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Exact solution of the Hu-Paz-Zhang master equation
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The Hu-Paz-Zhang equation is a master equation for an oscillator coupled to a linear passive bath. It is exact
within the assumption that the oscillator and bath are initially uncoupled. Here an exact general solution is
obtained in the form of an expression for the Wigner function at tinmeterms of the initial Wigner function.

The result is applied to the motion of a Gaussian wave packet and to that of a pair of such wave packets. A
serious divergence arising from the assumption of an initially uncoupled state is found to be due to the
zero-point oscillations of the bath and not removed in a cutoff model. As a consequence, worthwhile results for
the equation can only be obtained in the high temperature limit, where zero-point oscillations are neglected. In
that limit closed form expressions for wave packet spreading and attenuation of coherence are obtained. These
results agree within a numerical factor with those appearing in the literature, which apply for the case of a
particle at zero temperature that is suddenly coupled to a bath at high temperature. On the other hand very
different results are obtained for the physically consistent case in which the initial particle temperature is
arranged to coincide with that of the bath.

DOI: 10.1103/PhysRevD.64.105020 PACS nuntder03.65.Ta, 03.65.Db, 05.40a

[. INTRODUCTION state corresponding to a Gaussian minimum uncertainty
wave packet and an initial state corresponding to a widely
The Hu-Paz-Zhang equation is a master equation wittseparated pair of such wave packets. We use these results to
time-dependent coefficients for a harmonic oscillator inter-accomplish our second purpose, which is to critically exam-
acting with a linear passive heat bath of oscillators. Thene the assumption of an uncoupled initial state. We find that
equation is exact and general within the assumption that ighere is a serious difficulty arising from this assumption: the
the initial state the bath is in equilibrium and not coupled tOzero-point oscillations of the bath give rise to a divergence
the oscillator. It was first derived in generality using paththat leads to an instantaneous spread of a wave packet to
integral methods by Hu, Paz and Zhddg, although equiva- infinite width. In effect, the state instantaneously disappears.
lent equations had been obtained earlier for the case of amhe result is that meaningful results can be obtained only in
Ohmic bath(2,3]. See als¢4]. Later a derivation in the form  the high temperature limit, where one conventionally ne-
of an equation for the Wigner function was given by Halli- glects the zero-point oscillations. Even in this limit, we find
well and Yu[5], who corrected a misprint in the earlier pub- significant difficulties arising from the fact that translational
lication. Using the notation of these last authors, the equatiomvariance is broken. Nevertheless, we find for short times

has the form expressions for wave packet spreading and attenuation of
W 1 oW W oW coherence that are consistent V\_/ith Fhose fqu_nd by earlier au-
— = — —p—+mOAt)g—+2T (1) Py thors. On the other hand, by adjusting the initial temperature
ot m™ Jq ap ap of the particle to be the same as that of the bath, we find in

the high temperature Ohmic limit results consistent with ex-
(1.1) act calculations which take into account entanglement at all
' times|[6,7].

The plan of this paper is as follows. The basis for our
whereQ?(t), 2I'(t), h(t), andf(t) are time-dependent pa- discussion is the quantum Langevin equation, so we begin in
rameters for which one has explicit expressigase Egs. Sec. Il with a description of that equation and its solution,
(2.19 and(3.8) below]. first for the stationary case, then for the initial value case,

The integration of this equation, with its time-dependentand finally for the form local in time. Next in a short Sec. llI
coefficients, appears to be a formidable problem. Indeed, eawe give a simple derivation of the exact master equation
lier discussions have generally used numerical methods. Out.1). Then in Sec. IV we derive our general solution. The
purpose here is, first of all, to present an exact general solikey result, given in Eq(4.15, is an explicit expression for
tion of this equation. This solution can be evaluated in exthe Wigner function at time in terms of the initial Wigner
plicit, closed form for many problems of interest. In particu- function. A particularly useful result, given in E¢.249), is
lar, we exhibit the solution for two such problems: an initial an expression for the probability distribution at tirheln

Sec. V we first evaluate this expression to find the probability
distribution corresponding to an initial Gaussian wave
*Permanent address: Department of Physics, University of Michipacket. There we find the divergence mentioned above,

+AamI(t)h(t) azw-i—ﬁr(t)f(t) >
m - 4 L
ap? dqap

gan, Ann Arbor, M1 48109-1120. which in the Appendix is shown to be present even in a
"Permanent address: Department of Physics and Astronomy, Louinodel with a high frequency cutoff. Also in Sec. V we con-
siana State University, Baton Rouge, LA 70803-4001. sider the motion of a pair of Gaussian wave pack&ehro
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dinger “cat” state and obtain an explicit expression for the wherec is a positive constant.

attenuation of coherence. For the case of a particle at tem- The solution of the Langevin equatié®.1) can be written
perature zero suddenly coupled to a bath at high temperature
T, this leads to an expression for the decoherence time
equivalent with that appearing in many places in the litera-
ture. But for a consistent initial state in which the tempera-
ture of the particle is adjusted to coincide with that of thewhereG(t), the Green function, is given by
bath, a very different expression for the decoherence time is
obtained, an expression corresponding to decoherence with-
out dissipation[7]. Finally, in Sec. VI we summarize our
results and make some concluding remarks.

xs(t)=ﬁxdt’G(t—t’)F(t’), (2.5

1 (= A
G(t)=EJf@dwa(w-ﬁ—iOJ“)e_"”t, (2.6

with «(z) the familiar response function
Il. THE LANGEVIN EQUATION

A. Stationary process a(z)= — . (2.7
. o . . —mZ—izu(2)+K
The Langevin equation is a Heisenberg equation of mo-

tion for x(t), the dynamical variable corresponding to the Here we have introduced a subscript s to emphasize that
coordinate of a Brownian particle in equilibrium with a lin- x(t) is a stationary operator-process, in the sense that corre-
ear passive heat bath. For the case of a particle in an externations, probability distributions, etc. for this dynamical vari-

oscillator potential, this equation for the stationary processble are invariant under time-translation—<t+to). In par-

has the well known fornjg] ticular, the correlation,
t
N ’ I\ (! 1
mx-+ f_ dt’ w(t—t")x(t") +Kx=F(t), (2.1 §<Xs(t)xs(t’)+Xs(t’)Xs(t)>
where . (t) is the memory functionk is the oscillator force (e - ho ,
constant and=(t) is a fluctuating operator force with mean “ 7)o doIm{a(w+i0 )}CotthOSw(t—t ),
(F(t))=0, and whose correlation and commutator are given
by (2.8

1 is a function only of the time-difference-t’. In addition,
E(F(t’)F(t)JrF(t)F(t’)) for the free particle, wher& =0, the process is invariant
under space translatiox-x+a).

1= ~ i
= ;Jo do Re{u(w+i0")}hw B. Langevin equation for the initial value problem

The description of the system given by the Langevin

fhw ; ; ; ;
% coth cosw(t—t'), equation can be realized by a bath of harmonic oscillators.

2kT Perhaps the simplest such system, and the one we use as the
(2.2  basis of our discussion of the Hu-Paz-Zhang equation and its
) 2h (= ~ - solution, is the independent oscillator model, for which the
[F(O),F(t")]= Gfo do Re{u(w+i07)}w Hamiltonian is[9,8]
Xsinw(t—t’). P 1, pol, 2
) H—2m+2Kx +; 2mj+2mjwj(qj X)°r.
Here n(2) is the Fourier transform of the memory function: (2.9

~ (" izt Writing the equations of motion and then eliminating the
wm(2)= o dtu(t)e”. 2.3 bath variables in terms of their initial values, one obtains the
Langevin equation for the oscillator with given initial values
As a consequence of the second law of thermodynamic$10l,

.(z) must be what is called a positive real function: analytic ¢
and with a real part positive in the upper half plane. In par- m'>'<+f dt’ w(t—t")X(t") +Kx=— u(t)x(0)+ F(t),
ticular, (z) can be represented in terms of the real part of 0 (2.10
its boundary value on the real axis through the Stieltjes in- '
version theorem where the memory function is given by
- 2iz (» Reu(w+io™)}

do————F—

M(Z)Z—iCZﬂL? . 22 . (249 ,u(t)=; mj o’ cosw;to(t), (2.1
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while the random force is given in terms of the initial bath depends upon the low frequency behavior of its Fourier
variables by transform. It follows that, for long times, the dependence
upon the initial coordinates in Eq$2.15 disappears and,
from a comparison of Eq2.16) with the expressiof2.5) for
Xg(t), that X(t) becomes the solution of the stationary
(2.12  Langevin equatiori2.1).

F() =2 {g;(0)m;w? cosw;t+p;(0)w; sinw;t}.
J

To express the solution of this equation, we first note that
the Green functiori2.6) vanishes for negative times and for

positive times is the solution of the homogeneous equation, We want now to write the Langevin equatiéh 10 in the
form of an equation that is local in time with time-dependent

coefficients. To get this form, we first invert Eg&.15 to
express the initial variables in terms of those at timg/e
next form the time derivative of the second of E¢2.15
with the initial conditions and then insert these expressions for the initial variables in
the right hand side. We can write the result in the form

C. Form local in time

. t .
mG+fdt’,u(t—t’)G(t’)+KG=0, (2.13
0

. 1
G(0)=0, G(0)=—. (2.14 . : 1
m X+ 2T (1)x+ Q?(t)x= EF(t), (2.18

With this, we can show that the general solution of the initial
value Langevin equatiofR.10 is given by where we have introduced the quantities

X(t) =mG(1)x(0) + MG(1)X(0) + X(t) ()= GG -GME(t)  dlogG>-GE)

. . . . (2.19 G2(t) - G(1)G(1) dt ’

X(H)=mG(t)x(0)+mG(t)x(0)+ X(t), (2.19

G2(1) - G(H)G(b)
GAt) -G(H)G(t)

where we have introduced the fluctuating position operator, Q2(t) =

t
X(t):fodt G(t=t")F(t"). (216 This equation is the local form we seek. In obtaining this

form we have used the fact thaA{(t) is the solution of the
In our subsequent discussion we assume that#& the  inhomogeneous equatiof2.10 with the initial conditions

system is in a state in which the oscillator is not coupled tox(0)=0 andX(0)=0. It follows thatX(t) is also the solu-
the bath and that the bath is in equilibrium at temperalure tion of the local equatioti2.18 with the same initial condi-

In particular this means that the initial coordinates of thetions. The fact that the symbols used for the quantitte$9
oscillator are not correlated with those of the bath, i.e.also appear in the exact master equafibr) is not acciden-
(x(0)F(t))=(x(0)F(t))=0. On the other hand, with regard tal, as we shall see in the next section, where we give a
to the bath, the equilibrium is with respect to the bath Hamil-derivation of that equation.

tonian, Hpa, Obtained by setting the oscillator variabbes

andp equal to zero in Eq(2.9), lll. THE TIME-DEPENDENT MASTER EQUATION

Hpat= 2

‘ Z_r:.l__l—imjwqujz (2.17) obtain expressions for the first and second moments, first
: J from Eg. (1.1) and then from the local Langevin equation
With this we find(F(t))=0, and the correlation and com- (2-18- From a comparison, we obtain explicit expressions
mutator are the same as those for the stationary equatiofp” the time-dependent parameters in the Hu-Paz-Zhang
given in Eqs.(2.2). equation(1.D).
Typically, the memory functionu(t) falls to zero in a In_ forming the moments of Eq1.1), we take note of the
very short timer, called the relaxation time of the bath. For relations[11]
times long compared with this bath relaxation time, the extra
term on the right hand side of ER.10 vanishes, but only
for much longer times, times long compared with the oscil-
lator decay time, will this equation become the stationary
equation, with the lower limit on the integration taken to be ih o ih 9
—o, To be more specific, we note from the general expres- Pp{ P~ 2 99 W, ppe|pF 2 49 W.
sion (2.6) for the Green function that, so long as the oscilla- (3.2
tor force constanK is not zero, the Green function will
vanish exponentially for long times. This follows from the Here on the leftx and p are the position and momentum
Tauberian theorem: the asymptotic behavior of a functioroperators for the oscillator, while is the density matrix

( p2 1 ) The strategy for deriving the exact master equation is to

Xp<

in d W in d W
CHf% » o PXer 2 op)
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operator. On the righy andp are the c-number variables of relations ofx with F. Using the same argument in the last of

the Wigner functionW(q,p;t). Thus, for example,
in d
2 ap

(X)=Tr{xp}= f:dqf:dp )w. (3.2

g+

In this way, forming the first moments of E¢L.1), we find
. 1 .

()= =(p), (p)=—2T(1)(p)~mOX1)(x). (3.3

Eliminating (p), we find

(X)+ 2T (t)(x)+ Q2(t)(x)=0. (3.4)

If now, we form the mean of the local Langevin equation
(2.18), using the fact thatX(t)) =0, we get exactly the same

equation, but with now the quantitied"2t) andQ?(t) given
by the expressiong.19.
Next, forming the second moments of Eq.1), we find

d(x?y 1

d(xp+px) 2
T_ E<p2>_ 2mQZ(x2>
—2I(xp+px)+2hI'f, (3.5
d(p?)

T —mQ%(xp+px)—4L(p?)+2amIh.

On the other hand, using the local Langevin equatit8),
we find

d<dxtz>=(x$<+ XX),

d(xx+xx)

it =2(x?) + (xX+ XX)

=2(x?)— 2Q2(1)(x?) — 2T (t){XX+ XX)

+ SO+ FOXD), (3.6

dfjxtz>:<'xx+;<‘x>

= — Q2(t){(xx+xx) — 4T (1)(x?)

1. .
+ E(X(t)F(t) +F(t)x(1)).

these equations, we see that after a little rearrangement we
can write

d<dxtz>=<xi(+ XX),

d(xx+xx)

TR 2(x?) = 202(t)(x?) — 2T (t){xx+ XX)

1
+ —(X(OF(H)+FOX(D), (3.7

o2
¥= — Q2(t)(xx+xx) — 4T (1)(x?)

1. .
+ E(X(t)F(t)%— F(t)X(1)).

We now compare these equations with E&s5) obtained

from Eq.(1.1). In doing so we must interprgt=mx. We see
then that we can identify

2AT (D) (1) =(X()F(t) +F(t)X(1)),

. _ (3.9
21T (1)h(t) = (X()F(t) + F (1) X(1)).

This completes the derivation of the exact master equation
(1.2), with explicit expressions for the time-dependent coef-
ficients.

IV. GENERAL SOLUTION OF THE TIME-DEPENDENT
MASTER EQUATION

The task of solving Eq(1.1), with its time-dependent
coefficients given by the complicated expressighd9 and
(3.8, appears formidable. Indeed, if one were presented with
the equation with no idea of the origin of the coefficients its
solution would be very difficult. But we have in EqR.15
an explicit solution of the Langevin equation describing the
underlying motion. This will allow us to construct the gen-
eral solution of the equation.

To begin, we remind ourselves Ed..1) is an equation for
the reduced density matrix, given by the partial trace over the
bath coordinates. That is,

W<q,p;t)=f dqf dpWsystent 0,050, pit). (4.0

Here Wgysiemis the Wigner function for the system of oscil-
lator and bath, withg=(q;,d,,---) and p=(p1,P2, - )

the bath coordinates and momenta. Now, the system is one of
coupled oscillators and for such a system the solution of the
equation of motion is formally identical to that for the cor-
responding classical system. That is, the Wigner function for

Now, in the right-hand side of the second of these equationg,o system at timeis related to that at time=0 through the

we use the fack(t) — X(t) is not correlated with=(t) This

should be clear since, as we see from Egsl5), this com-

relation

bination depends only upon the initial coordinates of the 0s- Wyygiertd,P;0,P;t) = Wysten{d(0),p(0);9(0),p(0);0),

cillator. Therefore we can replacgt) with X(t) in the cor-

(4.2)
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whereq(0),p(0);q(0),p(0) are the initial values for which the second line the fact that the motion of the system corre-
the solution of the equations of motion is such tlogt) sponds to a canonical transformation for which the Jacobian
=q, p(t)=p, q(t)=q, p(t)=p. Finally, we remind our- is unity, in the third line the fact that the Jacobian of the
selves that for the Hu-Paz-Zhang equation the initial state inverse transformation is the reciprocal of that of the direct
a product state corresponding to a Wigner function of thdransformation, and finally in the last line the definition of
form [11] the Jacobian as the determinant of the matrix of partial de-

rivatives. Now, to evaluate this Jacobian we use the solution

Wsysted(q,p;q,p;O)=W(q,p;O)H wi(q;,pj). (4.3  (2.19, which we write in the form
J

Here, on the right(q,p;0) is the initial Wigner function q=q(t)=mG(t)q(0)+ G(t)p(0) +X(t),
for the oscillator and the product is the Wigner function for . _ (49
the bath, in whichw;(q;,p;) is the Wigner function for a p=p(t)=m?G(t)q(0)+mG(t)p(0) +mX(t).
single oscillator of mase; and frequency; , o

1 Here we recall, from the definition®.16 of X(t) and the

wi(g;,pi)= expression(2.12 for F(t) that X(t) depends only on the
P wheoth(f wi/2KT) initial coordinates of the bath, which are held fixed in form-
2, 2 22 ing the partial derivatives in the last line of Ed.7). There-
pr+miwiq;
X exp — ! 1 1A . (4.4  fore, we see that
m;% w;coth(7 w;/2KT)
Combining these results, we see that the reduced density a(q,p;a.p) 1 4.9
matrix at timet is given by 3(q,p;q(0),p(0)) m2(G2—-GG) '
W(q,p;t)

and, using Eq(4.6) we can write Eq(4.5) in the form
W(q,p;t)= . "
45 (q,p;t) (G- GG)

, (4.10

This reduced density matrix is the solution that we seek. S@vhere the brackets represent the average over the initial
far, however, all we have done is to carefully indicate theequilibrium distribution of the bath. Again, we remind our-
definition of this quantity, we must now carry out the indi- selves that in the integrang(0) andp(0) are obtained by

cated operations to obtain an explicit expression. inverting Egs.(4.9). That is,

As a first step we transform the integration to the initial
bath coordinates, holding andp fixed. Under this transfor- mG(g—X)—G(p—mX)
mation, q(0)= YT = ,

m<(G*—GQG)
dadp= PP __qq0)api0), (4. (4.1
3(9,p;a(0),p(0)) ' ' —m2G(gq—X)+mG(p—mX)
where the factor is the Jacobian of the transformation, for P(0)= m4(G2-GG) '
which we have used the notation of Landau and Lifshitz
[12]. But, SinceX is linear in the initial bath variables, its average has
a(q,p;9,p) a(q,p;9,p) the Gaussian property: averages of all moments can be ex-

pressed in terms of those of the second moment.

3(9,p;q(0),p(0)) d(q(0),p(0);q(0),p(0)) We can carry out this average if we introduce the Fourier

3(q(0),p(0):q(0),p(0)) transform of the initial Wigner function, writing
d(d,p;q(0),p(0)) B B
_ 9(q(0),p(0);q(0),p(0)) W(q,p;0)= (Zﬂ_ﬁ)zfdede PWQ,P;0)e'(PatQp)h
d(d,p;q(0),p(0)) (4.12
:( d(q,p;d(0),p(0)) )_1 Inserting this in Eq(4.10, we can write
3(q(0),p(0);9(0),p(0))
_ 1 3 ®
(o o  9q op \* W(q,p;t)= : —| dQ| dPWQ,P;0)
_(aq<0> 7p(0) ~ 3p(0) aq<0>> | (ZWﬁm)Z(GZ‘GGJ“” -
(4.7) x(expli[Pa(0)+Qp(0)1/A}). (4.13

Here, we use in the first line the fact that the Jacobian of twa'he form of this result can be made a bit simpler if we
successive transformations is the product of the Jacobians, introduce a transformation to variablesands, defined by
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Q=mGr+Gs, P=m2Gr+mGs. (4.14 Itis Qf intgrest that this expressi@a.18) for the transition.
probability is formally the same as that for the classical
, PR _ Kramers equatiofil3]. The difference is that the Green func-
We then f|nd2 thzzith(p)+Qp(0)—r(p mX) +s(q=X) tion and the mean square of the fluctuating position and ve-
anddQdP=m"(G"—~GG)drds, so that Eq(4.13 becomes  |ocity operators here are for a quantum oscillator interacting
with an arbitrary heat bath, while in the classical solution of

] 1 * ® the Kramers equation they are for a classical oscillator inter-
W(q,p:t)= (Zwﬁ)szdrjxdsV\(mGr +Gs, acting with an Ohmic bath. Another significant difference is
that the solutior{4.20) is that of the mean of the initial value
m2Gr +mGs;0)el(rP+sa/h Langevin equatiorf2.10, with the term— u(t)x(0) on the
_ o right-hand side. The classical solution of the Kramers equa-
X @~ (W22 (A r 2 m(XX XX)rs +(X%)s?) tion corresponds to dropping this term, since it is describing

the classical stationary process.

As a first illustration of the utility of the forn{4.15, we
show how the equilibrium solution arises for long times.
First we recall that, so long as the oscillator force constant
<e—i(er+Xs)/h> _ o (UMK 2 m(xXK+ X0rs + (X2)s) is not zero, the Green function will vanishas . Next, we

recall that, again as—, X(t)—x(t), the solution(2.5) of
(4.16  the stationary Langevin equati@@.1). Thus, we see almost

This is the form of the solution that is perhaps most useful.by inspection that

In its evaluation, the Green functioB(t) is given by Eq.

(4.15

where we have used the Gaussian property to write

(2.6), while X(t) is given by Eqg.(2.16 and its correlations 1
are evaluated using Eqe.2). W(q,pit) - ——F——
While we find Eq.(4.15 to be the most useful form of the T 2amV(x3)(x?)
solution, one can insert the inverse of the Fourier transform 5 ’
(4.12 to express the solution in the form of a transition xexp — —E2— -9 (421
operator acting on the initial Wigner function, 2m3(x2)  2(x2)

W(a,p;t)= Lcdq’fﬁwdp’P(q,p;q’,p’;t)W(q’,p’;O)- where(xZ) and(x2) are the equilibrium values of the mean
4.17 square position and velocity, given by the fluctuation-
' dissipation theorem,

Here P(q,p;q’,p’;t), called the transition probability, can

be written
2 :Efmd Im{a(w+i0")}cot o
1 <Xs> mJo @ %-'
P ] 1 ,1 ,lt = ——7eX _lR'A_l'R [}

(a.p;q",p";t) Py -3z 1 (4.22

19 x2) ﬁjwd 2Im{ +i0+)}cothz—ﬁw

- ww alw .

where we have used a dyadic notation with 7o kT

! m ..
m?(X?2) 5(XX+XX> This result is perhaps more familiar in the weak coupling

At)= limit, where I{a(w+i0")}— 78w — wy)/2Mmwy With w,

=JK/m. Then (x2)=w3(x2)=(fwo/2m)cothfiwy2kT)
and (4.21) becomes the familiar equilibrium form of the
(4.19  Wigner function for the uncoupled oscillatpt1].
p—{p(t)) Finally, we remark that the interest is most often in the
q—(q(t)})' probability density at time, given by

g<xX+ XX) (X?)

R(t)=<

Here, inR, the quantitiegq(t)) and{p(t)) correspond to w
the mean of the initial value solutiof2.15 with initial val- P(x;t):f dpWx,p;t). (4.23
uesq’ andp’. That is, -

(q(t)=mG(t)q"+G(H)p’, Using the solution(4.15, the integral overp gives a
) _ (420 s-function inr. With this we can perform theintegration to
(p(t))=m2G(t)q" +mG(t)p’. obtain the result
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1 (= _ . the Appendix, this result is derived explicitly in the Ohmic
P(x;t)= >h dsWGs,mGs;0) limit of the single relaxation time model.
- The only other quantity that we need to evaluate the gen-
1 X eral result is(X?(t)), the mean square of the fluctuating po-
X exp{ — ——(X?)s?+i —s] . (4.24  sition operator. In this connection, it is a simple matter, com-
212 h paring the stationary solutiof2.5) with the definition(2.16)

) . - . of X(t), to obtain the general relation
In the next section, we evaluate this probability density for

some problems of interest. 0
X(t)=xs(t)—xs(0)+f dt’'{G(—t")—G(t—t")}F(t").
V. EXAMPLES (5.5
In this section we consider the evaluation of the genera| . . . . . .
n discussing this operator, in particular the mean of its

result(4.24) for the case of a free particl&E0) interacting .
with an Ohmic bath. We have chosen the Ohmic model sincga oo ;:;'3'/ rgf:)kcee:;e of the mean square displacement

it is that used most extensively, almost universally, in discus-

sions of dissipative systems. Newtonian drag is Ohmic, as is — 2
. . T S(t)=([x4(t) —Xx40

the Stokes force and, of course, classical Brownian motion. =[x =x0)]9

In quantum electrodynamics, the Weisskopf-Wigner approxi- o - ho

mation is an Ohmic model. In addition, our results take their = 7f0 do Im{a(w+i07)jcoths, (1 - coswt).
simplest form for that model. In the Appendix we present

selected results for the more general single relaxation time (5.6
model.

The examples are intended, first of all, to illustrate the The discussion in the previous paragraph has been gen-
power and utility of our exact solution. They are choseneral, applying to an oscillator interacting with an arbitrary
since they appear in a truly large number of recent paperd€at bath. We now specialize to the current case of a free
where approximate methods were used. They are also tHRarticle interacting with an Ohmic bath. The Green function
examples discussed, by numerical methods, in the origind$ then given by Eq(5.3), from which we see thaB(—t')
Hu-Paz-Zhang paper as well as in the earlier papers we haveG(t—t')=-mG(t)G(—t") and Eq.(5.5 becomes
cited.

X(t)=x4t) =x40) —mG(t)x40). (5.7)
A. Preliminary formulas

. . Forming the mean square, we can write
For the Ohmic bath the memory function has the form 9 a ’

m(t)=2£8(1), (5.3) (Xz(t))zs(t)—mG(t)é(t)+%szz(t)é(O). (5.9

where ¢ is the Newtonian friction constarithe factor 2 is
because the integral in the Langevin equation is over onlyn the same way we find
half the delta-function In this case Eq(2.10 is already in
local form. With the form(5.1) for the memory function and YRR oo o
with K=0, the response functigi2.7) takes the simple form (X5(0)= §[1+m G1s(0) =mG(t)s(t). (5.9

B 1 For this Ohmic case, using the for(b.2) for the response
a(z)= —mA— izg' (5.2) function in the expressiofb.6) for the mean square displace-

ment, we find

The Green functiori2.6) is then

h hw
cm="" 5.3 =25 AT coma. (5.0
= . s(t)y=— w—————(1—coswt). (5.
{ T Jo  w(mlw®+?)
If we form the quantitieg2.19 with this Green function, we 1. High temperature limit
find '
In the high temperature limitkT># {/m) we replace the
l 5 l hyperbolic cotangent in Eq5.10 by the reciprocal of its
2l(M=—0y Q)= —5(1). (5.4 argument(thus, neglecting the zero-point oscillation¥he
result takes the form14]
For any finite time these expressions follow trivially. The —tum
delta function is not so easy to see, although it should be S(t)= Zk_T t—ml_e (5.11)
obvious from the form2.10 of the Langevin equation. In 4 4 ' '
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B 2m b?
“NZ o x|
(5.18

—at —timy2 . _— . .
1-e-¢m (1—e <M ) We consider an initial state corresponding to a Gaussian

kT
2010\ _ _
(X5(1) 7 |2tm2m—r m ¢ wave packet of the form,

fluctuating displacement, we see that, still in the high tem-

With this in the expressiofb.8) for the mean square of the 0 1
J dxexpr——ax2+ibx
= o 2
perature limit,

512 _ 1 (X—X)?
2. Zero temperature ¢(X'O)_(2WU2)1/4GX T2 | (5.19

At zero temperature, we replace the hyperbolic cotange
in Eq. (5.10 by unity. The result can be written

n{'his is a so-called minimum uncertainty wave packet, cen-
tered at(x(0))=x, and with variance{Ax?(0))=([x(0)
—(x(0))]1?)=02. The corresponding mean momentum is

2k [t )
S(t)=w—§ (m : (5.13  (p(0))=m(x(0))=0 and the momentum variandeorre-
sponding to minimum uncertaintys (Ap?(0))=m(x(0)
where[14] —(x(0))1?)=%2/40. The Wigner function corresponding to
this state is
- 2
100= [“ay——(1-coy) RS S N BT BV B
0 y(y2+X2) W(q!plo)_ ﬁ —oché lr/j q_ 510 17[, q+ Eyo
1 _
= — _[a XFj XEif 1 —X 2 2 22
logx+ 7y 2[e Ei(x)+eEi(—x)]. (5.14 e (@—X0)* 207 . (5.20
wh 2072 72
Here y=0.577215665 is Euler's constant. Note the eXpany. eourier transform is
sions[15], for smallx,
I(x)=—(logx+y)(coshx—1) VV(Q,P;O)=J7 quf dpe '(ParePW(q,p;0)
1 “ox" “(—x)"
——le*>, —+e* ” - Q Q
2 e o~ n|n +e nZl n'n I (515) — fxdqelpq/ﬁ¢<q_ E,0) lﬁ* q+ E,O>
and, asymptotically, for large, Q%  o?P?  x,P
=eX _F_W_iT (5.2],)
| 1 3! 5l 7
|(x)~logx+y= 2 oA e (5.16 Putting this in the expressia@.24) for the probability den-

sity at timet, we find
Here we see that there is a serious concern: for srtile
second derivativé”(x)= —logx and therefore the term in- P(x:1)= 1 exp{

volving s(0) in the expressioii5.8) for (X?(t)) is logarith- V2m(AXA(1))

mically divergent. This divergence persists for long times,

[Xx—mG(t)xo]?
2(AX%(1))

where
where(Ax?(t)) is the variance of the position, given by
2% h
X?(t))~ —log {t— —log 0", (5.1 . h2G2(t
( ) ure urs (AX3(1))=m2G?(t) o2+ . 2( )+(X2(t)>. (5.23
g

in which the neglected quantity is of the order of a finite .

constant. This divergence for the Ohmic case has, of coursdNis is @ general result, valid for any heat bath. For the
been noted by earlier authdid, 1], but it does not seem to be Ohmic case the Green function is given in E§.3) and
known that this divergence persists in a model with a high{X*(t)) is given by Eq.(5.8). For the single relaxation time
frequency cutoff. In the Appendix we show this explicitly for ?Aogge" the corresponding results are given in E44) and

the single relaxation time model. ) ) ) o ]
The first thing that should strike us in this result is that the

variance is in fact infinite, due to the divergence found in the

expressiorn(5.8) for (X?(t)) at zero temperature. This diver-
To begin, we note that in evaluating the solution we makegence arises from the zero-point oscillations and is therefore

repeated use of the standard Gaussian integral: always present, although conventionally one neglects the

B. Gaussian wave packet
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zero-point oscillations in the high temperature limit. This is a 722
serious difficulty, since it tells us that an initial wave packet (AX3(t))=02+ S, {tIm<l. (5.2
spreads instantly to infinite width. In effect, the state van- amco

ishes. We emphasize that the problem here is not with th
Hu-Paz-Zhang equation or its solution, which are perfectl
correct, but with the assumption of an uncorrelated initial
state. Unease with this assumption has been expressed
many authorgwe note in particular the remarks in the con-
cluding Discussion section of the Hu-Paz-Zhang pdpér
but it does not seem to have been realized how serious are T?ﬁ
consequences. Indeed, the only meaningful results for th
equation are for the high temperature limit, and we confin
our discussion in the following to that limit.

In the high temperature limit, using the expressiérb)
for the Green function in the Ohmic case, the probability
density(5.22 becomes

ut this is exactly the formula for the RMS width of a wave
packet as obtained from elementary quantum mechanics

]. It therefore corresponds to temperature zero and the

ermal spreading one should expect at high temperature is
absent[17,6,7. Now this last is not a difficulty with the
uation or our solution, but with the initial state we have
osen, which corresponds to a particle at temperature zero.
nstead we should choose a state corresponding to a wave
packet at temperatur@, obtained by averaging the initial
Wigner function(5.20 over a thermal distribution of initial
velocities.

To accomplish this, we note first that the initial state
(5.19 corresponds to a particle at re@te., atT=0). To
1 p{ (X_Xoemm)Z] obtain the state corresponding to a particle with veloeity

expp —————— (5.29

Y we simply multiply with a factore'™>*_ With this, we see
x/277<Ax2(t)> that the Fourier transform of the corresponding Wigner func-
tion is obtained by multiplying Eq5.21) by e ™% The
where, evaluating the expressiéh8) for (X2(t)) with the  thermal average of this factor is
high-temperature expressigh.11) for the mean square dis-

placement, the variance is given by m (= mv? mQ Q?
——=| dvexp — s =—i—vi=exp — =,

27KT ) 2kT f 2\
ﬁZ(l_e—{t/m)Z

P(x;t)=
bt 2(AX3(t))

(AX3(1))=o2e 28Um4 (5.28
4{20'2 —
where\ is the thermal de Broglie wavelength,
kT l_efg“t/m (1_e7§t/m)2
+? 2t—2m 7 -m 7 ) . o A
N=—. (5.29

(5.29 VmKT

A difficulty with this result is that the center of the wave Therefore, we see that for a particle at temperaffirtne
packet drifts to the origin. Since for a free particle the originFourier transform of the initial Wigner function is obtained
cannot be a special point, we see from this that the translasy multiplying the corresponding function @=0 by the
tional invariance of the problem is broken by the assumptiorfactor (5.28. Multiplying Eq. (5.21) by this factor we obtain
that the initial state corresponds to an uncoupled system.

Indeed, the system Hamiltonig2.9) is invariant under si- - 1 a?P?  x,P
multaneous translation of the particle and bath coordinatesWr(Q.P;0)=exp — FﬂLﬁ = e h [
(x—x+d, g;—q;+d) and the time-dependent master equa- 7
tion (1.1) correctly describes the dynamics of the system (5.30
with regard to this Hamiltonian. But the bath Hamiltonian where we indicate that this corresponds to temperafurg

(2.17) does not possess this invariance and the initial state ighe subscript. Using this in Eq4.24) we find for the prob-
one in which the bath is in equilibrium with respect to this ability distribution at temperatur€ the result

Hamiltonian. Another way to see this effect is to note that for

a free particle interacting with an Ohmic bath the mean mo- 1 (X—Xqe ™ t¥m)2
tion described1.1) satisfies the equation Pi(Xt)= ——expy - ——————
V2m(AX?)1 2(AX?);
m(x)+ £(X)=—2£8(t)(x(0)). (5.26 (5.3)
That is, the particle receives an initial impulsez(x(0)),  Where we have introduced
directed toward the origin and with a magnitude such that in 52
the_ course qf time the particle arrives at the origin. Another (AX?)r=(AX?)+ = 2(1_e—§t/m)2
difficulty, which in fact has the same origin as the first, is that NL
in the expression5.25) for the variance the first term, which
corresponds to the initial variance, decays in time. But the _ 220t h2(1—e ¢Um)2
initial variance should persist and not decay. o€ 47252
A further difficulty is seen if we look at the variance
(5.25 for times short compared with the Ohmic decay time, +(X2(t))t, (5.32

105020-9
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in which
1— e—{t/m
2t—2m
4

kT

7 (5.33

(X4(t))r=

PHYSICAL REVIEW D64 105020

Here the first two terms in the parentheses correspond to a
pair of Gaussian wave packets of the fofB22), initially
centered ax= *d/2 and drifting toward the origin. The third
term, that with the cosine, is an interference term. The at-

Note that now the variance for very short times includes théenuation factora(t) is the ratio of the coefficient of the

thermal spreadin6,7],
2t2

(AX?) =02+ ey + ﬁtz, {tim<1. (5.34

However, the long time drift of the wave packet center and

the shrinking of the initial variance remain.

C. Pair of Gaussian wave packets

cosine term divided by twice the geometric mean of the first

two terms. We find
exp{ dz} ,

where at high temperatut?(t)) is given in Eq.(5.12 and

RSO
8a?(AX2(1))

(5.38

a(t)

We consider now an initial state corresponding to two{Ax?(t)) in Eq. (5.25.
separated Gaussian wave packets. The corresponding waveFor times long compared with the Ohmic decay tirhe,

function has the form

=

1
'//(X’O):(87702)1/4(1+e—d2/802)1/2 exp| — 402
d 2
X+§
+exp| — P , (5.395
g

whered is the separation and is the width of each packet.
Using Eq.(5.21) we see that the Fourier transform of the
initial Wigner function is given by

WQ.Pi0)= —— Q _oF
Pi0)= ——ggzexp ————
1+e ¢ 8% 21’
Pd 210 2 Qd
S —d“/8d
x(coszﬁ +e coshﬁ .
(5.36

Putting this in the expressia@.24) for the probability den-
sity at timet, we find

1

2(1+e %27 \2m(AX?)

d 2
X— _e—gt/m
2

P(x;t)=

X\ exp| —
2(AX?)
d 2
X+ —g~¢t/m
2 NG
+exp| — +2exp —
2(Ax?) 2(Ax?)
d?>  (1—e m)2p2g2 Ghrdx
e COS
802  32,%20%AX?) 40%(AX?)
(5.37

>m/¢{, we see thatX?(t)) and (Ax?) become asymptoti-
cally equal, growing linearly with. For such long times the
attenuation coefficient5.38 therefore approaches a very
small constant, a(t)~exp{—d¥8¢2}. For times short
compared with the Ohmic decay timeg,<m/{, we
see that (X?(t))=(2¢kT/3m?)t3 while (Ax?(t))=0?

+ (h%t?2/4m?a?) and therefore

B (kT dt?
a(t)=ex —m, t<m/{. (5.39

If we suppose that the slit width is negligibly small, we find
a(t)=exp{—t/7y} where 7q4=3%2%/(kTd?. This, except for a
factor of 6 is exactly the decoherence time that often appears
in the literaturg/18]. But, as we have seen above, this result
corresponds to a particle in an initial state that is effectively
at temperature zero, which is suddenly coupled to a heat bath
at high temperature. The result is therefore unphysical in the
sense that the initial state does not correspond to that envi-
sioned when we speak of a system at temperature

Now, just as in our discussion of the spreading of a single
Gaussian wave packet, this difficulty can be repaired by
choosing the initial temperature of the particle to be the same
as that of the heat bath. The prescription for accomplishing
this is very simple: multipy/(Q,P;0), given in Eq.(5.36),
by the factor given in Eq(5.28). The result is to replace Eq.
(5.36 by

W4(Q,P;0) ! ! + ! Q?
P0)=——g—=eXp —| —5 T =
! 1+e 0B 802 2\
(7'2F)2 Pd 210 2 Qd
_ . —d“/8c
o2 coszﬁ+e coshﬁr‘2 .
(5.40

Putting this in the expressia@.24) for the probability den-
sity at timet, we find, in place of Eq(5.37)
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1 that at any instant of time the system is approximately de-
P(x;t)= coupled. Indeed, such an assumption is essential for the in-
i 2(1+e 9727 2m(Ax0)r troduction of the notion of partial trace, i.e., the trace over
d 2 states of the uncoupled bath as in E4.1), key to the exis-
X— _eét/m> tence of any master equation. Now, our exact solution has
x| exp| — 2 allowed us to see more clearly how se_rio_us i§ that assump-
2<Ax2)T tion. In particular, we have seen that within this assumption
5 an exact solution leads to meaningful results only in the high
x+9e‘“’m) temperature limit. Here we hasten to add that this remark
X2 does not apply to the many successful applications of master
Texpl - (5 € P{ YN equations in the weak coupling approximation.
2(Ax%)r 2(Ax%) For the most part, previous discussions have been made
under the restriction that the initial state of the particle is a
2 1— e {m2z242 Ghd pure state, effectively at zero temperature, while the bath is
- +( ¢ ) cos X at a high temperatur€. There has even been an approximate
802 3220 AX%)t 45X (AX%)7] experimental realization of such a sta0]. However, we

(5.41) would argue that such a state is unphysical in the sense that
it does not correspond to what is envisioned when one
where(Ax?)1 is given in Eq.(5.32. With this, we find that speaks of a system at temperatiiteRather, the initial time
the attenuation coefficient is given by dependence is then dominated by the “warming up” of the
particle, which occurs on a time scale of order the decay time
(X2(t))7 5 m/{. On the other hand, as we have shown, the restriction to
ar(t)=exp — W (542 such a state is not necessary, one can, within the assumption
7 (O)r of an uncoupled initial state, choose the particle state to be at

Here we recall thatAx2(t) )y and(X%(t)); are given in Eqs. the same temperature as the bath. _
(5.32 and(5.33. In order to describe a state of the system that is entangled

Now, for times short compared with the Ohmic decay?t all times, including the initial time, it is necessary to aban-
time we find don master equation methods. Some time ago, a more gen-
eral method applicable to such systems was described by
kT Ford and Lewiq21]. In their method, a system in equilib-

m rium is put into an initial statée.g., a wave-packet statey
ar(t)=exp| — d?\,  t<m/¢. a measurement and then at a later time is sampled by a sec-
ond measurement. This method of successive measurements

Am? has recently been applied to obtain exact results for the prob-
(5.43 lems of wave packet spreading and decoher¢@te-or the
wave packet spreading one finds in place of E§22 or
This is exactly the form of the attenuation coefficient for a(5.31) the result
free particle[7], which for very short times is of the form
ar(t)=exp{—t?%74}, where the decoherence time is

P(X;t) p{ (X_X°)2] 6.1
x;t)=exp| — —————1, .
4= ‘/EZZ , (5.44) 2wA(t)

U

in which v = VkT/m is the mean thermal velocity. where the variance is now given by

VI. CONCLUDING REMARKS [x(t),x(0)]?
_ o _ Wz(t):0'2+5(t)——2
The system we are discussing is that of an oscillator 4o
coupled to a linear passive heat bath, with a microscopic

Hamiltonian of the form(2.9). The long time equilibrium ) o )
state of this system is entangled, in the sense that the norm@f €quivalent result for wave packet spreading in the Ohmic

modes correspond to coupled motion of the oscillator and th€3S€ has been obtained by Hakim and Ambegaidkér who

bath. The Hu-Paz-Zhang equation is an exact master equH-Sed functional m;egrguon methods. For the decoherence

tion describing how this entangled equilibrium state ariseProPlem, one obtains in place of E¢S.38 or (5.42 the

from an initial state in which the bath and the oscillator areSult

not coupled. We should perhaps emphasize that this assump-

tion of a decoupled initial state is common to all derivations (t)
a(t)zexp| - ] .

(6.2

of a master equation, going back at least to the work of

6.3
Wangness and BlockH9], who phrased it as an assumption 63

80 2wWA(t)
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Note that these results are finite at any temperature and app[*(0)=0 andQ?(0)=y_y.—({/m7)—x. Fort of order
to an arbitrary heat bath and for all times. At short times, the_ ;e see that in this Ohmic limit

results(5.34) and (5.43 are in agreement with these exact

results.

I 2¢
ACKNOWLEDGMENTS Q2(t)= —e UT_)F 8(1). (A6)
We wish to thank the School of Theoretical Physics, Dub-
lin Institute for Advanced Studies, for their hospitality.
This justifies the assertion made in E¢s.4).
APPENDIX: SINGLE RELAXATION TIME MODEL Next, we consider the fluctuating position operat),

) ) o for the single relaxation time model. With the Green function
Here we consider the single relaxation time model for the(A4) it is a simple matter to verify the relation

case of a free particleK(=0). This model corresponds to a
memory function of the form

¢ G(—t')—G(t—t")=—mG(t)G(—t')

t)= e '76(1), Al .
w(t)=—~e"""o(t) (A1) L m&
-—F——G(—-t"). (A7)
where 6 is the Heaviside function. Note that in the limit [ant
—0 this becomes the Ohmic memory functihl). With
this form of the memory function and witK =0, the re-

sponse function2.7) takes the form Putting this in Eq.5.5 we find in place of Eq(5.7),

B 1 : mr L
«(z)= ¢ X(t) =x4(t) =x40) —mG(t)x40) — ?[1—mG(t)]xs(O).
—mzz—lzl_iZT (A8)
z+i(ys+y-)
= . —, (A2)
—mzAz+iy,)(z+iy-) Forming the mean square, we can write

where we have introduced

L1 .
At (X3(1))=s(t) ~mG(1)s(t) + 5 M*G(1)s(0)
1+ /1— —
m

(A3) M GO T () — &
-7 [1-mGOIs()-5(0)]

Note that in the Ohmic limity, — 7 '—o and y_—¢/m

and we recover the forr(b.2) of the response function. _
With this form of the response function, the Green func- 272

tion (2.6) can be written in the form

2 2
M 1 m&()]2s0). (A9)

Yi(l-e -H—y2(1-e 7 The interest here is in the zero temperature limit. With the
my_y.(y+—v_) ' (A4) response function given by E@¢A2) and with T=0, the
expression5.6) for the mean square displacement can be put
If we form the quantitie2.19 with this Green function, we in the form

G(t)=

find
AT()= g Yty )R oy o= 2 OO 1Y A10)
(y+ty (e —e’ Dty —y_ m{ Y2 -2 ’
(A5)
0%(t)= Y-y (ve—vo) )
(yet+yo )€+t —erHty, —y_ wherel (x) is given by Eq.(5.14). We see now tha$(0) is

finite, but the fourth derivative!*)(0) is logarithmically di-
In the Ohmic limit, it is clear that for any finite time, vergent. Indeed the divergence is the same as in the Ohmic
2I'(t)—y_—¢/m and Q?%(t)—0. On the other hand case, with the same long time for(.17).
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