows

that through renormalization of its parameters, it can be

matched to the effective negative binomial for model II. If the

renormalized parameters for model I are ye and αe, then its

solution is NB(z1, z2) where z1 = 3ye/2, z2 = αe/(1 + αe).

Equating z1, z2 to those in Eqs. (19) and (20), we obtain

αe = α

(
y + 20

18

)

, (21)

ye = y

(
18

y + 20

)

. (22)

Note that renormalized model I is the same as the green open

circles shown in Fig. 2 which is a much better approximation

to model II (black line) than the original model I (red line).

From these equations, it is also clear that if parameters had to

be estimated from experimental data (with low cell cycle dura-

tion variability) using model I, then the estimated mean burst

size αe overestimates the true value α, while the estimated

mean number of mRNA per cell cycle ye underestimates the

true value y.

In this section we have so far focused on the distributions

for single lineage measurements. The distribution of protein

numbers for population snapshots can also be derived and

instead of Eq. (12) we then have

Gp(z) =
∫ T

0

21−t/T log(2)

T
G(z, t )dt

=
(x − 1) log 2

xy + (x − 1) log 2

{

exp

[
xy + (x − 1) log 2

x − 1

]

− 1

}

× exp

(

xy

∞
∑

s=0

1

2s − x

)

, (23)

where the subscript p will be used to denote population

snapshot measurements from hereon. Note that we used the

fact that when interdivision times are regularly spaced in

time, the probability of observing a cell of age t ∈ [0, T ] is

21−t/T log 2/T for population measurements [17] (see also

Appendix D for a derivation of the latter). The PGF of model

I has already been calculated for the population scenario in

Sec. II and was found to be given by Eq. (2) [with β =
y/ log(2)]. For the parameters used in Fig. 2, the protein

distributions for population data for models I and II are found

to be close to those calculated for lineage data and, hence,

we do not show them. The mean and variance of the protein

numbers of models I and II are now given by

〈n〉NB,p =
αy

log(2)
, (24)

σ 2
NB,p =

α(1 + α)y

log(2)
≈ 1.44αy + 1.44α2y, (25)

〈n〉p =
αy

log(2)
, (26)
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FIG. 2. Comparison of the protein number distributions (assuming lineage measurements) of models I and II in steady-state and

cyclostationary conditions, respectively. For model I (red line), the distribution is NB(3y/2, α/(1 + α)) and for model II (black line) it is

given by P(n) = (1/n!)dGn
s /dzn|z=0 where Gs is given by Eq. (12). Note that the numerical computation of the distribution from Eq. (12) can

be greatly accelerated (while maintaining accuracy) if the sum over s is truncated to a few tens of terms. The dots show the distributions of

models I and II obtained from stochastic simulations (simulations of model I are done using the conventional SSA and those of model II are

done using a modified SSA, see Appendix B and also at the end of this caption). The open green circles show the negative binomial distribution

which has the same first and second moments as the distribution of model II. The stochastic simulations of model II are performed as follows.

Initially, we have a single cell with zero protein. We measure the protein content of the cell at intervals T/Z where Z = 10π . Each time a cell

divides, we follow only one of the daughter cells. The simulation is run until 105 cycles have passed and a histogram is calculated from these

data (we discard the first 103 cell cycles to ignore any possible transients). The cell cycle length is T = 1 in all cases. All lineage simulations

in this article use this protocol, unless otherwise stated.

σ 2
p =

1

log 2
αy +

6 − 4 log 2

3 log 2
α2y +

1 − log2 2

log2 2
α2y2

≈ 1.44αy + 1.55α2y + 0.08α2y2. (27)

These equations are the population equivalent of Eqs. (13)–

(16) and the same observations we made earlier regarding the

comparison of the moments of models I and II for single lin-

eage data are also seen to hold for population data. Note also

that generally we can state 〈n〉p < 〈n〉s and σ 2
p < σ 2

s , which

can be explained by the enhanced probability of observing

younger cells (and hence having a smaller protein content) in

population measurements (as mentioned in Sec. II).

Summarizing, our results in this section imply that the

effective degradation reaction in model I cannot effectively

account for dilution via binomial partitioning. Generally, the

models agree on the mean number of proteins in stationary

conditions but not on the higher-order moments. The discrep-

ancies are particularly obvious whenever y is greater than a

few tens. The variance of model I is always less than that

of model II, but the skewness of model I can be greater or

smaller than that of model II. We have also shown that the

protein distribution of model II can be well approximated by

an effective negative binomial distribution only if y, the mean

number of mRNAs produced in a cell cycle, is small. In this

case, it is possible to renormalize the parameters in model I so

that its solution approximates that of model II well.

IV. MODEL III: STOCHASTIC GENE EXPRESSION WITH

EXPLICIT MODELING OF AN ERLANG DISTRIBUTED

CELL CYCLE LENGTH

Next, we consider a more complex and realistic model

of bursty gene expression, namely, one that includes cell

cycle length variability. Such variability could, for example,

originate in cell types where the cell growth rate is stochastic

and cell division is triggered when the volume of a cell

exceeds its volume at birth by a certain fixed amount (also

called an “adder” mechanism, see for example [31]). As

we shall see, this requires a very different master equation

description than the previous models. Specifically, the model

has the following properties: (i) The cell cycle is divided in

N phases where the duration of each phase is exponentially

distributed with parameter k. It then follows that the cell

cycle length distribution is Erlang, the mean cell cycle time

is T = N/k and the coefficient of variation of the cell cycle

duration is 1/
√

N . (ii) Proteins are produced at a rate r and

in geometrically distributed burst sizes with mean α. (iii) Cell

division occurs instantaneously after the end of the N th phase
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which leads to binomial partitioning of proteins between

mother and daughter cells. Note that an Erlang distribution

provides a good fit to some of the measured cell cycle length

distributions [21,28].

Let Pi(n, t ) be the probability that the cell cycle is in phase

i at time t and that there are n protein molecules. We shall here

ignore the generation number since in steady-state conditions

this does not matter. It then follows that the master equation

describing the above model is given by

dP1(n, t )

dt
= −kP1(n, t ) + kP′

N (n, t )

+ r

∞
∑

m=0

P1(n − m, t )Q(m)

− rP1(n, t )

∞
∑

m=0

Q(m), (28)

dPi(n, t )

dt
= −kPi(n, t ) + kPi−1(n, t )

+ r

∞
∑

m=0

Pi(n − m, t )Q(m)

− rPi(n, t )

∞
∑

m=0

Q(m), i ∈ [2, N] (29)

where Q(m) = p(1 − p)m is the geometric distribution with

mean α = (1 − p)/p. The first term in these equations models

exits from the present cell cycle phase into the next phase,

the second term models the entry into the present cell cycle

phase from the previous one, and the third term models bursty

protein production. Note that binomial partitioning during cell

division is explicitly taken into account by the second term of

Eq. (28). In particular, this process implies

P′
N (n, t ) =

∞
∑

m=0

(
m

n

)

2−mPN (m, t ), (30)

where we take the convention m choose n equals zero when

n > m. The PGF equations corresponding to the CME equa-

tions (28) and (29) are given by

∂G1,s(z)

∂t
= −kG1,s(z) + kGN,s

(
1 + z

2

)

− rG1,s(z)

[

1 −
1

1 + α(1 − z)

]

, (31)

∂Gi,s(z)

∂t
= −kGi,s(z) + kGi−1,s(z)

− rGi,s(z)

[

1 −
1

1 + α(1 − z)

]

, i ∈ [2, N] (32)

where we have suppressed the time dependence for con-

venience. Note that while for model II, the cyclostationary

condition meant that the protein distribution at a given cell

age is independent of generation number, for model III the

condition means that the protein number at a given cell cycle

phase is independent of the generation number. Hence, we can

set Eq. (32) to zero and solve recursively for Gi,s(z) to obtain

Gi,s(z) =
[

k(x − 1)

k(x − 1) + rx

]i−1

G1,s(z), i ∈ [2, N]. (33)

Substituting Eq. (33) with i = N in Eq. (31) with the left hand

side equal to zero, we obtain

GN,s

(
1 + z

2

)

=
k(x − 1) + rx

k(x − 1)
G1,s(z)

=
[

k(x − 1)

k(x − 1) + rx

]−N

GN,s(z). (34)

Following the same method of solution as used for solving

Eq. (9), we obtain

GN,s(z) =
∞
∏

s=0

[

1 −
rx

x(k + r) − 2sk

]N

, (35)

where we used the normalization condition for the conditional

distribution in each phase, i.e., Gi(1) = 1. Using Eqs. (33) and

(35) we obtain the PGF for the conditional protein distribution

in cell phase i:

Gi,s(z) =
[

1 +
rx

k(x − 1)

]N−i ∞
∏

s=0

[

1 −
rx

x(k + r) − 2sk

]N

,

i ∈ [1, N]. (36)

Since we are considering the case of single lineage mea-

surements, we must average the PGF over all cell phases by

marginalizing out the phase in which a cell is at observation

time. Note that in order to do this we need an expression for

�i,s, the probability that the cell is in phase i at observation

in a single lineage measurement. For our case of N identically

exponentially distributed phases it can be easily shown that

�i,s = N−1, reflecting that every phase is equally likely to

be observed. Using this we derive the PGF for the protein

distribution for lineage measurements

GE
s (z) =

N
∑

i=1

�i,sGi,s(z) =
x − 1

xy

{
[

1 +
xy

N (x − 1)

]N

− 1

}

×
∞
∏

s=0

[

1 −
xy

x(N + y)x − 2sN

]N

, (37)

where we used that y = rT and the mean cell cycle length

T = N/k. Note that the superscript E denotes an Erlang

distributed cell cycle length. This solution can be conveniently

written in terms of exponential functions yielding

GE
s (z) =

x − 1

xy

(

exp

{

N log

[

1 +
xy

N (x − 1)

]}

− 1

)

× exp

{

N

∞
∑

s=0

log

[

1 −
xy

(N + y)x − 2sN

]
}

. (38)

Note that the argument of the log is always positive because

x = α(z − 1) � 0 due to z � 1. Note also that in the limit of

large N (at constant T ), the Erlang distribution describing the

cell cycle length tends to a delta function centered on T , i.e.,

a cell cycle of fixed length. It is straightforward to show by a

series expansion in 1/N that in the limit of large N , Eq. (38)
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FIG. 3. Plots of the protein number distribution P(n) for model II (blue line) and model III (black, green, cyan lines) with single lineage

(a)–(c) and population observations (d)–(f). The solid dots show the distributions obtained from stochastic simulations using the SSA (see

Appendix B) which agree with those from theory in all cases. Note that in the limit of large number of cycle cycle phases N ≫ 1, model III

approaches model II since the cell cycle length variability tends to zero. The non-negative binomial nature of model II for large y [the flat

region near the mode in (b) and (c) and the right shoulder in (e) and (f)] is washed away as the cell cycle length variability increases, i.e., as N

decreases in model III. Note that the numerical computation of the distribution of model III from Eqs. (37) and (45) can be greatly accelerated

(while maintaining accuracy) if the infinite product is truncated to a few tens of terms.

converges to Eq. (12), i.e., in the limit of small cell cycle

length variability, model III converges to model II. The mean

and variance of the protein number distribution in steady-state

conditions can be straightforwardly computed from the PGF:

〈n〉E
s =

αy(3N + 1)

2N
, (39)

(

σ E
s

)2 =
αy(3N + 1)

2N

+α2

{
[N (N + 10) + 5]y2

12N2
+

(5N + 3)y

3N

}

. (40)

As expected, the variance of model III is always larger than

that of model II; the mean of model III is slightly larger than

that of model II, but the difference can be ignored in most

cases of interest. Both the mean and variance are monotonic

decreasing functions of N and hence they are bounded from

above by the moments evaluated for N = 1, i.e., an exponen-

tially distributed cell cycle length.

The differences in the protein number distributions pre-

dicted by models II and III for lineage observations are

illustrated in Figs. 3(a)–3(c). There we show the excellent

agreement between the theoretical expressions and stochastic

simulations for both small y [Fig. 3(a)] and large y [Figs. 3(b)
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and 3(c)]. While the differences between models I and II are

due to binomial partitioning, the differences between models

II and III are due to cell cycle length variability. We find that

typically for N > 20 the differences between models II and III

are small; the differences are at their largest when the cell cy-

cle length is exponentially distributed, i.e., N = 1. Previously,

we saw how for model II the negative binomial was not a good

fit for the distribution when y was large. However, as can be

appreciated from Figs. 3(b) and 3(c), the fit becomes better

when we consider cell cycle length variability: the deviations

from negative binomial, which manifest in the flattish region

around the mode, become less visible as N decreases. Note

also that the deviations from negative binomial are largely

unaffected by the value of the mean burst size (increasing α

by 10 times in Fig. 3 causes the protein distributions to move

right and their height to be rescaled but their shape remains

practically unaltered).

Since the solution of model I is generally a negative

binomial, it follows that we can renormalize the parameters of

this model such that its protein distribution provides a good

match to the distribution of model III when the cell cycle

length variability is sufficiently high. Equating the mean and

variance of a negative binomial NB(z1, z2) to Eqs. (39) and

(40), we find

z1 =
3(3N + 1)2y

[N (N + 10) + 5]y + 4N (5N + 3)
, (41)

z2 =
{

6N (3N + 1)

α[N (N + 10) + 5]y + 4αN (5N + 3)
+ 1

}−1

. (42)

Equating these two parameters (z1, z2) to those of model I

with renormalized parameters [3ye/2, αe/(1 + αe)], we ob-

tain the relationship between the actual and renormalized

parameters:

αe =
z2

1 − z2

= α

{

1 +
N + 3

3(3N + 1)
+ y

[
N2 + 10N + 5

6N (3N + 1)

]}

,

(43)

ye =
2z1

3
= y

[
2(3N + 1)2

(N2 + 10N + 5)y + 4N (5N + 3)

]

. (44)

It also follows from these formulas that if we had to fit

a negative binomial to experimental data from cells with

an Erlang distributed cell cycle length (data consistent with

model III) and estimate the parameters using model I, then

this will lead to an overestimate for the mean burst size and

an underestimate for the mean number of mRNAs per cycle

(and hence for the transcription rate). The errors increase with

decreasing N and hence with increasing cell cycle duration

variability.

We have here focused on the distributions for single lin-

eage measurements. The distributions of protein numbers for

population snapshots can also be derived. Due to the rather

more complex analysis involved, the derivation is presented in

Appendix D. Here, we simply state the equivalent of Eq. (37)

for population measurements:

GE
p (z) = (2

1
N − 1)N (x − 1)

[
xy

N (x−1)
+ 2

1
N

]N − 1

(2
1
N − 1)N (x − 1) + xy

×
∞
∏

s=0

[

1 −
xy

x(N21/N + y) − N21/N 2s

]N

. (45)

The protein distributions corresponding to this PGF are shown

in Figs. 3(d)–3(f) where they are also compared with those

of model II. Note that given the same parameters, the protein

distributions for lineage and populations observations are con-

siderably different. These differences become more apprecia-

ble with increasing y and decreasing N . While the increase in

cell cycle length variability (through decreasing N) results in

little changes to the mode of the lineage distribution, it causes

the mode of the population distribution to shift to the left.

However, there are also qualitative similarities, namely, that in

both cases the deviations from negative binomial are maximal

for small cell cycle length variability (large N) and large y.

Similar to what we previously did for lineage observations

[see Eqs. (43) and (44)], from the equations for the mean and

variance for population snapshots (see Appendix D), it is also

possible to calculate the renormalized parameters in model I

such that it provides a good negative binomial approximation

to the population distribution of model III when there is

sufficient cell cycle length variability.

Summarizing in this section we have studied a model

(model III) of bursty gene expression with an Erlang dis-

tributed cell cycle length. This model recovers model II in the

limit of small cell cycle length variability. Also, the presence

of sufficient cell cycle length variability is found to lift the

deviations from negative binomial observed for model II; in

this case, by an appropriate renormalization of the parameters,

model I can describe the distribution predicted by model III

well. The mean and variance of protein numbers calculated

from a similar model (assuming lineage observations) have

been reported previously [22].

V. MODEL IV: STOCHASTIC GENE EXPRESSION WITH

HYPOEXPONENTIAL CELL CYCLE LENGTH

DISTRIBUTION AND AGE-DEPENDENT TRANSCRIPTION

We next consider a more general version of model III: (i)

the time spent in phase i of the cell cycle is exponentially

distributed with parameter ki, which implies that the cell cycle

length distribution is hypoexponential; (ii) the transcription

rate and burst size are age dependent, i.e., they are ri and αi

in phase i, respectively. Note that the Erlang distribution is a

special case of the hypoexponential distribution and hence the

use of this distribution, in principle, allows more flexibility

in fitting experimental cell cycle distributions. Note also that

modeling the transcription rate as age dependent enables

us to capture replication, hence considerably extending the

realism of our model. The master equation describing the

above model is a generalization of that for model III and is
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given by

dP1(n, t )

dt
= −k1P1(n, t ) + kN P′

N (n, t )

+ r1

∞
∑

m=0

P1(n − m, t )Q1(m)

− r1P1(n, t )

∞
∑

m=0

Q1(m), (46)

dPi(n, t )

dt
= −kiPi(n, t ) + ki−1Pi−1(n, t )

+
∞
∑

m=0

riPi(n − m, t )Qi(m)

− riPi(n, t )

∞
∑

m=0

Qi(m), i ∈ [2, N] (47)

where Qi(m) = pi(1 − pi )
m is the geometric distribution with

mean αi = (1 − pi )/pi. Note that P′
N (n, t ) is defined as before

using Eq. (30). The corresponding PGF equations are given

by

∂G1,s(z)

∂t
= −k1G1,s(z) + kN GN,s

(
1 + z

2

)

− r1G1,s(z)

[

1 −
1

1 + α1(1 − z)

]

, (48)

∂Gi,s(z)

∂t
= −kiGi,s(z) + ki−1Gi−1,s(z)

− riGi,s(z)

[

1 −
1

1 + αi(1 − z)

]

, i ∈ [2, N] (49)

where we have suppressed the time dependence for conve-

nience. Setting Eq. (49) to zero (steady-state conditions) and

solving recursively for Gi,s(z) we obtain

Gi,s(z) = wi,s(z)G1,s(z), (50)

where

wi,s(z) =
{

1, i = 1
∏i

j=2

k j−1(x j−1)

k j (x j−1)+r j x j
, i ∈ [2, N].

(51)

Note that here we defined x j = α j (z − 1). Substituting

Eq. (50) with i = N in Eq. (48) with the left hand side equal

to zero, we obtain

GN,s

(
1 + z

2

)

= GN,s(z)

[
k1(x1 − 1) + r1x1

kN (x1 − 1)wN (z)

]

. (52)

Following the same method of solution as used for solving

Eq. (9), we obtain

GN,s(z) =
∞
∏

s=0

N
∏

j=1

[

1 −
r jx j

x j (k j + r j ) − 2sk j

]

, (53)

where again we used the normalization condition for the con-

ditional distribution in each phase, i.e., Gi,s(1) = 1. Hence,

finally by means of Eqs. (50) and (53), we can write an

equation for the PGF of the distribution assuming single

lineage measurements

Gi,s(z) =
wi,s(z)

wN,s(z)
GN,s(z), (54)

GH
s (z) =

N
∑

i=1

�i,sGi,s(z), (55)

where again we let �i,s denote the probability of observing the

cell in phase i in a lineage measurement, which can be shown

to be given by �i,s = k−1
i /(

∑

j k−1
j ). Note the superscript H

(standing for hypoexponential) is to distinguish this PGF from

the one calculated for model III using the Erlang distribution.

A. Modeling replication

We next use this theory to understand the effects of gene

replication on stochastic gene expression. One of the simplest

models of this process assumes (i) the transcription rate to

be a constant r before replication, doubling to 2r right after

replication (the doubling in transcription rate is due to the

doubling in gene copy number during replication); (ii) the cell

cycle length and the replication time are Erlang distributed.

This implies the special case where ki = k and αi = α for

all i, and ri = r, i ∈ [1, M], and ri = 2r, i ∈ [M + 1, N],

where M is the cell cycle phase after which replication occurs.

Substituting these values in Eqs. (54) and (55), we obtain

GH
s (z) =

(x − 1)

2xy

(
[

2xy

N (x − 1)
+ 1

]N−M
{

2

[
xy

N (x − 1)
+ 1

]M

− 1

}

− 1

)

×
∞
∏

s=0

[

1 −
2xy

x(N + 2y) − N2s

]N−M[

1 −
xy

x(N + y) − N2s

]M

. (56)

This can also be written in exponential form as we have previously done for other expressions. The mean and variance of protein

fluctuations are given by

〈n〉H
s =

αy[M(M − 1) + 2N (3N − 2M + 1)]

2N2
= 〈n〉E

s

[
M + 2(N − M )

N

]

−
αyM(N − M )

2N2
, (57)

(

σ H
s

)2 =
αy[M(M − 1) + 2N (3N − 2M + 1)]

2N2
+

α2y
[

10N2 + 2N (3 − 4M ) + 3M(M − 1)
]

3N2

+ α2y2

{
4N4 + 40N3 − 4[3M(M + 3) − 5]N2 + 12M(M2 − 1)N − 3M2(M − 1)2

12N4

}

. (58)
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Using the notation (σ E
s )2|

vy
to denote the variance in model III, i.e., Eq. (40), when the transcription rate is vr we find

(

σ H
s

)2 =
[
(

σ E
s

)2
∣
∣
∣
y

(
M

N

)

+
(

σ E
s

)2
∣
∣
∣
2y

(
N − M

N

)]

−
αyM(N − M )

2N2

{

1 + 2α −
αy

[

(M − 1)2 + N (N − 3M − 2)
]

2N2

}

. (59)

Note that for the special cases M = 0 and N , these two

equations are the same as the mean and variance of model III

[given by Eqs. (39) and (40)] with y replaced by 2y and y,

respectively; this is since in this case the transcription rate is

the same in all phases of the cell cycle and equal to 2r and

r, respectively. It also follows that model II is obtained by

setting M = N and taking the limit N → ∞. Hence, model

IV contains as special cases the previous models II and III.

Note that while we have considered the cases M = 0 and N

to see the relationships between the various models, when

we want to explicitly model replication we need 0 < M <

N and N � 2 since there is always a prereplication and

postreplication phase of the cell cycle. In Fig. 4 we show

that the theoretical protein distributions for each phase of the

cell cycle accurately match those obtained from stochastic

simulations.

The coefficient of variation squared [CV 2
s = (σ H

s /〈n〉H
s )

2
]

can be shown to decrease monotonically with increasing α and

y. However, the dependence on N and M (the replication phase

of the cell cycle) is nonmonotonic (see Appendix C). In Fig. 5

we show plots of the CV 2
s as a function of all four parameters

which numerically verifies the aforementioned properties. We

also observe that the size of noise as measured by CV 2
s is

almost independent of the replication phase M for large y but

increases monotonically with M for small y.

There is an interesting relationship between models III and

IV, as follows. If we renormalize the parameter y in model III

by changing it to 	sy where

	s = 2 −
M

N
−

M(N − M )

N (1 + 3N )
, (60)
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FIG. 4. Plots of the protein distribution at different points in

the cell cycle for model IV with an Erlang distributed cell cycle

(10 phases) and replication occurring at the start of phase 6. The

distributions (solid lines) are calculated from the theory for lineage

observations while the dots show the same calculated from a single

trajectory generated by the SSA for 106 cell cycles. Note that the

theory is for model IV Eq. (54) with i = 1, 6, 10, ki = k = N/T , and

αi = α for all i, and ri = r, i ∈ [1, M], and ri = 2r, i ∈ [M + 1, N],

where M is the cell cycle stage in which replication occurs. The

parameters are N = 10, M = 5, α = 1, y = 20, T = 1.

then 〈n〉H
s = 〈n〉E

s and (σ H
s )

2 ≈ (σ E
s )

2
. Note that while the

relationship between the means is exact, this is not true for

the variances; the accuracy of the latter, however, is shown

for six different parameter sets in Fig. 6(a). Note also that

since the mean and variance of model IV and the renormalized

model III match, it follows that if the distribution in both

models is well approximated by a negative binomial (a two

parameter distribution), then we expect the two distributions

to also match. This is indeed the case for models with small

y and including sufficient cell cycle length variability, i.e.,

moderate N , as can be seen in Fig. 6(b).

However, when the cell cycle length variability decreases

as N → ∞, we see that the distribution of model IV starts to

deviate from the renormalized model III when y grows large as

we show in Fig. 6(c). This can be understood from the obser-

vation that the prereplication and postreplication phase of the

cell for large y have distinct protein distributions, which was
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(b)
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FIG. 5. Effects of the position of the replication point in the cell

cycle on the size of protein fluctuations for lineage observations.

Plots of the coefficient of variation squared CV 2
s as a function of the

mean burst size α, the mean number of mRNAs produced in a cell

cycle y, and the fraction of the cell cycle in the prereplication stage

M/N for model IV (same setup as previous figure). The mean and

variance for the computation of the CV 2
s are given by Eqs. (57) and

(58). A comparison of (a) and (b) shows that the CV 2
s decreases with

increasing α and y. However, the CV 2
s has a complex dependence on

M: for large y, CV 2
s is roughly independent of M while it increases

with M for small y. Solid dots show the results of the SSA and solid

lines show the theory.
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FIG. 6. Relationship between models III and IV for lineage (de-

noted by subscript s in figure) and population observations (denoted

by subscript p in figure). (a) Renormalizing the parameter y in

model III (lineage) by changing it to 	sy, we find that the variance

agrees to a good degree of approximation with the variance of model

IV (lineage) for all parameter sets tested. The mean of the two

models is exactly the same under this renormalization. The same

applies for population observations (not shown). (b) The protein

distribution of model IV and of the renormalized model III are also

in excellent agreement (these are obtained from the PGF solutions

of both models) for small y and N . Note the renormalization factors

are given by Eq. (60) for lineage and 	p = 21−M/N for population

observations. (c) In contrast, the distributions of model IV (lineage)

and of renormalized model III (lineage) are very different when y

and N are large. In (d) we show that the same conclusion holds

for population observations. In all cases, dots show the distribution

obtained from the SSA is in good agreement with the theory (solid or

dashed lines) for models III and IV. Parameter sets are as follows. The

six parameter sets for model IV in (a) are as follows: (1) N = 4, α =
10, y = 10, (2) N = 4, α = 20, y = 100, (3) N = 20, α = 1, y = 10,

(4) N = 20, α = 2, y = 50, (5) N = 10, α = 5, y = 100, and (6)

N = 10, α = 2, y = 10; for renormalized model III, the parameters

are the same except that y is renormalized. For each parameter set,

we take M = 0, . . . , N . Parameters for (b) are N = 2, α = 1.0, y =
20, M = 1 for model IV and same but with y = 20	s,p for renormal-

ized model III. Parameters for (c) and (d) are N → ∞, α = 1.0, y =
100, M = 0.5N for model IV and same for renormalized model III,

but with y = 100	s,p. Population snapshot SSA data for model IV

consist of ∼106 cells starting from a single cell with zero protein

content (see Appendix B for details of the simulations).

visible in Fig. 4 as well, and the fact that the total observation

distribution is a sum of both contributions. For moderate N ,

i.e., significant cell cycle length variability, the prereplication

and postreplication protein distributions overlap since they are

wide, which yields good correspondence with model III as can

be seen in Fig. 6(b) (compare solid and dashed blue lines).

However, for N large enough (low cell cycle length variabil-

ity) and large y, the overlap between the two contributions

becomes smaller, resulting in the almost bimodal nature of

the distribution in Fig. 6(c). Hence, it follows that replication

effects in model IV can be described well by an appropriately

scaled model III provided cell cycle length variability is not

too small. It also follows that it can also be well described

by model I with renormalized parameters since the latter we

have shown in Sec. IV to be in good agreement with model III

provided y and N are not large.

Finally, we mention that similar conclusions hold for popu-

lation snapshot observations as we have seen for lineage data.

A derivation of the snapshot distribution for model IV can be

found in Appendix D. The population equivalent of Eq. (56)

is given by GH
p (z) = GN,p(z)W (z), where

GN,p(z) =
∞
∏

s=0

[

1 −
2xy

x(N21/N + 2y) − N21/N 2s

]N−M

×
[

1 −
xy

x(N21/N + y) − N21/N 2s

]M

, (61)

W (z) = (2
1
N − 1)N (x − 1)

×

⎛

⎝

[
2xy

N (x−1)
+ 2

1
N

]N−M{[
xy

N (x−1)
+ 2

1
N

]M − 1
}

(2
1
N − 1)N (x − 1) + xy

+
[

2xy

N (x−1)
+ 2

1
N

]N−M − 1

(2
1
N − 1)N (x − 1) + 2xy

⎞

⎠. (62)

As shown in Fig. 6(b), the difference between the popula-

tion snapshot distribution and the lineage distribution can be

significant (compare solid red and blue lines). The mean of

the former is less than that of the latter which is due to a

preponderance of young cells in population measurements (as

discussed in Sec. II). Considering the appropriate rescaling of

the parameter y by changing it to 	py, where 	p = 21−(M/N ),

we also get good agreement between models IV and III for

population snapshots when the cell cycle length variability

is moderate (small N) and y is small [compare dashed and

solid red lines in Fig. 6(b)]. This, however, does not carry

through for the case of large y and N [Fig. 6(d)] . Hence, while

the distributions are appreciably different for population and

lineage cases, nevertheless, qualitatively the results for the two

are similar.

VI. EXTRINSIC NOISE FLOOR

Plots of the coefficient of variation squared versus mean

protein number have been used in the literature to separate

intrinsic noise from extrinsic noise (see in particular Fig. 2B

of Ref. [32]). Specifically, intrinsic noise is associated with

the term proportional to the inverse mean since its contribution

decreases with the mean protein number, while extrinsic noise

is associated with the term which is independent of the mean.

Within this interpretation, using the expressions previously

derived for the mean and variance for lineage observations,
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it is clear that model I predicts no extrinsic noise (CV 2 is

inversely proportional to mean) while models II, III, and IV

predict extrinsic noise stemming from binomial partitioning

and cell cycle length variability. Since models II and III are

special cases of model IV, we shall only consider the latter.

Using Eqs. (57) and (58) for lineage distributions, we can

write the coefficient of variation squared in terms of the mean

protein expression level

CV 2
s =

Es,int(M, N, α)

〈n〉H
s

+ Es,ext(M, N ), (63)

where the positive functions Es,int and Es,ext are given by

Es,int(M, N, α) = α

[
6M(M − 1) + 4N (5N + 3 − 8M )

3M(M − 1) + 6N (3N + 1 − 2M )

]

+ 1, (64)

Es,ext(M, N ) =
4N4 + 40N3 − 4[3M(M + 3) − 5]N2 + 12(M2 − 1)MN − 3M2(M − 1)2

3[M(M − 1) + 2N (3N + 1 − 2M )]2
. (65)

This shows that in the limit of abundant proteins, the protein

noise as measured by the coefficient of variation squared,

tends to a constant Es,ext(N, M ) which is independent of

the intrinsic protein dynamics. This limiting value is only

controlled by the cell cycle length variability via M and N .

The intrinsic noise, on the other hand, is governed by both

cell cycle length variability and protein burst size.

To study the dependencies on cell cycle length variability

we let M = uN , where u ∈ [0, 1] represents the fraction of

the cell cycle spent in the nonreplicated phase. It can be

shown that if u and α are fixed, then the internal component

of noise given by the first term in Eq. (63) increases with

N while the external component given by the second term

decreases with N (see Appendix C). Hence, unexpectedly,

CV 2
s can increase or decrease with cell cycle length variability.

More specifically in Appendix C [see Eq. (C9)] we show

that if y is above a threshold, then protein noise increases

with increasing cell cycle variability. This condition is met

in mammalian cells and yeast cells [33,34] since the range

of y and α is greater than one. In contrast in bacteria, due to

the very low mean mRNA produced per cell cycle (as low as

0.1 [32]), the condition is not necessarily met and hence it

is possible to have CV 2
s decrease with increasing cell cycle

length variability [the dependence is, however, very weak as

can be seen in Fig. 7(a)]. Note that one can derive population

expressions equivalent to Eqs. (64) and (65). It can be proved

(see Appendix C) that unlike for lineages, CV 2
p computed

from population snapshots always increases with increasing

cell cycle length variability (see Fig. 7).

Next, we determine bounds on the external noise floor for

N � 1. First of all, we note that since the extrinsic noise floor

Es,ext decreases monotonically with N , its upper bound must

be given by N = 1 while its lower bound by N → ∞. For the

case of purely exponential cell cycle length variability, i.e.,

N = 1, we then find that

Es,int(u, α) =
(

4α

3
+ 1

)

−
2αu(1 − u)

3(u2 − 5u + 8)
, (66)

Es,ext(u) =
1

3
+

4u(1 − u)(2 − u)(4 − u)

3(u2 − 5u + 8)2
, (67)

which is maximal when u ≈ 0.55 at 0.39. On the other hand,

in the opposite limit of deterministic cell cycle times, i.e.,

N → ∞, the noise contributions become

Es,int(u, α) =
(

10α

9
+ 1

)

−
8αu(1 − u)

9(u2 − 4u + 6)
, (68)

Es,ext(u) =
1

27
+

4u(1 − u)(7u2 − 22u + 12)

27(u2 − 4u + 6)2
, (69)

which is minimal when u ≈ 0.87 at 0.034. Hence, it follows

that the external noise floor for N � 1 is contained in the

approximate interval (0.034,0.39).

Note that for u = 0 or 1, the special case without a repli-

cation phase, Eq. (63) together with Eqs. (66) and (67) almost

perfectly recovers a recent result in the literature for the CV 2

of protein fluctuations in a model with exponential cell cycle

length variability [see Eq. (7) of Ref. [26]], CV 2 = (4/3)(α +
1/2)/〈n〉 + 1/3). The same result is obtained for population

snapshot calculations. The slight discrepancy is likely caused

by the continuum approximation for protein levels in [26].

An experimental value of approximately 0.1 has been

measured for the extrinsic noise floor in the bacterium E. coli

(see Fig. 2B of [32]) which falls within the range of our theory

(as described above). From the limited lineage data shown

in the Taniguchi et al. paper (Fig. 2C shows three lineages

with 9 cell division events), it is not clear which Erlang

distribution would best fit their data. However, if we consider

replication to occur in the middle of the cycle (M = N/2)

and the cell cycle length to be well described by an Erlang

distribution with N = 5 phases, then Eq. (65) predicts a value

of Es,ext ≈ 0.12 which is remarkably close to the experimental

value of 0.1. Note that N = 5 is not unrealistic; it would imply

a maximum difference of up to 1/
√

N ≈ 40% of the cell cycle

length from its mean which is consistent with some recent

experiments in E. coli [27,35]. The noise decomposition above

can also be done for population snapshots using the equations

for the mean and variance derived in Appendix D. It is found

that the theory predicts the same value of Ep,ext ≈ 0.1 for

extrinsic noise, and hence this result is insensitive to the type

of observations made.

VII. CONCLUSION

In this paper we have derived the PGF corresponding to

the stable protein number distributions in stochastic gene

expression models with cell cycle length variability. Our work

has the following special features: (i) the solution method used
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FIG. 7. Effects of the cell cycle variability on the size of protein

fluctuations showing the difference between lineage (solid) and

population snapshot (dotted) observations. Plots of the coefficient

of variation squared CV 2 as a function of the mean burst size α,

the mean number of mRNAs produced in a cell cycle y, and the

fraction of the cell cycle in the prereplication stage u = M/N . The

mean and variance for the computation of the CV 2
s are given by

Eqs. (57) and (58), whereas for CV 2
p we have used Eqs. (D23) and

(D26). A comparison of (a), (b), and (c) shows that the CV 2
s can be

both increasing and decreasing with increasing N , but CV 2
p is always

decreasing with increasing N , confirming theoretical predictions. For

large values of y, we see that the protein noise only weakly depends

on u, which can be understood from noting that this is the regime in

which protein noise is dominated by the extrinsic noise floor.

allows the derivation of distributions rather than the mean and

variance; (ii) the distributions for cell cycle length variability

assumed by the model are of a very general form (hypoex-

ponential) which fit the majority of experimentally measured

distributions; (iii) the model allows the explicit description of

the variation of transcription and burstiness with the position

of the cell cycle (the cell age); and (iv) the calculations are

done for both lineage and population snapshot observations

which enhances the match between theory and experiments. A

necessary underlying assumption of our approach to compute

the PGF is that protein is stable, i.e., its decay occurs purely

due to dilution by cell division. This is a good assumption

when protein lifetimes are much longer than the mean cell

cycle time such as in E. coli [15] and yeast [16]. In mammalian

cells, about 70% percent of proteins are longer lived than the

mean cell cycle time, and hence the approximation is also

reasonable [33].

Special cases of our model can be found in the literature:

(i) for a cell cycle composed of N phases, each of which

is exponentially distributed in length, and assuming lineage

observations, expressions for the mean and variance have been

obtained in Refs. [22,23]; (ii) for a cycle whose length is

exponentially distributed, an expression for the approximate

protein number distribution (assuming large enough protein

numbers) for both lineages and population snapshots has been

derived in Ref. [26].

A major contribution of our study is the comparison of

different models of gene expression including those with an

implicit cell cycle description (model I) via effective protein

degradation and models with an explicit cell cycle description

with either regular (model II) or random interdivision times

(models III and IV). We found that the protein distributions of

models II–IV are well approximated by a negative binomial

provided cell cycle length variability is large and y (the mean

number of mRNA per cycle) is small (we shall henceforth

call these the special conditions). In such cases, the implicit

cell cycle model (model I) with renormalized parameters can

describe the results of the explicit cell cycle models. When the

special conditions are not met, the distributions show either

a flat region near the mode or else have a right shoulder

which in some cases can almost look like bimodality; of

course, model I cannot capture these distributions. Such a case

may be common for gene expression in mammalian cells and

yeast where it is estimated that for many genes, y can take

values in the range of 1 to about 600 [33,34]; in contrast in

bacteria y has the range 0.1–10 [32] and hence deviations from

negative binomial distributions are likely much less common.

Also, we have shown that when the special conditions are

not met, the distributions of models including replication or

more complex age-dependent transcriptional dynamics cannot

be described by models that assume constant transcription

through the cell cycle such as those found in [26,27]. Our

analysis shows that in a model assuming Erlang distributed

cell cycle duration and replication time, for lineages, the

coefficient of variation squared can either increase or decrease

with cell cycle variability whereas for population snapshots,

the coefficient of variation squared increases with cell cycle

variability. We also show that the the coefficient of variation

squared has a complex dependence on the replication time;

it is practically independent of the replication time for large

y but increases monotonically with the replication time for

small y. Finally, we show that given experimental cell cycle

length distributions for E. coli and assuming replication occurs

halfway through the cell cycle, our theory predicts a value for

extrinsic noise which is within a few percent of that measured

in Ref. [32].

Despite its generality, our study has a number of limi-

tations: (i) The analytical approach cannot be extended to

derive mRNA distributions. This is since mRNA typically

degrades faster than the mean cell cycle time [32] and hence

is not stable, which is a necessary assumption to solve for

the PGF. (ii) We have assumed binomial partitioning. While

032403-14



EXACT SOLUTION OF STOCHASTIC GENE EXPRESSION … PHYSICAL REVIEW E 101, 032403 (2020)

this assumption presents the simplest reasonable model of

stochastic partitioning, it likely fails for those proteins which

are highly localized [36]. (iii) We have assumed that there is

no correlation between the cell cycle duration of mother and

daughter cells. Experiments show such a correlation exists

[37,38]. Overcoming these limitations is key to expanding the

realism of the model and is the subject of ongoing research.
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APPENDIX A: DERIVATION OF MODELS I AND II FROM

A MODEL WITH AN EXPLICIT DESCRIPTION OF mRNA

AND OF A CELL CYCLE OF FIXED LENGTH

1. Derivation of model I

We consider a three-stage gene expression model of the

type

G
σb−→ G∗, G∗ σu−→ G, G

ρu−→ G + M,

M
dm−→ ∅, M

h−→ M + P. (A1)

Note that there is no active protein decay and instead we

assume protein decay occurs only due to binomial partitioning

at cell division. The latter is assumed to happen at regularly

spaced time intervals of length T . If the rate of promoter

switching is very fast compared to the mRNA and protein

timescales, then there is no need to explicitly model G∗.

Rather, it is sufficient to model expression from a single

promoter state with an effective transcription rate equal to the

true transcription rate multiplied by the fraction of time that

the gene is on. In other words, the three-stage model (A1)

reduces to the two-stage model

G
r−→ G + M, M

dm−→ ∅, M
h−→ M + P, (A2)

where r = ρuσu/(σb + σu) is the effective mRNA transcrip-

tion rate. Let the PGF be defined as

G(z′, z, t ) =
∑

m,n

(z′)m(z)nP(m, n, t ), (A3)

where P(m, n, t ) is the probability of observing m mRNAs

and n proteins at time t . The PGF then satisfies a PDE which

when nondimensionalized on the cell cycle timescale, t = T τ ,

is given by

∂G

∂τ
= rT (z′ − 1)G + dmT (1 − z′)

∂G

∂z′ + hT z′(z − 1)
∂G

∂z′ .

(A4)

Furthermore, binomial partitioning under cyclostationarity

conditions [17] leads to the boundary condition (in nondimen-

sional form)

G(z′, z, 0) = G

(
z′ + 1

2
,

z + 1

2
, 1

)

. (A5)

By using the definitions of the mean numbers of proteins and

mRNA

〈n〉(τ ) =
∂G(z′, z, τ )

∂z

∣
∣
∣
∣
z′=z=1

, 〈m〉(τ ) =
∂G(z′, z, τ )

∂z′

∣
∣
∣
∣
z′=z=1

,

(A6)

it is straightforward to show that the time evolution of the

means is given by the coupled ordinary differential equations

(ODEs)

d〈n〉(τ )

dτ
= hT 〈m〉(τ ), (A7)

d〈m〉(τ )

dτ
= rT − dmT 〈m〉(τ ), (A8)

with the boundary conditions 2〈n〉(0) = 〈n〉(1) and

2〈m〉(0) = 〈m〉(1). Solving these ODEs one obtains

〈n〉(τ ) =
hre−dmT τ {eτT dm [1 − (τ + 1)T dm] + 2e(τ+1)T dm [(τ + 1)T dm − 1] + eT dm}

d2
m(2eT dm − 1)

, (A9)

where τ is to be understood as the fractional cell age which

equals zero when a cell is born and one just before a cell

divides. Note that we do not show the equation for the mRNA

since it is not relevant to our analysis. Hence, it follows that

the mean number of proteins in single lineage and population

measurements is given by

〈n〉s =
∫ 1

0

〈n〉(τ )dτ =
αy

[

dm(3T dm − 2) + 1
T −2TeT dm

+ 1
T

]

2T d2
m

,

(A10)

〈n〉p = log(2)

∫ 1

0

21−τ 〈n〉(τ )dτ =
αTydm

T log(2)dm + log2(2)
,

(A11)

where we used y = rT and α = h/dm. Note that here we used

the fact that when interdivision times are regularly spaced

in time, the probability of observing a cell of age t ∈ [0, T ]

is uniform for single lineage measurements and equal to

21−t/T log 2/T for population measurements [17] (see also

Appendix D for a derivation of the latter). Taking the limit

that mRNA decays fast compared to the cell cycle length, i.e.,

dmT → ∞, we obtain

〈n〉s ≈
3αy

2
, (A12)

〈n〉p ≈
αy

log(2)
. (A13)

Now, one may ask what constitutes an effective system of

reactions that describes protein dynamics and which has the
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same mean number of proteins as above. If we consider this

effective system to be given by model I, that is the set of

reactions

G
r−→ G + mP, P

d ′

−→ ∅, (A14)

where m is a geometrically distributed random number with

mean α, it follows that the mean number of proteins is given

by

〈n〉I =
rα

d ′ =
αy

d ′T
. (A15)

Equating Eq. (A15) with (A12), we obtain the effective pro-

tein degradation rates for single lineage measurements,

d ′ =
2

3T
. (A16)

Similarly equating Eq. (A15) with (A13), we find that the ef-

fective protein degradation rates for population measurements

are

d ′ =
log(2)

T
. (A17)

2. Derivation of model II

Starting from the same mRNA model as used in

Appendix A 1 we now derive model II. Consider the PDE

(A4) with boundary condition (A5). To solve this PDE, we

employ the method of characteristics which yields the system

of equations

dτ

ds
= 1, (A18)

dz′

ds
= dmT (z′ − 1) + hT z′(1 − z), (A19)

dz

ds
= 0, (A20)

dG

ds
= rT (z′ − 1)G, (A21)

where s is the characteristic variable. In particular, we see that

τ = s and z = z0 is constant.

To consider the case of unstable mRNA, we define ε =
1/(dmT ) as the asymptotic variable. We see that to achieve a

dominant balance as ε → 0 (or dmT → ∞) we could choose

hT = O(dmT ). As before, we use α = limdmT →∞(hT/dmT )

and taking this scaling we see that as ε → 0

we get

ε
dz′

ds
= z′ − 1 + αz′(1 − z) + O(ε), (A22)

and therefore have to leading order (z′ − 1) − αz′(z − 1) =
0. This results in z′ → 1/[1 − α(z − 1)] quickly in the limit

of ε → 0 and, therefore, the following effective PDE for the

PGF:

∂G

∂τ
= rT

α(z − 1)

1 − α(z − 1)
G. (A23)

Note that we can then define G̃(z, τ ) = limz′→1 G(z′, z, τ ) =
∑

n ynP(n, τ ), i.e., the PGF for the marginal protein distribu-

tion. It follows now that G̃ satisfies the following cyclostation-

ary system in the limit of ε → 0:

∂G̃

∂τ
= rT

α(z − 1)

1 − α(z − 1)
G̃, (A24a)

G̃(z, 0) = G̃

(
z + 1

2
, 1

)

. (A24b)

Note that this is the same system satisfied by G(z, t ) from

model II, Eqs. (4) and (7) in the cyclostationary limit where

we drop the superscript for the generation. Therefore, we

have shown that the two-stage expression model (A2) with

binomial partitioning converges to model II in the limit of

fast mRNA decay compared to the cell cycle length, i.e.,

dmT ≫ 1.

APPENDIX B: STOCHASTIC SIMULATIONS

Stochastic simulations in this work were carried out using

a method similar to the First Division Algorithm in [27],

which effectively is the (modified) next reaction method with

the addition of cell division and observation events. Below

follows a description of the exact procedures used to calculate

stochastic realizations of models II, III, and IV in this paper.

The code used for this work can be found online in Ref. [39].

1. Lineage simulation

For the simulation of lineage data we consider a single

cell in a mother machine that we continuously track. Mea-

surements of the cell’s contents are taken at intervals defined

by some observation time distribution. For this paper we take

measurements at regular intervals, i.e., a delta distribution for

the observation interval distribution.

(1) Initialization. Start a cell in the mother machine at time

t = 0 with initial molecule content n. Assign a phase j and age

within the phase a.

(2) Generate waiting times τr , τp, and τo, the time until the

next biochemical reaction, the next phase change, and the next

observation, respectively.

(3) Until t � tfinal. Pick � = min(τr, τp, τo), update all

waiting times (τr, τp, τo) by τ → τ − �, and update phase

age a → a + �. Based on the minimum found for the waiting

times proceed to the following:

(a) Biochemical reaction. Select the biochemical reac-

tion occurring, e.g., using Gillespie-type algorithm, and

update cell molecule content. Generate a new time until

next biochemical reaction τr .

(b) Phase progression. Based on the current phase of

the cell proceed to the following:

(i) If phase of the cell is N , reset the new phase of

the cell to the first phase, j → 1. Binomially partition

the cell contents across the cell in mother machine and

daughter cell, discard daughter cell, and keep following

cell in mother machine.

(ii) Otherwise, set the new phase of the cell, j →
j + 1.

Set the age of cell in the new phase to a = 0 and

update the biochemical rate parameters according to the

current phase j. Generate a new time until next phase

progression τp and a new time until next biochemical

reaction τr .
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(c) Observation. Write the current cell contents and

other quantities of interest to disk. Generate a new time

until next observation τo.

Update simulation time t → t + � and return to the start

of step 3.

2. Population snapshot simulation

For the simulation of population snapshot data, we con-

sider an initial batch of cells that we let grow and divide until

some final time tfinal at which point we measure the contents

of all the cells present.

(1) Initialization. Start batch of cells at time ti = 0 with

initial molecule contents ni, where i index rolls over the batch

of present cells. Assign a phase ji and age within the phase ai

to each cell in the batch. Start with the first cell in the batch,

l → 1.

(2) Until all cells in batch have reached final time tfinal pick

the next cell in the batch and proceed to step 3.

(3) Generate waiting times τr and τp the time until the next

biochemical reaction and the next phase change, respectively.

Set the time until observation as τo → tfinal − tl .

(4) Until tl = tfinal. Pick � = min(τr, τp, τo), update all

waiting times (τr, τp, τo) by τ → τ − �, and update phase

age a → a + �. Based on the minimum found for the waiting

times proceed to the following:

(a) Biochemical reaction. Select biochemical reaction

occurring, e.g., using Gillespie-type algorithm, and update

cell molecule content. Generate a new time until next

biochemical reaction τr .

(b) Phase progression. Based on the current phase of

the cell proceed to the following:

(i) If phase of the cell is N , reset the new phase of

the cell to the first phase, j → 1. Binomially partition

the cell contents across the current cell and a daughter

cell. Add the daughter cell with its content to the batch

of cells with start time ti′ = tl , ai′ = 0, and ji′ = 1.

(ii) Otherwise, set the new phase of the cell, j →
j + 1.

Set the age of cell in the new phase to a = 0 and

update the biochemical rate parameters according to the

current phase j. Generate a new time until next phase

progression τp and a new time until next biochemical

reaction τr .

(c) Observation. Write the current cell contents and

other quantities of interest to disk. Let l → l + 1 and return

to step 2.

Update simulation time tl → tl + � and return to the start

of step 4.

APPENDIX C: COEFFICIENT OF VARIATION PROOFS

FOR MODEL IV

1. Effect of burst size α and mRNA production per cycle y

First, we prove that CV 2 (and CV ) monotonically decrease

with increasing α and y. We note using Eqs. (57) and (58) that

the mean and variance of protein numbers in model IV with

replication can be written as

(

〈n〉H
s

)2 = α2y2A,
(

σ H
s

)2 = αyB + α2yC + α2y2D,

where A, B,C, D are functions of M, N solely. First, we ob-

serve that A > 0 must hold by the observation that the mean of

the model IV is necessarily positive if α > 0 and y > 0. This

means that we have for the squared coefficient of variation

CV 2 =
1

A

(
B

αy
+

C

y
+ D

)

.

Note that CV 2 � 0 must hold for all α � 0 and y � 0. By

considering the limit α ↓ 0 we deduce that B � 0. Similarly,

by considering the limit y ↓ 0 we find that for all α � 0 we

must have B + Cα � 0 and therefore C � 0. Finally, from

the limit y → ∞ we deduce that D � 0. It then immediately

follows that CV 2 and CV decrease monotonically with α

and/or y increasing. Note that this argument applies equally

well to the population snapshot case.

2. Effect of cell cycle variability N for lineages

Next, we show that the extrinsic noise floor, i.e., the limit

of CV 2 for abundant proteins, is a monotonic decreasing

function of N . Recalling Eq. (65) and rewriting the noise floor

Es,ext(M, N ) using M = uN , where u ∈ [0, 1], we have

Es,ext(u, N ) =
N2(−3u4 + 12u3 − 12u2 + 4) + N (6u3 − 36u + 40) − 3u2 − 12u + 20

3[N (u2 − 4u + 6) − u + 2]2
. (C1)

We then note that the derivative of the noise floor with respect to N is given by

dEs,ext

dN
= −

4[(−3u3 + 16u2 − 48u + 40) + N (3u4 − 18u3 + 58u2 − 92u + 56)]

3[N (u2 − 4u + 6) + (2 − u)]3
< 0. (C2)

The inequality follows from considering every term in brack-

ets for N > 0 and u ∈ [0, 1] and showing it is positive. As

a result, we see that the external noise floor is a monotonic

decreasing function of increasing N , which can be interpreted

as decreasing cell cycle length variability.

Next, we show that CV 2
s is not monotonic in N for single-

cell lineage measurements. Recalling Eqs. (57) and (64), we

can rewrite the internal noise component and protein mean

using u and N as

Es,int(u, N ) = 1 + 2α −
8αN (2 − u)

3N (6 − 4u + u2) + 3(2 − u)
,

(C3)

〈n〉H
s =

(
6 − 4u + u2

2
+

2 − u

2N

)

αy. (C4)
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Note that it then follows that
dEs,int

dN
= −

{
8(2 − u)2

3[N (u2 − 4u + 6) + (2 − u)]2

}

α < 0, (C5)

d〈n〉H
s

dN
= −

(
2 − u

2N2

)

αy < 0, (C6)

which does not allow us to immediately make a conclu-

sion about the behavior of the ratio of the two quantities.

Therefore, we note that the internal component of the coef-

ficient of variation squared in fact grows as N increases as

shown by

d
(

Es,int/〈n〉H
s

)

dN
=

2(2 − u){2α[N (3u2 − 4u + 2) + 3(2 − u)] + 3N (u2 − 4u + 6) + 3(2 − u)}
3αy[N (u2 − 4u + 6) + (2 − u)]3

> 0. (C7)

Since the external component of the coefficient of variation

squared has earlier been proved to decrease with N , it follows

that for some positive functions a1, a2 of u, N, α we find

dCV 2
s

dN
=

a1

y
− a2, (C8)

which shows that CV 2
s can be both increasing or decreasing as

a function of N , depending on the exact values of α, y. In fact,

by considering a1 and a2 and their extreme behavior (which is

for u = 1) one can show that for

y >
3 + N

5 + 7N
+

1

α

3 + 9N

2(5 + 7N )
, (C9)

the protein noise for lineages is monotonically decreasing,

whereas when this condition is not satisfied, we can find u =
M/N ∈ [0, 1] so that, perhaps counterintuitively, decreasing

cell cycle variability, i.e., increasing N , leads to an increase in

protein noise. On the other hand, this shows that if mRNA

production is large enough, the protein noise does become

monotonic as a function of cell cycle variability.

3. Effect of cell cycle variability N for population snapshots

For population snapshots we note from results in

Appendix D, Eqs. (D23) and (D26) in particular, that the

internal noise component is composed of

Ep,int(u, N ) = 1 + 2α −
α(2 − u)21+u

3

N (21/N − 1)

21/N
, (C10)

〈n〉H
p =

21−u

N (21/N − 1)
αy. (C11)

From here it is easy to show that 〈n〉H
p and Ep,int(u, N ) mono-

tonically grow and decay, respectively, as N increases. As a

result, we note that their ratio, the internal noise component

(Ep,int/〈n〉H
p ), decays monotonically when N increases, i.e.,

the opposite scenario to what happens for single-cell lineage

measurements.

Finally, we will show that Ep,ext decays monotonically

when N increases and as a result that, in contrast to the lineage

framework, the total protein noise CV 2
p is always decreasing as

a function of increasing N , regardless of the values of α, y. We

note that this proof is more cumbersome than for the lineage

measurements and we only sketch the details here. We start

by noting that, with u ∈ [0, 1] as before,

Ep,ext(u, N ) = −
2u

6

N (21/N − 1)

22/N

{

2u
[

3(2
1
N − 1)N (u − 2)2

+ 2
1
N (16 − 9u) + 3u − 4

]

− 12 × 21/N
}

+ (−4u + 3 × 2u − 1). (C12)

To make computations slightly more tractable, we then make

the transformation to q = 21/N (which yields q > 1 for N > 0

and q → 1 when N → ∞) and note that dq/dN < 0 for all

N . This leaves us to show that dEp,ext/dq > 0 for all q > 1

in order to show that the external noise component satisfies

dEp,ext/dN < 0. We start with

h1(q) =
dEp,ext

dq
=

2u log 2

6(q log q)3

︸ ︷︷ ︸

>0

h2(q). (C13)

From here we note that limq↓1 h2(q) = limq↓1 h′
2(q) =

limq↓1 h′′
2 (q) = 0 and

d3h2

dq3
=

1

q3

︸︷︷︸

>0

h3(q). (C14)

The new function h3 satisfies, for u ∈ [0, 1],

lim
q↓1

h3(q) = 6{2u[u2 log(8) − 12u log(2)

+ 2 + log(4096)] − 6} > 0,

dh3

dq
=

1

q
︸︷︷︸

>0

h4(q).

In a similar fashion we proceed to show that for h4 and u ∈
[0, 1] we can write

lim
q↓1

h4(q) = 2(2u{u[(u − 4) log(8) − 48]

+ 78 + log(4096)} − 42) > 0,

lim
q↓1

h′
4(q) = 2(3 × 2u{u2 log(2) − 2u[11 + log(4)]

+ 38 + log(16)} − 78) > 0,

d2h4

dq2
=

8

q
︸︷︷︸

>0

h5(q),

where h5(q) = q[2u(16 − 9u) − 12] + (−3 × 2uu + 5 ×
2u − 3) is a positive linear function in q when u ∈ [0, 1].

By arriving at h5 > 0 for q > 1 we find cascading back

that h′′
4, h′

4, h4 > 0 for q > 1. This then proves h′
3, h3 > 0

for q > 1 which in turn shows that h′′′
2 , h′′

2, h′
2, h2 > 0

for q > 1. Finally, having proven that h2 > 0 we find

dEp,ext/dq = h1 > 0 for q > 1, which was what we needed to

prove to show that dEp,ext/dN < 0.
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APPENDIX D: POPULATION SNAPSHOTS

In this Appendix, we correct for the fact that in a population

observation, the cell phases and observation times differ from

those in single-cell measurements. In order to construct the

PGF for the population observations we start from the expres-

sion

Gp(z) =
N
∑

i=1

�i,pGi,p(z), (D1)

where Gi,p(z) denotes the PGF for phase i in the population

measurement case and �i,p is the probability to observe a cell

in phase i. Note that we take the distributions for each phase

to be normalized to unity to reflect that the Gi,p are in fact the

marginal distributions for protein in each phase i. We will next

show how to derive expressions for Gi(z) and �i,p.

1. Phase distribution

While the probability of observing a cell in cell cycle phase

i, denoted as �i, was obvious when performing single-cell

measurements, this is not the case for population measure-

ments. This is since each time a cell divides, two cells start in

phase 1 and hence we generally expect that the probability of

being in phase i decreases with i. We next derive an expression

for the probability �i,p for population measurements.

Let the average number of cells under cyclostationary as-

sumptions in cell cycle phase i at time t be denoted by 〈Ci(t )〉.
Then, it immediately follows from the model specification that

when each phase of the cell cycle is exponentially distributed

with parameter k, the time-evolution equations are given by

d〈C1(t )〉
dt

= −k〈C1(t )〉 + 2k〈CN (t )〉, (D2)

d〈Ci(t )〉
dt

= −k〈Ci(t )〉 + k〈Ci−1(t )〉, i = 2, . . . , N. (D3)

The factor 2 in the first equation stands for cellular division:

every time a cell divides (leaving phase N), two cells start in

phase 1. In the case that we are tracking single-cell lineages,

then the factor 2 is replaced by 1. More generally, for cases

with asymmetric division (after division some cells differen-

tiate) this factor 2 can be replaced by a factor ν ∈ [0, 2]. We

are interested in finding the probability that a cell is in phase

i, which is given by

�i(t ) =
〈Ci(t )〉

∑N
i=1〈Ci(t )〉

. (D4)

Note that this expression is valid for both population snapshot

and lineage observations. While this quantity will change

with time, it will eventually approach a steady-state value

and this is what we are here interested in. We make the

ansatz that given long enough time, 〈Ci(t )〉 = λi〈C1(t )〉 where

λi are some time-independent constants which need to be

determined (except for λ1 = 1 which follows immediately).

Substituting this assumption in Eq. (D4) we find

�i,p =
λi

1 +
∑N

j=2 λ j

. (D5)

Hence, next we determine the values of λi. Substituting the

ansatz in Eqs. (D2) and (D3), we find the relationship

λi−1

λi

= 2λN , i = 2, . . . , N (D6)

with λ1 = 1. Solving this recurrence relation one finds

λi = 2(1−i)/N . (D7)

Substituting the latter expression in Eq. (D5) and simplifying

one finally obtains

�i,p =
21/N − 1

2(i/N )−1
, i = 1, . . . , N (D8)

which in the limit of N → ∞ yields the familiar age struc-

ture in a population which doubles at mitosis, i.e., f (t ) =
21−t/T log 2/T . Note that this result is in contrast to the phase

distribution in the single-cell measurement case, which was

given by a uniform distribution, i.e., �i,s = 1/N for all i. In a

population we are more likely to observe cells in an early cell

phase compared to lineage data. Note that incidentally we can

derive the population growth rate (see next section) from this

formalism, which is necessary to derive the age distribution in

a population for each phase.

2. Population growth rate

To derive the population growth rate, we consider 〈C(t )〉 =
∑

i〈Ci(t )〉, the expected total number of cells, i.e., the size

of the population. From Eqs. (D2) and (D3) we then find in

the long-time limit when the proportion of cells in each phase

relative to the total number of cells, i.e., �i,p, becomes stable

that the growth of the cell population is given by

d〈C(t )〉
dt

= k〈CN (t )〉 = k�N,p〈C(t )〉 = k(21/N − 1)〈C(t )〉.
(D9)

This shows that the average number of cells in the population

grows like 〈C(t )〉 ∝ eλt where λ = k(21/N − 1). Note that in

the limit of N → ∞ and k = N/T this becomes λ = log 2/T ,

showing that the population doubles in size after every cell

cycle when we consider the case of a deterministic cell cycle

of length T .

3. Population age distribution

Let us consider 〈Ci(t, τ )〉 the average number of cells in a

population that are in cell phase i at time t that have been in

that cell phase for a duration τ , i.e., are of an age τ . After a

small time duration δ, all the cells will either advance to an

age τ + δ or advance to the next cell phase. Therefore, we can

write the conservation equation

〈Ci(t + δ, τ + δ)〉 = 〈Ci(t, τ )〉 − 〈Ci(t, τ )〉kδ, (D10)

where k is the rate of advancing to the next cell phase.

Assuming that there is a stationary distribution for the age of

the cell population at a phase i, πi(τ ), we can write 〈Ci(t, τ )〉
as 〈Ci(t, τ )〉 = 〈Ci(t )〉πi(τ ), where 〈Ci(t )〉 as before is the

expected number of cells in cell phase i at time t . Introducing

this factorization of 〈Ci(t, τ )〉 in Eq. (D10), and taking the
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limit δ → 0, we get the differential equation

d〈Ci(t )〉
dt

πi(τ ) +
dπi(τ )

dτ
〈Ci(τ )〉 = −〈Ci(t )〉πi(τ )k, (D11)

where we have used the chain rule to compute the derivative

of d〈Ci(x, x)〉/dx|t,τ . Given that in the long-time limit, the

population of cells is growing at an average rate λ, which we

derived in the previous section, and since the probability of

finding a cell in a certain phase i, �i, is constant in time, the

number of cells in a given phase has to grow with the same rate

as the population. This implies that therefore d〈Ci(t )〉/dt =
λ〈Ci(t )〉. Introducing this equality in Eq. (D11), we get an

equation solely for πi(τ ),

λπi(τ ) +
dπi(τ )

dτ
= −πi(τ )k, (D12)

which can be solved by

πi(τ ) = (λ + k)e−(λ+k)τ = k21/N e−k21/N τ . (D13)

Finally, we note that there is a direct link between the age

distribution at measurement and the phase length distribution

on a population level. In order to achieve a stable distribution

for the age at measurement in the long-time limit we note that

the population phase length distribution has to be consistent

with the age distribution. Since the population age distribution

at observation in each phase is still exponential, but now with

rate k21/N , the distribution for the time it takes to progress to

the next cell phase in a population must also be exponentially

distributed with the same rate. This means that in a population

of cells we observe a quicker progression through the phases

(in distribution on a population level) than when following

a single cell. This can be understood from the observation

that cells that quickly progress through their phases (and thus

divide quickly) will be more abundant in populations than in

single-cell lineages.

4. Population snapshot observation distribution

By the results of the previous section, we can derive

the distribution for population snapshot measurements from

the single-cell measurement statistics via a rescaling of the

phase progression rates. The distribution for the length of

the cell phases is still exponential, which means the Marko-

vian nature of the problem remains intact in the popula-

tion case. This implies that in all the equations for the

PGF derived earlier (for single lineages) we replace k �→
k21/N to find the corresponding population equations. The

recipe for calculating population observations therefore is

as follows:

(1) To obtain Gi,p(z), replace k �→ k21/N in the expres-

sions for the lineage distributions Gi,s(z), e.g., in Eq. (50).

(2) Average over the different phases via Eq. (D1) using

�i,p from Eq. (D8).

Using these steps, we can then solve for the snapshot

observation distribution for model IV with replication which

we will write as Gp(z) = GN,p(z)W (z), where

GN,p(z) =
∞
∏

s=0

[

1 −
2xy

x(N21/N + 2y) − N21/N 2s

]N−M[

1 −
xy

x(N21/N + y) − N21/N 2s

]M

, (D14)

W (z) = (2
1
N − 1)N (x − 1)

⎛

⎝

[
2xy

N (x−1)
+ 2

1
N

]N−M{[
xy

N (x−1)
+ 2

1
N

]M − 1
}

(2
1
N − 1)N (x − 1) + xy

+
[

2xy

N (x−1)
+ 2

1
N

]N−M − 1

(2
1
N − 1)N (x − 1) + 2xy

⎞

⎠. (D15)

This result then yields the explicit snapshot distribution for all the other models considered in this paper. We recover the special

case of model III by taking M = N which in turn simplifies the observation distribution to

GN,p(z) =
∞
∏

s=0

[

1 −
xy

x(N21/N + y) − N21/N 2s

]N

, (D16)

W (z) = (2
1
N − 1)N (x − 1)

[
xy

N (x−1)
+ 2

1
N

]N − 1

(2
1
N − 1)N (x − 1) + xy

. (D17)

Finally, we obtain a generalized version of model II by taking N → ∞; we call this generalized because unlike the one in the

main text, here for completeness we return to u = M/N so that we can model replication in model II. This yields

GN,p(z) =
∞
∏

s=0

exp

[
(1 − u)2xy

2s − x

]

exp

(
uxy

2s − x

)

= exp

{

[2(1 − u) + u]xy

∞
∑

s=0

1

2s − x

}

, (D18)

W (z) = (log 2)(x − 1)

[

exp
{

(1−u)[x(2y+log 2)−log 2]

x−1

}(

exp
{

u[x(y+log 2)−log 2]

x−1

}

− 1
)

x(y + log 2) − log 2
+

exp
{

(1−u)[x(2y+log 2)−log 2]

x−1

}

− 1

x(2y + log 2) − log 2

]

. (D19)

Note that for u = 1 this further simplifies to

Gp(z) =
(x − 1) log 2

xy + (x − 1) log 2

{

exp

[
xy + (x − 1) log 2

x − 1

]

− 1

}

exp

(

xy

∞
∑

s=0

1

2s − x

)

, (D20)
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which is the population equivalent of model II presented in the main text. In particular, we can now write the mean of protein

numbers for generalized models II, III, and IV, respectively,

〈n〉p =
21−u

log 2
αy, (D21)

〈n〉E
p =

1

N (21/N − 1)
αy, (D22)

〈n〉H
p =

21−(M/N )

N (21/N − 1)
αy, (D23)

where we recall u = M/N in the limit of N → ∞. We can also write expressions for the variances for generalized models II, III,

and IV:

σ 2
p =

21−u

log 2
αy +

4(u log 2 − 2 log 2 + 2−u3)

3 log 2
α2y

+
21−2u{−4u[u2 log2 2 − u2 log 2(1 + 2 log 2) + 2 + 4 log2(2) + 4 log 2] + 2u+1(3 + 2 log 2) − 2}

log2 2
α2y2, (D24)

(

σ E
p

)2 =
1

N (21/N − 1)
αy +

[
2

(2
1
N − 1)N

−
1

3
22− 1

N

]

α2y +
[

1

(2
1
N − 1)2N2

−
21− 2

N (3N + 1)

3N

]

α2y2, (D25)

(

σ H
p

)2 =
21−(M/N )

N (21/N − 1)
αy +

4
[

3 × 2− M
N + 2−1/N (2N − M ) + M − 2N

]

3(2
1
N − 1)N

α2y

+
(

−
21− 2

N (3(2
1
N − 1){−M2 + 2

1
N [−4MN + (M − 3)M + 4N2] + 4MN + M − 4N2})

3(2
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α2y2. (D26)

Note that generalized model II for u = 1 simplifies to model II in the main text:

〈n〉p =
αy

log 2
, σ 2

p =
1

log 2
αy +

6 − 4 log 2

3 log 2
α2y +

1 − log2 2

log2 2
α2y2 ≃ 1.44αy + 1.55α2y + 0.08α2y2.
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