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Abstract

This paper presents the theoretical analysis of a multilayered
magneto-electro-thermoelastic hollow cylinder under unsteady and uniform surface
heating. We obtain the exact solution of the transient thermal stress problem of the
multilayered magneto-electro-thermoelastic hollow cylinder in the plane strain
state. As an illustration, we perform numerical calculations of a two-layered
composite hollow cylinder made of piezoelectric and magnetostrictive materials
and investigate the numerical results for temperature change, displacement, stress,
and electric and magnetic potential distributions in the transient state. Furthermore,
the effects of the coupling, stacking sequence and position of the interface on the
stresses, electric potential and magnetic potential are investigated.
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1. Introduction

It has recently been found that composites made of piezoelectric and magnetostrictive
materials exhibit the magnetoelectric effect, which is not seen in piezoelectric or
magnetostrictive materials [1-3]. These materials are known as multiferroic composites [4].
These composites exhibit a coupling among magnetic, electric, and elastic fields. It is
possible to develop a new system of smart composite materials by combining these
piezoelectric and magnetostrictive materials with other structural materials.

In the past, various problems in magneto-electro-elastic media that exhibit anisotropic
and linear coupling among the magnetic, electric, and elastic fields were analyzed.
Examples of static problems are as follows. Pan [5] derived the exact solution of simply
supported and multilayered magneto-electro-elastic plates, and Pan and Heyliger [6] derived
the exact solution of magneto-electro-elastic laminates in cylindrical bending. Babaei and
Chen derived the exact solution of radially polarized and magnetized rotating
magneto-electro-elastic hollow and solid cylinders [7]. Ying and Wang derived the exact
solution of rotating magneto-electro-elastic composite hollow cylinders [8]. Wang et al.
derived an analytical solution of a multilayered magneto-electro-elastic circular plate under
simply supported boundary conditions [9]. Examples of dynamic problems are as follows.
Wang and Ding analyzed the transient responses of a magneto-electro-elastic hollow sphere
[10] and a magneto-electro-elastic composite hollow sphere [11] subjected to spherically
symmetric dynamic loads. Anandkumar et al. analyzed the free vibration behavior of
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multiphase and layered magneto-electro-elastic beams [12].

Examples of thermal stress problems are as follows. Sunar et al. [13] analyzed
thermopiezomagnetic smart structures and Kumarval et al. [14] analyzed a three-layered
electro-magneto-elastic strip under steady state conditions using the finite element method.
Hou et al. obtained 2D fundamental solutions of a steady point heat source in infinite and
semi-infinite orthotropic electro-magneto-thermo-elastic planes [15] and obtained Green’s
function for a steady point heat source on the surface of a semi-infinite transversely
isotropic electro-magneto-thermo-elastic material [16]. Xiong and Ni obtained 2D Green’s
functions for semi-infinite transversely isotropic electro-magneto-thermo-elastic composites
[17]. Gao et al. analyzed the problem of collinear cracks in an
electro-magneto-thermo-elastic solid subjected to uniform heat flow at infinity [18]. These
studies, however, treated thermal stress problems only under steady temperature distribution.
It is well known that thermal stress distributions in a transient state show significant and
large response values as compared to those in a steady state. Therefore, transient
thermoelastic problems are important. With regard to transient thermal stress problems,
Wang and Niraula analyzed transient thermal fracture in transversely isotropic
electro-magneto-elastic cylinders [19]. The exact solution of a transient analysis of
multilayered magneto-electro-thermoelastic strip subjected to nonuniform heat supply was
also obtained [20]. This study [20] discusses the problem in rectangular coordinates. As the
multilayered hollow cylinder and hollow sphere have curvature, the behavior of these
structures is different from that of the multilayered strip mainly. Though the author et al.
studied already a lot of the transient thermal stress problems of the multilayered hollow
cylinders [21-23] and multilayered hollow spheres [24], theses studies don’t consider a
coupling among magnetic, electric, and thermoelastic fields. Furthermore the theoretical
analysis of the multilayered hollow cylinder or hollow sphere with a coupling among
magnetic, electric, and thermoelastic fields is more difficult than that without the coupling.
To the best of the authors’ knowledge, the exact analysis of a multilayered
magneto-electro-thermoelastic hollow cylinder or hollow sphere under unsteady heat supply
has not yet been reported. Here, we present the derivation of an exact solution of the
transient thermal stress problem of a multilayered composite hollow cylinder made of
magneto-electro-thermoelastic materials under uniform surface heating in a plane strain
state. We assumed that the magneto-electro-thermoelastic materials are polarized and
magnetized in the radial direction. We carried out numerical calculations for a two-layered
hollow cylinder composed of piezoelectric and magnetostrictive materials, and examined
the effects of the coupling, stacking sequence and position of the interface on the stresses,
electric potential and magnetic potential.

2. Heat conduction problem

We considered a multilayered composite hollow cylinder made of anisotropic and linear
magneto-electro-thermoelastic materials. The hollow cylinder’s inner and outer radii are
denoted by a and b, respectively. 7; is the outer radius of the ith layer. Throughout this
article, indices i (=1,2,..., N) are associated with the ith layer from the inner side of a
composite hollow cylinder.

We assumed that the multilayered hollow cylinder is initially at zero temperature and its
inner and outer surfaces are suddenly heated by surrounding media having constant
temperatures 7T, and 7, with relative heat transfer coefficients %, and 4,, respectively. Then,
the temperature distribution is one-dimensional, and the transient heat conduction equation
for the ith layer is written in the following form:

o, _ 0T, 10T,

L=k (=D

or or- v or
The initial and thermal boundary conditions in dimensionless form are

i=12,---,N (1)
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r=0; T=0 ; i=12,---,N )

_ _ T ., - _ 5

r:a;f_Halz_HaTa ( )
or

F:Ria T;:]j[ﬂ 5 1:15257N_1 (4)

7:Ri;2,ia—{;:2i+l anl ;i=12,,N-1 (%)

or 0

F=1 aaT;V +H,T, =H,T, (6)

r

In Egs. (1)-(6), we introduced the following dimensionless values:

(T.7,,1,)=(T,T,,T,)/T,, (¥,R,a)=(r,r,a)/b, t=xK,t/b,

i’7a’

K=K, /Kys er:ir[/lo’ (H,,H,)=(h,,h,)b (7

where T; is the temperature change; ¢ is time; and 7;, A1, and «, are typical values of
temperature, thermal conductivity, and thermal diffusivity, respectively. Introducing the
Laplace transform with respect to the variable 7, the solution of Eq. (1) can be obtained so
as to satisfy the conditions (2)-(6). This solution is written as follows:

i =, 2exp(—44;7)
F Z A (u;)

Nl

AT (B )+ BYy (B )] =12 N

(®)
where Jy( ) and Yy( ) are zeroth-order Bessel functions of the first and second kind,
respectively. Futhermore, A and F are the determinants of 2N x2N matrices [ay] and
[ew], respectively; the coefficients A;and B; are defined as determinants of a matrix
similar to the coefficient matrix [ay], in which the (2i-1)th column or 2ith column is
replaced with the constant vector {c;}, respectively. Similarly, the coefficients 4';and B';
are defined as determinants of a matrix similar to the coefficient matrix [ey], in which the
(2i-1)th column or 2ith column is replaced with the constant vector {c;}, respectively. The
nonzero elements of the coefficient matrices [ay] and [ey] and the constant vector {c;} are
given as

ay, =pud\(Pua)+H,J(Bpa), a,=puY(Bua)+HY (S ua),

oy oy = Hyd o (Byt) = Byt I (Byt) s oy oy = H Y (Bytd) = Byu Yy (By) 9
@iy =S (BHR) > a5 = Yo (BilR,) Ay 50y = =S o (Bs tiR;) >

gy =Yy (BuahiR) > s i = =2 B, (BHR,) »

o0 =AY (BHR) > s iy = 2 si Bk (B iR,)

Drinpiva = 7,141 Y (BauR) 5 i=12, N -1 (10)
_ 1
e, =H, e,=H,Ina 7 enaona =Hys e,y =1 )
a1 = 1o €5 =INR;s ey =15 €5, =—InR;,
7' /T’r i+ . ;
€10 = ?r: > i T _Til s i=12,N-1 (12)
CleaTa’ CZNZHbT/: (13)
InEq. (8), A'(y;) and g are
' dA 1
Nu)=— ~ B=—1= (14)
d H=H Kri

and 78 is the jth positive root of the following transcendental equation
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A(u)=0 (15)
3. Thermal stress problem

We developed the analysis of a multilayered magneto-electro-thermoelastic hollow
cylinder as a plane strain problem. The displacement-strain relations are expressed in
dimensionless form as follows:

Epi =Uyr> Egg =Uy /T €.,=7,3=7 =V =0 (16)
where the comma denotes partial differentiation with respect to the variable that follows.
For the anisotropic and linear magneto-electro-thermoelastic material, the constitutive
relations are expressed in dimensionless form as follows:

G, =C& +Cioi€oa —

rri 11i%rri

12:€

a

0-061' = rri

G.. = C3&, + Coyi8oq — BT, — e, — Gy, H , 17)

zzi 13i%rri

where

Bzi = a3ia)~i + 5231'50:' + 6331’Ezi (18)
The constitutive equations for the electric and the magnetic fields in dimensionless form are
given as

5)’1’ = éligrri + éligﬂﬁi + 7711'Eri + g]i[?ri + ﬁlif (19)

Eri = qligrri + qligeﬂ‘ + JliEri + ﬁliﬁri + ﬁlifvi (20)

The relation between the electric field intensity and the electric potential ¢ in

dimensionless form is defined as

E, =, @1
The relation between the magnetic field intensity and the magnetic potential i, in

dimensionless form is defined as

H, ==/, (22)
The equilibrium equation is expressed in dimensionless form as follows:
6rr[a7+(5rr[ - 590[)/}7 = 0 (23)

If the electric charge density is absent, the equations of electrostatics and magnetostatics are
expressed in dimensionless form as follows:

D..+D,/7=0 (24)

B,,+B,/F=0 (25)

In Egs. (16)-(25), the following dimensionless values are introduced:
(Epi> V) - — U, — Oy C Cui

O i = =
> (8_}/,):7: u. =———- a, =——:> .=
ki > /" kli ri ki ki
oY, T, a,T, o, Tyb a, Y,

>

Oui =
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5”_ _ D, , E,,,- _ B, do""o , 51 _ 9, do‘ . 7= v, ,
a, Y, T,|d,| ba,T, a,T,b |do|icoa, Yy T,y
T T 7. = qk;’fo‘do‘ . g /uliK(?‘dO‘ZYO ,
' “Tx ) T Y| b “ b
d = Kodu - _ Py _ mu’(o‘do‘ = _ E, do‘
li b ’ pli > i = ’ ri T ’

a,Y,|do| ba, a1,

J—_L (26)

" ‘do ‘KOaOYOTO

where o, are the stress components; (g, ) are the strain components; . is the
displacement in the r direction; ¢,, are the coefficients of linear thermal expansion; C,,
are the elastic stiffness constants; D,, is the electric displacement in the » direction; B, is
the magnetic flux density in the » direction; e, are the piezoelectric coefficients; p, is
the dielectric constant; p,. is the pyroelectric constant; g, are the piezomagnetic

coefficients; 4, is the magnetic permeability coefficient; 4, is the magnetoelectric

li
coefficient; m,, is the pyromagnetic constant; and ¢, ¥, and d, are typical values of
the coefficient of linear thermal expansion, Young’s modulus, and piezoelectric modulus,
respectively.

Substituting Egs. (16), (21), and (22) into Egs. (17), (19), and (20) and later into Eqgs.
(23)-(25), the governing equations of the displacement u,;, electric potential ¢ , and
magnetic potential i, in the dimensionless form are written as

1% riorr 117 rior

= = = - -1 A — -2 =7 N
Coly i+ Gty 7 = Coo il 7 + 8 + (8, — €))7

+ q]i%’ﬁ+(ql[ ~ )W Fl= (:B” - Bef)f[’TI + ﬂn];’? 27N
élfﬁrw?f"'(éu + EZ[)Z/THW P _71,'7,'5,7_771[77? P _671['/7[77;_511,"/7,'57 P!
= _ﬁu(ia?"'ff’Tl) (28)

Giill > H( Gy + G2 Uo7 ! —d @5 —d g, ! — IV s =G oy F
i (T T ) 29)
If the inner and outer surfaces of the multilayered magneto-electro-thermoelastic hollow
cylinder are traction free, and the interfaces of each adjoining layer are perfectly bonded,
then the boundary conditions of inner and outer surfaces and the conditions of continuity at
the interfaces can be represented as follows:

7= E, Errl = 05
f:Ri; Erri :EV)',f+1’L7ri :ﬁr,Hl ;i:l"“’N_l’
F=l; &, =0 (30)

The boundary conditions in the radial direction for the electric and magnetic fields are
expressed as

N
Il

a; D,=0,B,=0 or ¢ =0,iy, =0,

r=R;; Dri:Dr,Hl’Eri: r,i+1’¢[:¢[+1’ V=¥, si=1-N-1,
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’7:1’ BFN:O,EFN:O or aNZO’WNZO (31)

The solutions of Egs. (27)-(29) are assumed in the following form:

u,; = ljrci +171p1 4 ¢[ = @i + pi’ 171 = 1/705 +‘/7/)[ (32)

In Eq. (32), the first term on the right-hand side gives the homogeneous solution and the
second term gives the particular solution. The homogeneous solutions of Eq. (32) can be

expressed as follows:

- _ —=-1 —=m; ——m;
u,=Cr +CGr"+C,r ™,

&‘i:@(c&-‘f’ C,Inr+g,Cr" +g,C,r™)>

€,
V., :C;U(Csf +C5In7 + g, Cr™ + g,C 7 ™) (33)
1i
where
— . . 2
mi _ _@ , bZi :_[ai7i+ﬂ¢>2i +(ﬁqi7/i ﬁelfdz) ],
\ by, oy — By
(7, - B, )2 C. e q.
b, =1+y +-+—< ==L, g =2, g =24,
) oy — ;z Gy € ! i
C [J[ = 6 [771 6 [/ut
ﬂdi:71171’ = 17121 S = 1i21
111 eli qll

1
& = W[mi(%' _:Bdi) +:qu71‘ _ﬂeiﬂdi] ’

_ﬁdi)
1
83 = m[m[(%_ﬁdf)_ﬁqf7[+ﬁe[ﬁdf]’
&si :L[mi(l_gZiIBd[)-i_ﬁe[]’ 8si :L[mi(l_g?&iﬁdi)_ﬂei] (34)

In Eq. (33), C; (k =1,3---,8) are unknown constants. We have the following relation.
a,C,+B,C, + q[CS[ =0 (3%
The details of the derivation of the Egs. (33) and (34) are omitted here.
It is difficult to obtain the particular solutions using the temperature solution of Eq. (8).
In order to obtain the particular solutions, series expansions of Bessel functions given in Eq.
(8) are used. Eq. (8) can be written in the following way:

T(7,7)= Z a, (0)F" +b, (r)F*" InF] (36)
n=0
where
Zr
am (T) = F 50)1
E)
I gt awalial exp(— u,r) 33(7 Bt Z1 ,B,u,
=1 A( ) el m n'n' 2
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=~} - n 2n
()= 26, 3 20K 2 CU (Pt (37)

" F " = oA 7ol 2

Here, §,, is the Kronecker delta. The particular solutions api, and y, are obtained

i 2

in the following forms:

0
— —2n+l =2 =
urp[ = Z[f‘am’ (T)l" " + f;mi (T)l" " lnr] ’
n=0

5/)1’ = Z[ham' (T)fz’lﬂ + hlm[ (T)fzwrl ln ’7] ?
n=0

0

Wpi = Z[gani (T)FZWrl + gbni (z-)anJrl ln ’7] (38)

n=0
Expressions for fu,: (7)), foui (T) 5 hani(T) s Poni(T) 5 Qani(7) and g, (7), in Eq. (38) have
been omitted here for brevity. Then, the stress components, electric displacement, and
magnetic flux density can be evaluated from Eq. (33). Details of the solutions are omitted
from here for brevity. The unknown constants in the homogeneous solutions are determined

so as to satisfy the boundary conditions in (30) and (31).
4. Numerical results

In order to illustrate the foregoing analysis, we consider a two-layered hollow cylinder
composed of piezoelectric and magnetostrictive layers. The two-layered structure is a
fundamental model of the multilayered structures, and suites to investigate the effect of
stacking sequence of the piezoelectric and magnetostrictive layers. The piezoelectric layer
is made up of BaTiOs, and the magnetostrictive layer is made up of CoFe,O4. Two kinds of
two-layered hollow cylinders are investigated. Case 1 shows the stacking sequence
BaTiO;/CoFe,0,4 and case 2 shows the stacking sequence CoFe,04/BaTiO;. We assume that
the outer surface of the two-layered hollow cylinder is heated. Then, numerically calculable
parameters of the heat condition and shape are presented as follows:

H,=H, =10, T,=0, T,=1, N=2,

a=0.7, R =0.75,0.8,0.85,0.9,0.95, b=0.01m 39
The following are material constants considered for BaTiO;:

a,=a, =157x10°1/K, a,=64x10°1/K,

C,, =C,, =166GPa, Cy, =71GPa, C,,=C,,=78GPa, C, =162GPa
e,=e,=—44C/m*, ¢ =18.6C/m*, 1, =12.6x10" C*/Nm*,

p, =2x10"C*/m*K , 1, =10x10"° Ns*/C*, A =2.5W /mK,

K, =0.88x10° m* /s (40)
The corresponding constants for CoFe,O, are

a, =a,=a,=10x10°1/K, C,,=C,, =286GPa

r

C,,=173GPa, C,,=C,;=170.5GPa, C, =269.5GPa.,

4, =q,=5803N/Am, ¢, =699.7N/Am, n, =0.093x10" C*/ Nm’,
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1 =157x10° Ns*/C*, A, =32W/mK,
K, =0.77x10° m* /s (41)

The typical values of material parameters such as x,, 4,, «,, Y,, and 4, used to

normalize the numerical data, based on those of BaTiO; are as follows:
Ky=K,> A=A, ay=a,> Y,=116GPa, d,=-78x10">C/N (42)

In the numerical calculations, the boundary conditions at the surfaces for the electric and
magnetic fields are expressed as

a, D,=0,B,=0,

N
Il

I 4y =0y, =0 (43)

r

The numerical results for case 1 and R =0.85 are shown in Figures 1-7. Figure 1
shows the variation of temperature change along the radial direction. Figure 2 shows the
variation of displacement i  along the radial direction. From Figures 1 and 2, it is clear
that the temperature and displacement increase with time and have the largest values in
steady state. Figures 3-5 show variations of thermal stresses o, &,, and o _,
respectively, along the radial direction. Figure 3 reveals that the maximum tensile stress of
o, occurs in the transient state and the maximum compressive stress of & occurs in the
steady state. From Figure 4, it is clear that the compressive stress occurs in the first layer
and tensile stress occurs in the second layer. From Figure 5, it is clear that the compressive

stress occurs inside the hollow cylinder and its absolute value increases with time. Figures 6
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and 7 show the variations of electric potential ¢  and magnetic potential 7 ,
respectively, along the radial direction. Figure 6 reveals that the absolute value of the
electric potential increases with time, except during the early stage of heating, and attains its
maximum value in the steady state. The electric potential is almost zero in the second layer,
i.e. the magnetostrictive layer. From Figure 7, it is clear that the absolute value of the
magnetic potential increases with time and attains its maximum value in the steady state.
The magnetic potential is almost constant in the first layer, i.e. the piezoelectric layer.

The numerical results for case 2 and R =0.85 are shown in Figures 8-14. Figure 8
shows the variation of temperature change along the radial direction. Figure 9 shows the
variation of displacement z_ along the radial direction. From Figures 1, 2, 8, and 9, it is
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clear that the temperature increase and displacement 7 of case 1 are larger than those of
case 2. Figures 10-12 show the variations of thermal stresses o, &, , and & _,
respectively, along the radial direction. From Figure 10, it is clear that the maximum tensile
stress occurs in the steady state. Figure 11 reveals that tensile stress occurs in the first
layerand compressive stress occurs in the second layer. Figure 12 reveals that compressive
stress occurs inside the hollow cylinder and its absolute value increases with time. The
maximum compressive stress occurs in the second layer. Figures 13 and 14 show the
variations of electric potential ¢ and magnetic potential i , respectively, along the radial
direction. From these figures, it is clear that the absolute values of the electric and magnetic
potential increases with time, and attain their maximum value in the steady state. The
electric potential is almost constant in the first layer, i.e. the magnetostrictive layer. In
contrast, the magnetic potential is almost zero in the second layer, i.e. the piezoelectric
layer.

In order to assess the influence of the position of the interface between both the layers,
numerical results for case 1 and R, =0.75,0.8,0.85,0.9,0.95 were obtained; these results
are shown in Figures 15-18. Figures 15 and 16 show the variations of thermal stresses &,
and &, , respectively, in the steady state. Figures 17 and 18 show the variations of electric
and magnetic potential, respectively, in the steady state. From Figures 15 and 16, it is clear
that the distribution of the thermal stress &, changes substantially with a change in the
parameter R,, whereas the maximum tensile stress &, increases with an increase R, . It
can be seen from Figures 17 and 18 that the absolute values of electric potential increase
and those of magnetic potential decrease with an increase in R, .
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In order to assess the influence of coupling effect among magnetic, electric, and
thermoelastic fields on the stress, Figures 19 and 20 show the numerical results for the
two-layered thermoelastic hollow cylinder without the piezoelectric, piezomagnetic and
magnetoelectric effects. The variations of thermal stress &,, along the radial direction for
the stacking sequence BaTiO;/CoFe,O, and CoFe,0,/BaTiO; are shown in Figures 19 and
20, respectively. From Figures 4, 11, 19 and 20, it can be seen that the thermal stress
considered the coupling effect shows larger than that without the coupling effect.

As the second numerical example, we consider the numerical parameters of heat
conduction and shape as follows:

H,=10, H,=1000, T,=0, T,=1, N=2, a=0.7, R =085 (44)

Figures 21 and 22 show the variations of thermal stress &,, along the radial direction for
the stacking sequence BaTiO3/CoFe,O4 and CoFe,04,/BaTiO;, respectively. From Figures
21 and 22, it is clear that the maximum tensile stress occurs in the first layer in the transient
state without distinction of the stacking sequence. The transient thermal stress analysis is
important from above viewpoint.

The previous paper [20] shows the numerical results of two-dimensional problem for
simply supported multilayered strip due to local surface heating, and investigates the
behaviors which contain the influence by the local heating under the condition without the
bending restriction. The behavior of the displacements in the x and j directions, the
stresses & _, G, O and G..o the electric and magnetic potential is two-dimensional.
On the other hand, as this problem is a one-dimensional problem, the numerical results
show the behaviors of the displacement, the normal stresses &, , 5,, &., and the
electric and magnetic potential in the radial direction. The mageno-electro-thermoelastic
response of the multilayered strip and that of the multilayered hollow cylinder are different.
As the multilayered hollow cylinder has curvature and is under restriction to the
circumstance direction, especially, the behavior of the in-plane stress &, is different from

that of the in-plane stress & in the multilayered strip mainly.
5. Conclusion

In this study, we obtained the exact solution of the transient thermal stress problem of a
multilayered magneto-electro-thermoelastic hollow cylinder under uniform surface heating
as a plane strain problem by solving the governing equations of the displacement, electric
potential, and magnetic potential. In order to obtain the particular solutions, series
expansions of Bessel functions in temperature solution were used. We can evaluate that the
electric and magnetic fields of the hollow cylinder in a transient state due to the analysis
with a coupling among magnetic, electric, and thermoelastic fields. As an illustration, we
carried out numerical calculations for a two-layered hollow cylinder composed of
piezoelectric and magnetostrictive materials, and examined its behavior in the transient state
in terms of temperature change, displacement, stress, and electric and magnetic potential
distributions. Furthermore, the effects of the coupling, stacking sequence and position of the
interface on the stresses, electric potential and magnetic potential were investigated.

As a result, the following results are obtained:

For the heat condition H, 6 =H, =1.0,

(1) The maximum of & for the stacking sequence BaTiO;/CoFe,O4is a compressive
stress, while that for the stacking sequence CoFe,0,/BaTiO; is a tensile stress.

(2) The maximum tensile stress of &,, occurs in the magnetostrictive layer in the steady
state without distinction of the stacking sequence.

(3) The maximum absolute value of the electric potential for the stacking sequence
BaTiOs/CoFe,0, is smaller than that for the stacking sequence CoFe,0,/BaTiOs.
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(4) The maximum absolute value of the magnetic potential for the stacking sequence
CoFe,04/BaTiO; is larger than that for the stacking sequence BaTiO;/CoFe,0,.

(5) The absolute values of electric potential increase and those of magnetic potential
decrease with an increase in the thickness of piezoelectric layer.

(6) The coupling effect increases the thermal stress &, .

For the heat condition H,6=1.0, H, =100.0,

(7) The maximum tensile stress of &,, occurs in the first layer in the transient state
without distinction of the stacking sequence.

Though numerical calculation was carried out for a two-layered hollow cylinder,
numerical calculation for the multilayered hollow cylinder with an arbitrary number of layer
can be carried out.
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