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Exact solution of the Hu-Paz-Zhang master equation

G. W. Ford* and R. F. O’Connell†
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~Received 29 June 2001; published 24 October 2001!

The Hu-Paz-Zhang equation is a master equation for an oscillator coupled to a linear passive bath. It is exact
within the assumption that the oscillator and bath are initially uncoupled. Here an exact general solution is
obtained in the form of an expression for the Wigner function at timet in terms of the initial Wigner function.
The result is applied to the motion of a Gaussian wave packet and to that of a pair of such wave packets. A
serious divergence arising from the assumption of an initially uncoupled state is found to be due to the
zero-point oscillations of the bath and not removed in a cutoff model. As a consequence, worthwhile results for
the equation can only be obtained in the high temperature limit, where zero-point oscillations are neglected. In
that limit closed form expressions for wave packet spreading and attenuation of coherence are obtained. These
results agree within a numerical factor with those appearing in the literature, which apply for the case of a
particle at zero temperature that is suddenly coupled to a bath at high temperature. On the other hand very
different results are obtained for the physically consistent case in which the initial particle temperature is
arranged to coincide with that of the bath.
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I. INTRODUCTION

The Hu-Paz-Zhang equation is a master equation w
time-dependent coefficients for a harmonic oscillator int
acting with a linear passive heat bath of oscillators. T
equation is exact and general within the assumption tha
the initial state the bath is in equilibrium and not coupled
the oscillator. It was first derived in generality using pa
integral methods by Hu, Paz and Zhang@1#, although equiva-
lent equations had been obtained earlier for the case o
Ohmic bath@2,3#. See also@4#. Later a derivation in the form
of an equation for the Wigner function was given by Hal
well and Yu@5#, who corrected a misprint in the earlier pu
lication. Using the notation of these last authors, the equa
has the form

]W

]t
52

1

m
p

]W

]q
1mV2~ t !q

]W

]p
12G~ t !

]pW

]p

1\mG~ t !h~ t !
]2W

]p2
1\G~ t ! f ~ t !

]2W

]q]p
, ~1.1!

whereV2(t), 2G(t), h(t), and f (t) are time-dependent pa
rameters for which one has explicit expressions@see Eqs.
~2.19! and ~3.8! below#.

The integration of this equation, with its time-depende
coefficients, appears to be a formidable problem. Indeed,
lier discussions have generally used numerical methods.
purpose here is, first of all, to present an exact general s
tion of this equation. This solution can be evaluated in
plicit, closed form for many problems of interest. In partic
lar, we exhibit the solution for two such problems: an init
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state corresponding to a Gaussian minimum uncerta
wave packet and an initial state corresponding to a wid
separated pair of such wave packets. We use these resu
accomplish our second purpose, which is to critically exa
ine the assumption of an uncoupled initial state. We find t
there is a serious difficulty arising from this assumption: t
zero-point oscillations of the bath give rise to a divergen
that leads to an instantaneous spread of a wave pack
infinite width. In effect, the state instantaneously disappe
The result is that meaningful results can be obtained only
the high temperature limit, where one conventionally n
glects the zero-point oscillations. Even in this limit, we fin
significant difficulties arising from the fact that translation
invariance is broken. Nevertheless, we find for short tim
expressions for wave packet spreading and attenuatio
coherence that are consistent with those found by earlier
thors. On the other hand, by adjusting the initial temperat
of the particle to be the same as that of the bath, we find
the high temperature Ohmic limit results consistent with e
act calculations which take into account entanglement a
times @6,7#.

The plan of this paper is as follows. The basis for o
discussion is the quantum Langevin equation, so we begi
Sec. II with a description of that equation and its solutio
first for the stationary case, then for the initial value ca
and finally for the form local in time. Next in a short Sec. I
we give a simple derivation of the exact master equat
~1.1!. Then in Sec. IV we derive our general solution. T
key result, given in Eq.~4.15!, is an explicit expression for
the Wigner function at timet in terms of the initial Wigner
function. A particularly useful result, given in Eq.~4.24!, is
an expression for the probability distribution at timet. In
Sec. V we first evaluate this expression to find the probabi
distribution corresponding to an initial Gaussian wa
packet. There we find the divergence mentioned abo
which in the Appendix is shown to be present even in
model with a high frequency cutoff. Also in Sec. V we co
sider the motion of a pair of Gaussian wave packets~Schrö-
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G. W. FORD AND R. F. O’CONNELL PHYSICAL REVIEW D64 105020
dinger ‘‘cat’’ state! and obtain an explicit expression for th
attenuation of coherence. For the case of a particle at t
perature zero suddenly coupled to a bath at high tempera
T, this leads to an expression for the decoherence t
equivalent with that appearing in many places in the lite
ture. But for a consistent initial state in which the tempe
ture of the particle is adjusted to coincide with that of t
bath, a very different expression for the decoherence tim
obtained, an expression corresponding to decoherence w
out dissipation@7#. Finally, in Sec. VI we summarize ou
results and make some concluding remarks.

II. THE LANGEVIN EQUATION

A. Stationary process

The Langevin equation is a Heisenberg equation of m
tion for x(t), the dynamical variable corresponding to t
coordinate of a Brownian particle in equilibrium with a lin
ear passive heat bath. For the case of a particle in an exte
oscillator potential, this equation for the stationary proc
has the well known form@8#

mẍ1E
2`

t

dt8m~ t2t8!ẋ~ t8!1Kx5F~ t !, ~2.1!

wherem(t) is the memory function,K is the oscillator force
constant andF(t) is a fluctuating operator force with mea
^F(t)&50, and whose correlation and commutator are giv
by

1

2
^F~ t8!F~ t !1F~ t !F~ t8!&

5
1

pE0

`

dv Re$m̃~v1 i01!%\v

3coth
\v

2kT
cosv~ t2t8!,

~2.2!

@F~ t !,F~ t8!#5
2\

ip E
0

`

dv Re$m̃~v1 i01!%v

3sinv~ t2t8!.

Herem̃(z) is the Fourier transform of the memory functio

m̃~z!5E
0

`

dtm~ t !eizt. ~2.3!

As a consequence of the second law of thermodynam
m̃(z) must be what is called a positive real function: analy
and with a real part positive in the upper half plane. In p
ticular, m̃(z) can be represented in terms of the real part
its boundary value on the real axis through the Stieltjes
version theorem

m̃~z!52 icz1
2iz

p E
0

`

dv
Re$m̃~v1 i01!%

z22v2
, ~2.4!
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wherec is a positive constant.
The solution of the Langevin equation~2.1! can be written

xs~ t !5E
2`

t

dt8G~ t2t8!F~ t8!, ~2.5!

whereG(t), the Green function, is given by

G~ t !5
1

2pE2`

`

dva~v1 i01!e2 ivt, ~2.6!

with a(z) the familiar response function

a~z!5
1

2mz22 izm̃~z!1K
. ~2.7!

Here we have introduced a subscript s to emphasize
xs(t) is a stationary operator-process, in the sense that co
lations, probability distributions, etc. for this dynamical va
able are invariant under time-translation (t→t1t0). In par-
ticular, the correlation,

1

2
^xs~ t !xs~ t8!1xs~ t8!xs~ t !&

5
\

pE0

`

dv Im$a~v1 i01!%coth
\v

2kT
cosv~ t2t8!,

~2.8!

is a function only of the time-differencet2t8. In addition,
for the free particle, whereK50, the process is invarian
under space translation (x→x1a).

B. Langevin equation for the initial value problem

The description of the system given by the Langev
equation can be realized by a bath of harmonic oscillato
Perhaps the simplest such system, and the one we use a
basis of our discussion of the Hu-Paz-Zhang equation an
solution, is the independent oscillator model, for which t
Hamiltonian is@9,8#

H5
p2

2m
1

1

2
Kx21(

j
H pj

2

2mj
1

1

2
mjv j

2~qj2x!2J .

~2.9!

Writing the equations of motion and then eliminating t
bath variables in terms of their initial values, one obtains
Langevin equation for the oscillator with given initial value
@10#,

mẍ1E
0

t

dt8m~ t2t8!ẋ~ t8!1Kx52m~ t !x~0!1F~ t !,

~2.10!

where the memory function is given by

m~ t !5(
j

mjv j
2 cosv j tu~ t !, ~2.11!
0-2
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EXACT SOLUTION OF THE HU-PAZ-ZHANG MASTER . . . PHYSICAL REVIEW D 64 105020
while the random force is given in terms of the initial ba
variables by

F~ t !5(
j

$qj~0!mjv j
2 cosv j t1pj~0!v j sinv j t%.

~2.12!

To express the solution of this equation, we first note t
the Green function~2.6! vanishes for negative times and fo
positive times is the solution of the homogeneous equati

mG̈1E
0

t

dt8m~ t2t8!Ġ~ t8!1KG50, ~2.13!

with the initial conditions

G~0!50, Ġ~0!5
1

m
. ~2.14!

With this, we can show that the general solution of the init
value Langevin equation~2.10! is given by

x~ t !5mĠ~ t !x~0!1mG~ t !ẋ~0!1X~ t !
~2.15!

ẋ~ t !5mG̈~ t !x~0!1mĠ~ t !ẋ~0!1Ẋ~ t !,

where we have introduced the fluctuating position opera

X~ t !5E
0

t

dt8G~ t2t8!F~ t8!. ~2.16!

In our subsequent discussion we assume that att50 the
system is in a state in which the oscillator is not coupled
the bath and that the bath is in equilibrium at temperatureT.
In particular this means that the initial coordinates of t
oscillator are not correlated with those of the bath, i

^x(0)F(t)&5^ẋ(0)F(t)&50. On the other hand, with regar
to the bath, the equilibrium is with respect to the bath Ham
tonian, Hbath, obtained by setting the oscillator variablesx
andp equal to zero in Eq.~2.9!,

Hbath5(
j

S pj
2

2mj
1

1

2
mjv j

2qj
2D . ~2.17!

With this we find ^F(t)&50, and the correlation and com
mutator are the same as those for the stationary equa
given in Eqs.~2.2!.

Typically, the memory functionm(t) falls to zero in a
very short timet, called the relaxation time of the bath. F
times long compared with this bath relaxation time, the ex
term on the right hand side of Eq.~2.10! vanishes, but only
for much longer times, times long compared with the os
lator decay time, will this equation become the station
equation, with the lower limit on the integration taken to
2`. To be more specific, we note from the general expr
sion ~2.6! for the Green function that, so long as the oscil
tor force constantK is not zero, the Green function wil
vanish exponentially for long times. This follows from th
Tauberian theorem: the asymptotic behavior of a funct
10502
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depends upon the low frequency behavior of its Four
transform. It follows that, for long times, the dependen
upon the initial coordinates in Eqs.~2.15! disappears and
from a comparison of Eq.~2.16! with the expression~2.5! for
xs(t), that X(t) becomes the solution of the stationa
Langevin equation~2.1!.

C. Form local in time

We want now to write the Langevin equation~2.10! in the
form of an equation that is local in time with time-depende
coefficients. To get this form, we first invert Eqs.~2.15! to
express the initial variables in terms of those at timet. We
next form the time derivative of the second of Eqs.~2.15!
and then insert these expressions for the initial variable
the right hand side. We can write the result in the form

ẍ12G~ t !ẋ1V2~ t !x5
1

m
F~ t !, ~2.18!

where we have introduced the quantities

2G~ t !5
G~ t !Ĝ~ t !2Ġ~ t !G̈~ t !

Ġ2~ t !2G~ t !G̈~ t !
52

d log~Ġ22GG̈!

dt
,

~2.19!

V2~ t !5
G̈2~ t !2Ġ~ t !Ĝ~ t !

Ġ2~ t !2G~ t !G̈~ t !
.

This equation is the local form we seek. In obtaining th
form we have used the fact thatX(t) is the solution of the
inhomogeneous equation~2.10! with the initial conditions
X(0)50 andẊ(0)50. It follows thatX(t) is also the solu-
tion of the local equation~2.18! with the same initial condi-
tions. The fact that the symbols used for the quantities~2.19!
also appear in the exact master equation~1.1! is not acciden-
tal, as we shall see in the next section, where we giv
derivation of that equation.

III. THE TIME-DEPENDENT MASTER EQUATION

The strategy for deriving the exact master equation is
obtain expressions for the first and second moments,
from Eq. ~1.1! and then from the local Langevin equatio
~2.18!. From a comparison, we obtain explicit expressio
for the time-dependent parameters in the Hu-Paz-Zh
equation~1.1!.

In forming the moments of Eq.~1.1!, we take note of the
relations@11#

xr↔S q1
i\

2

]

]pDW, rx↔S q2
i\

2

]

]pDW,

pr↔S p2
i\

2

]

]qDW, rp↔S p1
i\

2

]

]qDW.

~3.1!

Here on the leftx and p are the position and momentum
operators for the oscillator, whiler is the density matrix
0-3
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G. W. FORD AND R. F. O’CONNELL PHYSICAL REVIEW D64 105020
operator. On the right,q andp are the c-number variables o
the Wigner functionW(q,p;t). Thus, for example,

^x&[Tr$xr%5E
2`

`

dqE
2`

`

dpS q1
i\

2

]

]pDW. ~3.2!

In this way, forming the first moments of Eq.~1.1!, we find

^ẋ&5
1

m
^p&, ^ ṗ&522G~ t !^p&2mV2~ t !^x&. ~3.3!

Eliminating ^p&, we find

^ẍ&12G~ t !^ ẋ&1V2~ t !^x&50. ~3.4!

If now, we form the mean of the local Langevin equati
~2.18!, using the fact that̂X(t)&50, we get exactly the sam
equation, but with now the quantities 2G(t) andV2(t) given
by the expressions~2.19!.

Next, forming the second moments of Eq.~1.1!, we find

d^x2&
dt

5
1

m
^xp1px&,

d^xp1px&
dt

5
2

m
^p2&22mV2^x2&

22G^xp1px&12\G f , ~3.5!

d^p2&
dt

52mV2^xp1px&24G^p2&12\mGh.

On the other hand, using the local Langevin equation~2.18!,
we find

d^x2&
dt

5^xẋ1 ẋx&,

d^xẋ1 ẋx&
dt

52^ẋ2&1^xẍ1 ẍx&

52^ẋ2&22V2~ t !^x2&22G~ t !^xẋ1 ẋx&

1
1

m
^x~ t !F~ t !1F~ t !x~ t !&, ~3.6!

d^ẋ2&
dt

5^ẋẍ1 ẍẋ&

52V2~ t !^xẋ1 ẋx&24G~ t !^ ẋ2&

1
1

m
^ẋ~ t !F~ t !1F~ t !ẋ~ t !&.

Now, in the right-hand side of the second of these equati
we use the factx(t)2X(t) is not correlated withF(t) This
should be clear since, as we see from Eqs.~2.15!, this com-
bination depends only upon the initial coordinates of the
cillator. Therefore we can replacex(t) with X(t) in the cor-
10502
s

-

relations ofx with F. Using the same argument in the last
these equations, we see that after a little rearrangemen
can write

d^x2&
dt

5^xẋ1 ẋx&,

d^xẋ1 ẋx&
dt

52^ẋ2&22V2~ t !^x2&22G~ t !^xẋ1 ẋx&

1
1

m
^X~ t !F~ t !1F~ t !X~ t !&, ~3.7!

d^ẋ2&
dt

52V2~ t !^xẋ1 ẋx&24G~ t !^ ẋ2&

1
1

m
^Ẋ~ t !F~ t !1F~ t !Ẋ~ t !&.

We now compare these equations with Eqs.~3.5! obtained
from Eq.~1.1!. In doing so we must interpretp5mẋ. We see
then that we can identify

2\G~ t ! f ~ t !5^X~ t !F~ t !1F~ t !X~ t !&,
~3.8!

2\G~ t !h~ t !5^Ẋ~ t !F~ t !1F~ t !Ẋ~ t !&.

This completes the derivation of the exact master equa
~1.1!, with explicit expressions for the time-dependent co
ficients.

IV. GENERAL SOLUTION OF THE TIME-DEPENDENT
MASTER EQUATION

The task of solving Eq.~1.1!, with its time-dependent
coefficients given by the complicated expressions~2.19! and
~3.8!, appears formidable. Indeed, if one were presented w
the equation with no idea of the origin of the coefficients
solution would be very difficult. But we have in Eqs.~2.15!
an explicit solution of the Langevin equation describing t
underlying motion. This will allow us to construct the ge
eral solution of the equation.

To begin, we remind ourselves Eq.~1.1! is an equation for
the reduced density matrix, given by the partial trace over
bath coordinates. That is,

W~q,p;t !5E dqE dpWsystem~q,p;q,p;t !. ~4.1!

HereWsystemis the Wigner function for the system of osci
lator and bath, withq5(q1 ,q2 ,•••) and p5(p1 ,p2 ,•••)
the bath coordinates and momenta. Now, the system is on
coupled oscillators and for such a system the solution of
equation of motion is formally identical to that for the co
responding classical system. That is, the Wigner function
the system at timet is related to that at timet50 through the
relation

Wsystem~q,p;q,p;t !5Wsystem„q~0!,p~0!;q~0!,p~0!;0…,
~4.2!
0-4
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EXACT SOLUTION OF THE HU-PAZ-ZHANG MASTER . . . PHYSICAL REVIEW D 64 105020
whereq(0),p(0);q(0),p(0) are the initial values for which
the solution of the equations of motion is such thatq(t)
5q, p(t)5p, q(t)5q, p(t)5p. Finally, we remind our-
selves that for the Hu-Paz-Zhang equation the initial stat
a product state corresponding to a Wigner function of
form @11#

Wsystem~q,p;q,p;0!5W~q,p;0!)
j

wj~qj ,pj !. ~4.3!

Here, on the rightW(q,p;0) is the initial Wigner function
for the oscillator and the product is the Wigner function f
the bath, in whichwj (qj ,pj ) is the Wigner function for a
single oscillator of massmj and frequencyv j ,

wj~qj ,pj !5
1

p\coth~\v j /2kT!

3expH 2
pj

21mj
2v j

2qj
2

mj\v jcoth~\v j /2kT!J . ~4.4!

Combining these results, we see that the reduced den
matrix at timet is given by

W~q,p;t !

5E dqE dpW„q~0!,p~0!;0…)
j

wj„qj~0!,pj~0!….

~4.5!

This reduced density matrix is the solution that we seek.
far, however, all we have done is to carefully indicate t
definition of this quantity, we must now carry out the ind
cated operations to obtain an explicit expression.

As a first step we transform the integration to the init
bath coordinates, holdingq andp fixed. Under this transfor-
mation,

dqdp5
]~q,p;q,p!

]„q,p;q~0!,p~0!…
dq~0!dp~0!, ~4.6!

where the factor is the Jacobian of the transformation,
which we have used the notation of Landau and Lifsh
@12#. But,

]~q,p;q,p!

]„q,p;q~0!,p~0!…
5

]~q,p;q,p!

]„q~0!,p~0!;q~0!,p~0!…

3
]„q~0!,p~0!;q~0!,p~0!…

]„q,p;q~0!,p~0!…

5
]„q~0!,p~0!;q~0!,p~0!…

]„q,p;q~0!,p~0!…

5S ]„q,p;q~0!,p~0!…

]„q~0!,p~0!;q~0!,p~0!…D
21

5S ]q

]q~0!

]p

]p~0!
2

]q

]p~0!

]p

]q~0! D
21

.

~4.7!

Here, we use in the first line the fact that the Jacobian of
successive transformations is the product of the Jacobian
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the second line the fact that the motion of the system co
sponds to a canonical transformation for which the Jacob
is unity, in the third line the fact that the Jacobian of t
inverse transformation is the reciprocal of that of the dir
transformation, and finally in the last line the definition
the Jacobian as the determinant of the matrix of partial
rivatives. Now, to evaluate this Jacobian we use the solu
~2.15!, which we write in the form

q[q~ t !5mĠ~ t !q~0!1G~ t !p~0!1X~ t !,
~4.8!

p[p~ t !5m2G̈~ t !q~0!1mĠ~ t !p~0!1mẊ~ t !.

Here we recall, from the definitions~2.16! of X(t) and the
expression~2.12! for F(t) that X(t) depends only on the
initial coordinates of the bath, which are held fixed in form
ing the partial derivatives in the last line of Eq.~4.7!. There-
fore, we see that

]~q,p;q,p!

]„q,p;q~0!,p~0!…
5

1

m2~Ġ22GG̈!
~4.9!

and, using Eq.~4.6! we can write Eq.~4.5! in the form

W~q,p;t !5
^W„q~0!,p~0!;0…&

m2~Ġ22GG̈!
, ~4.10!

where the brackets represent the average over the in
equilibrium distribution of the bath. Again, we remind ou
selves that in the integrandq(0) andp(0) are obtained by
inverting Eqs.~4.8!. That is,

q~0!5
mĠ~q2X!2G~p2mẊ!

m2~Ġ22GG̈!
,

~4.11!

p~0!5
2m2G̈~q2X!1mĠ~p2mẊ!

m2~Ġ22GG̈!
.

SinceX is linear in the initial bath variables, its average h
the Gaussian property: averages of all moments can be
pressed in terms of those of the second moment.

We can carry out this average if we introduce the Four
transform of the initial Wigner function, writing

W~q,p;0!5
1

~2p\!2E2`

`

dQE
2`

`

dPW̃~Q,P;0!ei (Pq1Qp)/\.

~4.12!

Inserting this in Eq.~4.10!, we can write

W~q,p;t !5
1

~2p\m!2~Ġ22GG̈!
E

2`

`

dQE
2`

`

dPW̃~Q,P;0!

3^exp$ i @Pq~0!1Qp~0!#/\%&. ~4.13!

The form of this result can be made a bit simpler if w
introduce a transformation to variablesr ands, defined by
0-5
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Q5mĠr 1Gs, P5m2G̈r 1mĠs. ~4.14!

We then find thatPq(0)1Qp(0)5r (p2mẊ)1s(q2X)
anddQdP5m2(Ġ22GG̈)drds, so that Eq.~4.13! becomes

W~q,p;t !5
1

~2p\!2E2`

`

drE
2`

`

dsW̃~mĠr 1Gs,

m2G̈r 1mĠs;0!ei (rp1sq)/\

3e2(1/2\2)(m2^Ẋ2&r 21m^XẊ1ẊX&rs1^X2&s2),

~4.15!

where we have used the Gaussian property to write

^e2 i (mẊr 1Xs)/\&5e2(1/2\2)(m2^Ẋ2&r 21m^XẊ1ẊX&rs1^X2&s2).

~4.16!

This is the form of the solution that is perhaps most use
In its evaluation, the Green functionG(t) is given by Eq.
~2.6!, while X(t) is given by Eq.~2.16! and its correlations
are evaluated using Eqs.~2.2!.

While we find Eq.~4.15! to be the most useful form of th
solution, one can insert the inverse of the Fourier transfo
~4.12! to express the solution in the form of a transitio
operator acting on the initial Wigner function,

W~q,p;t !5E
2`

`

dq8E
2`

`

dp8P~q,p;q8,p8;t !W~q8,p8;0!.

~4.17!

Here P(q,p;q8,p8;t), called the transition probability, ca
be written

P~q,p;q8,p8;t !5
1

2pAdetA
exp$2 1

2 R•A21
•R%,

~4.18!

where we have used a dyadic notation with

A~ t !5S m2^Ẋ2&
m

2
^XẊ1ẊX&

m

2
^XẊ1ẊX& ^X2&

D ,

~4.19!

R~ t !5S p2^p~ t !&

q2^q~ t !&
D .

Here, in R, the quantitieŝ q(t)& and ^p(t)& correspond to
the mean of the initial value solution~2.15! with initial val-
uesq8 andp8. That is,

^q~ t !&5mĠ~ t !q81G~ t !p8,
~4.20!

^p~ t !&5m2G̈~ t !q81mĠ~ t !p8.
10502
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It is of interest that this expression~4.18! for the transition
probability is formally the same as that for the classic
Kramers equation@13#. The difference is that the Green func
tion and the mean square of the fluctuating position and
locity operators here are for a quantum oscillator interact
with an arbitrary heat bath, while in the classical solution
the Kramers equation they are for a classical oscillator in
acting with an Ohmic bath. Another significant difference
that the solution~4.20! is that of the mean of the initial value
Langevin equation~2.10!, with the term2m(t)x(0) on the
right-hand side. The classical solution of the Kramers eq
tion corresponds to dropping this term, since it is describ
the classical stationary process.

As a first illustration of the utility of the form~4.15!, we
show how the equilibrium solution arises for long time
First we recall that, so long as the oscillator force constanK
is not zero, the Green function will vanish ast→`. Next, we
recall that, again ast→`, X(t)→xs(t), the solution~2.5! of
the stationary Langevin equation~2.1!. Thus, we see almos
by inspection that

W~q,p;t ! →
t→`

1

2pmA^xs
2&^ẋs

2&

3expH 2
p2

2m2^ẋs
2&

2
q2

2^xs
2&
J , ~4.21!

where^xs
2& and ^ẋs

2& are the equilibrium values of the mea
square position and velocity, given by the fluctuatio
dissipation theorem,

^xs
2&5

\

pE0

`

dvIm$a~v1 i01!%coth
\v

2kT
,

~4.22!

^ẋs
2&5

\

pE0

`

dvv2Im$a~v1 i01!%coth
\v

2kT
.

This result is perhaps more familiar in the weak coupli
limit, where Im$a(v1 i01)%→pd(v2v0)/2mv0 with v0

5AK/m. Then ^ẋs
2&5v0

2^xs
2&5(\v0/2m)coth(\v0/2kT)

and ~4.21! becomes the familiar equilibrium form of th
Wigner function for the uncoupled oscillator@11#.

Finally, we remark that the interest is most often in t
probability density at timet, given by

P~x;t !5E
2`

`

dpW~x,p;t !. ~4.23!

Using the solution ~4.15!, the integral overp gives a
d-function in r. With this we can perform ther integration to
obtain the result
0-6
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EXACT SOLUTION OF THE HU-PAZ-ZHANG MASTER . . . PHYSICAL REVIEW D 64 105020
P~x;t !5
1

2p\E2`

`

dsW̃~Gs,mĠs;0!

3expH 2
1

2\2
^X2&s21 i

x

\
sJ . ~4.24!

In the next section, we evaluate this probability density
some problems of interest.

V. EXAMPLES

In this section we consider the evaluation of the gene
result~4.24! for the case of a free particle (K50) interacting
with an Ohmic bath. We have chosen the Ohmic model si
it is that used most extensively, almost universally, in disc
sions of dissipative systems. Newtonian drag is Ohmic, a
the Stokes force and, of course, classical Brownian mot
In quantum electrodynamics, the Weisskopf-Wigner appro
mation is an Ohmic model. In addition, our results take th
simplest form for that model. In the Appendix we prese
selected results for the more general single relaxation t
model.

The examples are intended, first of all, to illustrate t
power and utility of our exact solution. They are chos
since they appear in a truly large number of recent pap
where approximate methods were used. They are also
examples discussed, by numerical methods, in the orig
Hu-Paz-Zhang paper as well as in the earlier papers we h
cited.

A. Preliminary formulas

For the Ohmic bath the memory function has the form

m~ t !52zd~ t !, ~5.1!

wherez is the Newtonian friction constant~the factor 2 is
because the integral in the Langevin equation is over o
half the delta-function!. In this case Eq.~2.10! is already in
local form. With the form~5.1! for the memory function and
with K50, the response function~2.7! takes the simple form

a~z!5
1

2mz22 izz
. ~5.2!

The Green function~2.6! is then

G~ t !5
12e2zt/m

z
. ~5.3!

If we form the quantities~2.19! with this Green function, we
find

2G~ t !5
z

m
, V2~ t !5

2z

m
d~ t !. ~5.4!

For any finite time these expressions follow trivially. Th
delta function is not so easy to see, although it should
obvious from the form~2.10! of the Langevin equation. In
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the Appendix, this result is derived explicitly in the Ohm
limit of the single relaxation time model.

The only other quantity that we need to evaluate the g
eral result iŝ X2(t)&, the mean square of the fluctuating p
sition operator. In this connection, it is a simple matter, co
paring the stationary solution~2.5! with the definition~2.16!
of X(t), to obtain the general relation

X~ t !5xs~ t !2xs~0!1E
2`

0

dt8$G~2t8!2G~ t2t8!%F~ t8!.

~5.5!

In discussing this operator, in particular the mean of
square, we shall make use of the mean square displace
for the stationary process,

s~ t ![^@xs~ t !2xs~0!#2&

5
2\

p E
0

`

dv Im$a~v1 i01!%coth
\v

2kT
~12cosvt !.

~5.6!

The discussion in the previous paragraph has been
eral, applying to an oscillator interacting with an arbitra
heat bath. We now specialize to the current case of a
particle interacting with an Ohmic bath. The Green functi
is then given by Eq.~5.3!, from which we see thatG(2t8)
2G(t2t8)52mG(t)Ġ(2t8) and Eq.~5.5! becomes

X~ t !5xs~ t !2xs~0!2mG~ t !ẋs~0!. ~5.7!

Forming the mean square, we can write

^X2~ t !&5s~ t !2mG~ t !ṡ~ t !1
1

2
m2G2~ t !s̈~0!. ~5.8!

In the same way we find

^Ẋ2~ t !&5
1

2
@11m2Ġ2# s̈~0!2mĠ~ t !s̈~ t !. ~5.9!

For this Ohmic case, using the form~5.2! for the response
function in the expression~5.6! for the mean square displace
ment, we find

s~ t !5
2\z

p E
0

`

dv

coth
\v

2kT

v~m2v21z2!
~12cosvt !. ~5.10!

1. High temperature limit

In the high temperature limit (kT@\z/m) we replace the
hyperbolic cotangent in Eq.~5.10! by the reciprocal of its
argument~thus, neglecting the zero-point oscillations!. The
result takes the form@14#

s~ t !5
2kT

z S t2m
12e2zt/m

z D . ~5.11!
0-7



e
m

e

an

-

es

ite
rs

e
ig
r

k

ian

en-

is

o

the

he
he
r-
fore
the
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With this in the expression~5.8! for the mean square of th
fluctuating displacement, we see that, still in the high te
perature limit,

^X2~ t !&5
kT

z S 2t22m
12e2zt/m

z
2m

~12e2zt/m!2

z D .

~5.12!

2. Zero temperature

At zero temperature, we replace the hyperbolic cotang
in Eq. ~5.10! by unity. The result can be written

s~ t !5
2\

pz
I S zt

mD , ~5.13!

where@14#

I ~x!5E
0

`

dy
x2

y~y21x2!
~12cosy!

5 logx1g2
1

2
@e2xĒi~x!1exEi~2x!#. ~5.14!

Here g50.577215665 is Euler’s constant. Note the exp
sions@15#, for smallx,

I ~x!52~ logx1g!~coshx21!

2
1

2 Fe2x(
n51

`
xn

n!n
1ex(

n51

`
~2x!n

n!n G , ~5.15!

and, asymptotically, for largex,

I ~x!; logx1g2
1

x2
2

3!

x4
2

5!

x6
2•••. ~5.16!

Here we see that there is a serious concern: for smallx the
second derivativeI 9(x)>2 logx and therefore the term in
volving s̈(0) in the expression~5.8! for ^X2(t)& is logarith-
mically divergent. This divergence persists for long tim
where

^X2~ t !&;
2\

pz
logzt2

\

pz
log 01, ~5.17!

in which the neglected quantity is of the order of a fin
constant. This divergence for the Ohmic case has, of cou
been noted by earlier authors@3,1#, but it does not seem to b
known that this divergence persists in a model with a h
frequency cutoff. In the Appendix we show this explicitly fo
the single relaxation time model.

B. Gaussian wave packet

To begin, we note that in evaluating the solution we ma
repeated use of the standard Gaussian integral:
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E
2`

`

dx expH 2
1

2
ax21 ibxJ 5A2p

a
expH 2

b2

2aJ .

~5.18!

We consider an initial state corresponding to a Gauss
wave packet of the form,

c~x,0!5
1

~2ps2!1/4
expH 2

~x2x0!2

4s2 J . ~5.19!

This is a so-called minimum uncertainty wave packet, c
tered at ^x(0)&5x0 and with variancê Dx2(0)&[^@x(0)
2^x(0)&#2&5s2. The corresponding mean momentum

^p(0)&5m^ ẋ(0)&50 and the momentum variance~corre-
sponding to minimum uncertainty! is ^Dp2(0)&5m2

Š@ ẋ(0)
2^ẋ(0)&#2

‹5\2/4s2. The Wigner function corresponding t
this state is

W~q,p;0!5
1

2p\E2`

`

dueiup/\cS q2
u

2
,0Dc* S q1

u

2
,0D

5
1

p\
expH 2

~q2x0!2

2s2
2

2s2p2

\2 J . ~5.20!

Its Fourier transform is

W̃~Q,P;0!5E
2`

`

dqE
2`

`

dpe2 i (Pq1Qp)/\W~q,p;0!

5E
2`

`

dqe2 iPq/\cS q2
Q

2
,0Dc* S q1

Q

2
,0D

5expH 2
Q2

8s2
2

s2P2

2\2
2 i

x0P

\ J . ~5.21!

Putting this in the expression~4.24! for the probability den-
sity at timet, we find

P~x;t !5
1

A2p^Dx2~ t !&
expH 2

@x2mĠ~ t !x0#2

2^Dx2~ t !&
J ,

~5.22!

where^Dx2(t)& is the variance of the position, given by

^Dx2~ t !&5m2Ġ2~ t !s21
\2G2~ t !

4s2
1^X2~ t !&. ~5.23!

This is a general result, valid for any heat bath. For
Ohmic case the Green function is given in Eq.~5.3! and
^X2(t)& is given by Eq.~5.8!. For the single relaxation time
model, the corresponding results are given in Eqs.~A4! and
~A9!.

The first thing that should strike us in this result is that t
variance is in fact infinite, due to the divergence found in t
expression~5.8! for ^X2(t)& at zero temperature. This dive
gence arises from the zero-point oscillations and is there
always present, although conventionally one neglects
0-8
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EXACT SOLUTION OF THE HU-PAZ-ZHANG MASTER . . . PHYSICAL REVIEW D 64 105020
zero-point oscillations in the high temperature limit. This is
serious difficulty, since it tells us that an initial wave pack
spreads instantly to infinite width. In effect, the state va
ishes. We emphasize that the problem here is not with
Hu-Paz-Zhang equation or its solution, which are perfec
correct, but with the assumption of an uncorrelated ini
state. Unease with this assumption has been expresse
many authors~we note in particular the remarks in the co
cluding Discussion section of the Hu-Paz-Zhang paper@1#!
but it does not seem to have been realized how serious a
consequences. Indeed, the only meaningful results for
equation are for the high temperature limit, and we confi
our discussion in the following to that limit.

In the high temperature limit, using the expression~5.3!
for the Green function in the Ohmic case, the probabi
density~5.22! becomes

P~x;t !5
1

A2p^Dx2~ t !&
expH 2

~x2x0e2zt/m!2

2^Dx2~ t !&
J , ~5.24!

where, evaluating the expression~5.8! for ^X2(t)& with the
high-temperature expression~5.11! for the mean square dis
placement, the variance is given by

^Dx2~ t !&5s2e22zt/m1
\2~12e2zt/m!2

4z2s2

1
kT

z S 2t22m
12e2zt/m

z
2m

~12e2zt/m!2

z D .

~5.25!

A difficulty with this result is that the center of the wav
packet drifts to the origin. Since for a free particle the orig
cannot be a special point, we see from this that the tran
tional invariance of the problem is broken by the assumpt
that the initial state corresponds to an uncoupled syst
Indeed, the system Hamiltonian~2.9! is invariant under si-
multaneous translation of the particle and bath coordina
(x→x1d, qj→qj1d) and the time-dependent master equ
tion ~1.1! correctly describes the dynamics of the syst
with regard to this Hamiltonian. But the bath Hamiltonia
~2.17! does not possess this invariance and the initial stat
one in which the bath is in equilibrium with respect to th
Hamiltonian. Another way to see this effect is to note that
a free particle interacting with an Ohmic bath the mean m
tion described~1.1! satisfies the equation

m^ẍ&1z^ẋ&522zd~ t !^x~0!&. ~5.26!

That is, the particle receives an initial impulse2z^x(0)&,
directed toward the origin and with a magnitude such tha
the course of time the particle arrives at the origin. Anoth
difficulty, which in fact has the same origin as the first, is th
in the expression~5.25! for the variance the first term, whic
corresponds to the initial variance, decays in time. But
initial variance should persist and not decay.

A further difficulty is seen if we look at the varianc
~5.25! for times short compared with the Ohmic decay tim
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^Dx2~ t !&>s21
\2t2

4m2s2
, zt/m!1. ~5.27!

But this is exactly the formula for the RMS width of a wav
packet as obtained from elementary quantum mecha
@16#. It therefore corresponds to temperature zero and
thermal spreading one should expect at high temperatur
absent@17,6,7#. Now this last is not a difficulty with the
equation or our solution, but with the initial state we ha
chosen, which corresponds to a particle at temperature z
Instead we should choose a state corresponding to a w
packet at temperatureT, obtained by averaging the initia
Wigner function~5.20! over a thermal distribution of initial
velocities.

To accomplish this, we note first that the initial sta
~5.19! corresponds to a particle at rest~i.e., at T50). To
obtain the state corresponding to a particle with velocityv,
we simply multiply with a factoreimvx/\. With this, we see
that the Fourier transform of the corresponding Wigner fu
tion is obtained by multiplying Eq.~5.21! by e2 imvQ/\. The
thermal average of this factor is

A m

2pkTE2`

`

dv expH 2
mv2

2kT
2 i

mQ

\
vJ 5expH 2

Q2

2l̄2J ,

~5.28!

wherel̄ is the thermal de Broglie wavelength,

l̄5
\

AmkT
. ~5.29!

Therefore, we see that for a particle at temperatureT the
Fourier transform of the initial Wigner function is obtaine
by multiplying the corresponding function atT50 by the
factor ~5.28!. Multiplying Eq. ~5.21! by this factor we obtain

W̃T~Q,P;0!5expH 2S 1

8s2
1

1

2l̄2D Q22
s2P2

2\2
2 i

x0P

\ J ,

~5.30!

where we indicate that this corresponds to temperatureT by
the subscript. Using this in Eq.~4.24! we find for the prob-
ability distribution at temperatureT the result

PT~x;t !5
1

A2p^Dx2&T

expH 2
~x2x0e2zt/m!2

2^Dx2&T
J ,

~5.31!

where we have introduced

^Dx2&T5^Dx2&1
\2

l̄2z2
~12e2zt/m!2

5s2e22zt/m1
\2~12e2zt/m!2

4z2s2

1^X2~ t !&T , ~5.32!
0-9
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in which

^X2~ t !&T5
kT

z S 2t22m
12e2zt/m

z D . ~5.33!

Note that now the variance for very short times includes
thermal spreading@6,7#,

^Dx2&T>s21
\2t2

4m2s2
1

kT

m
t2, zt/m!1. ~5.34!

However, the long time drift of the wave packet center a
the shrinking of the initial variance remain.

C. Pair of Gaussian wave packets

We consider now an initial state corresponding to t
separated Gaussian wave packets. The corresponding
function has the form

c~x,0!5
1

~8ps2!1/4~11e2d2/8s2
!1/2

S expH 2

S x2
d

2D 2

4s2
J

1expH 2

S x1
d

2D 2

4s2
J D , ~5.35!

whered is the separation ands is the width of each packet
Using Eq. ~5.21! we see that the Fourier transform of th
initial Wigner function is given by

W̃~Q,P;0!5
1

11e2d2/8s2 expH 2
Q2

8s2
2

s2P2

2\2 J
3S cos

Pd

2\
1e2d2/8s2

cosh
Qd

4s2D .

~5.36!

Putting this in the expression~4.24! for the probability den-
sity at timet, we find

P~x;t !5
1

2~11e2d2/2s2
!A2p^Dx2&

3S expH 2

S x2
d

2
e2zt/mD 2

2^Dx2&
J

1expH 2

S x1
d

2
e2zt/mD 2

2^Dx2&
J 12 expH 2

x2

2^Dx2&

2
d2

8s2
1

~12e2zt/m!2\2d2

32z2s4^Dx2&
J cos

G\dx

4s2^Dx2&
D .

~5.37!
10502
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Here the first two terms in the parentheses correspond
pair of Gaussian wave packets of the form~5.22!, initially
centered atx56d/2 and drifting toward the origin. The third
term, that with the cosine, is an interference term. The
tenuation factora(t) is the ratio of the coefficient of the
cosine term divided by twice the geometric mean of the fi
two terms. We find

a~ t !5expH 2
^X2~ t !&

8s2^Dx2~ t !&
d2J , ~5.38!

where at high temperature^X2(t)& is given in Eq.~5.12! and
^Dx2(t)& in Eq. ~5.25!.

For times long compared with the Ohmic decay timet
@m/z, we see that̂ X2(t)& and ^Dx2& become asymptoti-
cally equal, growing linearly witht. For such long times the
attenuation coefficient~5.38! therefore approaches a ver
small constant, a(t);exp$2d2/8s2%. For times short
compared with the Ohmic decay time,t!m/z, we
see that ^X2(t)&>(2zkT/3m2)t3 while ^Dx2(t)&>s2

1(\2t2/4m2s2) and therefore

a~ t !>expH 2
zkTd2t3

12m2s413\2t2J , t!m/z. ~5.39!

If we suppose that the slit width is negligibly small, we fin
a(t)>exp$2t/td% wheretd53\2/zkTd2. This, except for a
factor of 6 is exactly the decoherence time that often appe
in the literature@18#. But, as we have seen above, this res
corresponds to a particle in an initial state that is effectiv
at temperature zero, which is suddenly coupled to a heat
at high temperature. The result is therefore unphysical in
sense that the initial state does not correspond to that e
sioned when we speak of a system at temperatureT.

Now, just as in our discussion of the spreading of a sin
Gaussian wave packet, this difficulty can be repaired
choosing the initial temperature of the particle to be the sa
as that of the heat bath. The prescription for accomplish
this is very simple: multiplyW̃(Q,P;0), given in Eq.~5.36!,
by the factor given in Eq.~5.28!. The result is to replace Eq
~5.36! by

W̃T~Q,P;0!5
1

11e2d2/8s2 expH 2S 1

8s2
1

1

2l̄2D Q2

2
s2P2

2\2 J S cos
Pd

2\
1e2d2/8s2

cosh
Qd

4s2D .

~5.40!

Putting this in the expression~4.24! for the probability den-
sity at timet, we find, in place of Eq.~5.37!
0-10
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EXACT SOLUTION OF THE HU-PAZ-ZHANG MASTER . . . PHYSICAL REVIEW D 64 105020
PT~x;t !5
1

2~11e2d2/2s2
!A2p^Dx2&T

3S expH 2

S x2
d

2
e2zt/mD 2

2^Dx2&T

J
1expH 2

S x1
d

2
e2zt/mD 2

2^Dx2&T

J 12 expH 2
x2

2^Dx2&T

2
d2

8s2
1

~12e2zt/m!2\2d2

32z2s4^Dx2&T
J cos

G\dx

4s2^Dx2&T

D ,

~5.41!

where^Dx2&T is given in Eq.~5.32!. With this, we find that
the attenuation coefficient is given by

aT~ t !5expH 2
^X2~ t !&T

8s2^Dx2~ t !&T

d2J . ~5.42!

Here we recall that̂Dx2(t)&T and^X2(t)&T are given in Eqs.
~5.32! and ~5.33!.

Now, for times short compared with the Ohmic dec
time we find

aT~ t !>exp5 2

kT

m
t2

8S s41s2
kT

m
t21

\2

4m2
t2D d26 , t!m/z.

~5.43!

This is exactly the form of the attenuation coefficient for
free particle@7#, which for very short times is of the form
aT(t)>exp$2t2/td

2%, where the decoherence time is

td5
A8s2

v̄d
, ~5.44!

in which v̄5AkT/m is the mean thermal velocity.

VI. CONCLUDING REMARKS

The system we are discussing is that of an oscilla
coupled to a linear passive heat bath, with a microsco
Hamiltonian of the form~2.9!. The long time equilibrium
state of this system is entangled, in the sense that the no
modes correspond to coupled motion of the oscillator and
bath. The Hu-Paz-Zhang equation is an exact master e
tion describing how this entangled equilibrium state ari
from an initial state in which the bath and the oscillator a
not coupled. We should perhaps emphasize that this assu
tion of a decoupled initial state is common to all derivatio
of a master equation, going back at least to the work
Wangness and Bloch@19#, who phrased it as an assumptio
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ic

al
e
a-
s

p-

f

that at any instant of time the system is approximately
coupled. Indeed, such an assumption is essential for the
troduction of the notion of partial trace, i.e., the trace ov
states of the uncoupled bath as in Eq.~4.1!, key to the exis-
tence of any master equation. Now, our exact solution
allowed us to see more clearly how serious is that assu
tion. In particular, we have seen that within this assumpt
an exact solution leads to meaningful results only in the h
temperature limit. Here we hasten to add that this rem
does not apply to the many successful applications of ma
equations in the weak coupling approximation.

For the most part, previous discussions have been m
under the restriction that the initial state of the particle is
pure state, effectively at zero temperature, while the bat
at a high temperatureT. There has even been an approxima
experimental realization of such a state@20#. However, we
would argue that such a state is unphysical in the sense
it does not correspond to what is envisioned when o
speaks of a system at temperatureT. Rather, the initial time
dependence is then dominated by the ‘‘warming up’’ of t
particle, which occurs on a time scale of order the decay t
m/z. On the other hand, as we have shown, the restrictio
such a state is not necessary, one can, within the assum
of an uncoupled initial state, choose the particle state to b
the same temperature as the bath.

In order to describe a state of the system that is entan
at all times, including the initial time, it is necessary to aba
don master equation methods. Some time ago, a more
eral method applicable to such systems was described
Ford and Lewis@21#. In their method, a system in equilib
rium is put into an initial state~e.g., a wave-packet state! by
a measurement and then at a later time is sampled by a
ond measurement. This method of successive measurem
has recently been applied to obtain exact results for the p
lems of wave packet spreading and decoherence@6#. For the
wave packet spreading one finds in place of Eqs.~5.22! or
~5.31! the result

P~x;t !5expH 2
~x2x0!2

2w2~ t !
J , ~6.1!

where the variance is now given by

w2~ t !5s21s~ t !2
@x~ t !,x~0!#2

4s2
. ~6.2!

An equivalent result for wave packet spreading in the Ohm
case has been obtained by Hakim and Ambegaokar@17#, who
used functional integration methods. For the decohere
problem, one obtains in place of Eqs.~5.38! or ~5.42! the
result

a~ t !5expH 2
s~ t !

8s2w2~ t !
J . ~6.3!
0-11
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Note that these results are finite at any temperature and a
to an arbitrary heat bath and for all times. At short times,
results~5.34! and ~5.43! are in agreement with these exa
results.
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APPENDIX: SINGLE RELAXATION TIME MODEL

Here we consider the single relaxation time model for
case of a free particle (K50). This model corresponds to
memory function of the form

m~ t !5
z

t
e2t/tu~ t !, ~A1!

whereu is the Heaviside function. Note that in the limitt
→0 this becomes the Ohmic memory function~5.1!. With
this form of the memory function and withK50, the re-
sponse function~2.7! takes the form

a~z!5
1

2mz22 iz
z

12 izt

5
z1 i ~g11g2!

2mz~z1 ig1!~z1 ig2!
, ~A2!

where we have introduced

g65

16A12
4zt

m

2t
. ~A3!

Note that in the Ohmic limitg1→t21→` and g2→z/m
and we recover the form~5.2! of the response function.

With this form of the response function, the Green fun
tion ~2.6! can be written in the form

G~ t !5
g1

2 ~12e2g2t!2g2
2 ~12e2g1t!

mg2g1~g12g2!
, ~A4!

If we form the quantities~2.19! with this Green function, we
find

2G~ t !5g22
~g12g2!@~g11g2!eg2t2g1#

~g11g2!~eg1t2eg2t!1g12g2

,

~A5!

V2~ t !5
g2g1~g12g2!

~g11g2!~eg1t2eg2t!1g12g2

.

In the Ohmic limit, it is clear that for any finite time
2G(t)→g2→z/m and V2(t)→0. On the other hand
10502
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2G(0)50 andV2(0)5g2g1→(z/mt)→`. For t of order
t we see that in this Ohmic limit

V2~ t !>
z

mt
e2t/t→2z

m
d~ t !. ~A6!

This justifies the assertion made in Eqs.~5.4!.
Next, we consider the fluctuating position operator,X(t),

for the single relaxation time model. With the Green functi
~A4! it is a simple matter to verify the relation

G~2t8!2G~ t2t8!52mG~ t !Ġ~2t8!

2
12mĠ~ t !

g1g2
G̈~2t8!. ~A7!

Putting this in Eq.~5.5! we find in place of Eq.~5.7!,

X~ t !5xs~ t !2xs~0!2mG~ t !ẋs~0!2
mt

z
@12mĠ~ t !# ẍs~0!.

~A8!

Forming the mean square, we can write

^X2~ t !&5s~ t !2mG~ t !ṡ~ t !1
1

2
m2G2~ t !s̈~0!

2
mt

z
@12mĠ~ t !#@ s̈~ t !2 s̈~0!#

2
m2t2

2z2
@12mĠ~ t !#2s(4)~0!. ~A9!

The interest here is in the zero temperature limit. With t
response function given by Eq.~A2! and with T50, the
expression~5.6! for the mean square displacement can be
in the form

s~ t !5
2\

pz

g1
2 I ~g2t !2g2

2 I ~g1t !

g1
2 2g2

2
, ~A10!

whereI (x) is given by Eq.~5.14!. We see now thats̈(0) is
finite, but the fourth derivatives(4)(0) is logarithmically di-
vergent. Indeed the divergence is the same as in the Oh
case, with the same long time form~5.17!.
0-12
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