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ABSTRACT

We consider models of thin discs (with and without bulges) in the Bekenstein—
Milgrom formulation of MOND as a modification of Newtonian gravity. Analytic
solutions are found for the full gravitational fields of Kuzmin discs, and of disc-plus-
bulge generalizations of them. For all these models a simple relation between the
MOND potential field, y, and the Newtonian potential, ¢y, holds everywhere outside
the disc: u(|Vy|/a,)Vy =V @y. We give exact expressions for the rotation curves for
these models. We also find that this algebraic relation is a very good approximation
for exponential discs. The algebraic relation outside the disc is then extended into the
disc to derive an improved approximation for the MOND rotation curve of disc
galaxies, requiring only knowledge of the Newtonian curve and the surface density.

Key words: gravitation — celestial mechanics, stellar dynamics — galaxies: structure —

dark matter.

1 INTRODUCTION

There are two extreme interpretations of the modified
Newtonian dynamics (MOND). One interpretation views
MOND as a modification of inertia (Milgrom 1983, 1994a):
gravitational fields of massive bodies remain Newtonian, but
the equation of motion of a particle in the field is superseded
by a MOND equation of motion. In this paper, however, we
concentrate on the Bekenstein-Milgrom (BM) formulation
of MOND (Bekenstein & Milgrom 1984, hereafter BM),
which is an embodiment of MOND as a modification of
gravity, leaving the Newtonian law of motion intact. The
standard Poisson equation for the Newtonian gravitational
potential, ¢y, (V:Veoy=4nGp) induced by a mass density
©o(R)is replaced by

V-[u(|Vyl/a,)Vy]=4nGp, (1)

with a, the acceleration constant of MOND. This non-linear
equation is hardly amenable to analytic solution beyond the
simple cases of configurations with one-dimensional
symmetry.

It would be very useful, for example, to have exact, or even
approximate, analytic solutions for the gravitational field of
model disc galaxies on which various ideas can be tested.
Some problems whose study may benefit from the avail-
ability of such solutions are, for example, that of polar rings,
and that of the motion and fate (disruption, capture etc.) of
dwarf companions moving in the field of a mother galaxy.

Even more central is the problem of calculating the
MOND rotation curves of disc galaxies. In formulations of
MOND based on modification of inertia, the velocity on a

circular orbit of radius r in the plane of disc galaxies is given
exactly by

ulala)a=ay, (2)

where a =v?/r, and ay is the Newtonian acceleration at r
(Milgrom 1994a). This has been the standard expression for
calculating MOND rotation curves (e.g. Kent 1987; Milgrom
1988; Begeman, Broeils & Sanders 1991). It is not exact in
the Bekenstein-Milgrom formulation, and had the status of
being only an approximation before the work of Milgrom
(1994a).

Here we describe a class of disc-galaxy models for which
exact solutions of the MOND field equation are presented;
this is done in Section 3. We also find (see Section 4) that an
approximate analytic solution applies for a wider class of
models, and we suggest a way to predict the adequacy of
such an approximation, by studying only the Newtonian
solution for the mass distribution (Section 2). In Section 5,
we describe an approximation for the rotation curve in the
BM formulation - based, like relation (2), only on knowledge
of the Newtonian acceleration, but which is, generally, a
better approximation. In Section 6 we mention further
possible developments.

2 AN ALGEBRAIC RELATION BETWEEN
THE NEWTONIAN AND MOND FIELDS

Subtracting the Poisson equation from the MOND equation
(1) we get

V- {u(IVyl/a,)Vy —Ven]=0, (3)
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by which the expression in parentheses is some curl field. For
configurations with one-dimensional symmetry (spherical,
cylindrical or plane) the curl field must vanish, and thus the
MOND field is related to the Newtonian field by the
algebraic relation

u(IVyl/a,)Vyp=Voy. (4)

This affords a simple solution of the MOND problem, by
solving first the Poisson equation for ¢y and then inverting
equation (4) to get the MOND field. Relation (4) does not
follow from the MOND equation (1), but the inverse is
correct as the latter is just the divergence of the former.

We begin by asking whether such a relation may hold for
more general mass distributions, at least approximately.
Because the function u that appears in MOND is such that
I(x)=xu(x) is monotonic, and varies between 0 and = as x
does so, I(x) is invertible on the positive real axis. Equation
(4) is thus equivalent to

Vy=v(|Voyl/a,)Vey, (5)

where v(y)=I1"Yy)/y. A potential vy that satisfies this
equation exists if and only if the curl of the right-hand side
vanishes, or, in other terms

VIVeu|XVey=0 (6)

(as ¥’ #0). This, in turn, is tantamount to |V ¢y | being some
function of ¢y

[Vonl=flon) (7)

We find then a necessary and sufficient condition for
equation (4) to hold for some y and some u (with u'# 0); the
condition is expressed solely in terms of the Newtonian field
of the given mass distribution. By equation (4) the equi-
potentials for 9 and ¢y coincide, and v is thus a function of
PN-

A potential y that satisfies equation (4) in some domain D
is the MOND solution to the problem only if ¥ also satisfies
the correct boundary conditions. If the sphere at infinity is
part of the boundary of D, then v automatically satisfies the
correct boundary condition there. The same is true of the
jump condition across a thin sheet of mass. If @y satisfies the
condition then a  that obeys equation (4) (outside the mass
sheet) satisfies the correct jump condition as well.

Concentrate now on mass distributions that model disc
galaxies: an axisymmetric distribution, syminetric also about
a mid-plane, made of a thin disc of surface density X(r), and
some bulge-like component. By the above arguments, if ¢
satisfies equation (4) everywhere outside the disc it is the
MOND solution of the problem: the boundary conditions
are now satisfied automatically by a solution of equation (4).
At infinity, V¢~ (MGa,)"?R /R?, and just outside the surface
of the disc

u(IVyl/a,)d,yp=£2x2(r), (8)

where 9, is the normal component of the gradient.

To assess the applicability of the algebraic relation for a
given configuration we only have to find the Newtonian
potential, and plot |Vgy| versus gy for points outside the
disc. If the points fall on a line, i.e. if | Vgy| is a function of
@ (a highly non-generic case), then V, as given by equation
(4), is the exact MOND acceleration field outside the disc. If
|[Vey| and @y are correlated, with only a little scattering,

equation (4) gives a good approximation to the MOND field
(see Section 4 for examples).

3 EXACT SOLUTIONS FOR KUZMIN DISCS
AND GENERALIZATIONS THEREOF

The two-parameter family of Kuzmin discs is described by a
Newtonian gravitational potential

px=—MG[[r’+(|z|+h)]'? (9)

(see e.g. Binney & Tremaine 1987), where we use cylindrical
coordinates r, z. The potential above the disc (z> 0) is that of
a point mass M placed on the lower z-axis at
— h=(0,0, — h); the potential below the disc is produced by
the same mass oppositely placed at h. The surface density,
3 «(r), matches the jump in the z-gradient of the potential:

)
2 =G

=Mh/[2n(r* + h?)*2, (10)
Everywhere outside the disc the equipotential surfaces are
concentric spheres centred at * h. Equations (6) and (7) are
thus satisfied (in this case |Voy|= ¢%/MG), and, by the
arguments of Section 2, the exact MOND solution for
Kuzmin discs is given, outside the disc, by the algebraic
relation equation (4). Thus, outside the disc,

g=—-Vy=a,l '(gu/a,)&n/8&n: (11)
where
gv=—MG(Rth)/|R+h|? (12)

is the Newtonian acceleration field above (+), and below
(—) the disc. The MOND solution, above the disc, is simply
that of a point mass located at — h.

For very-low-acceleration Kuzmin discs (with MG/
h?<a,), we have u(x)=x, so I '(x)=x!2 Then, the
MOND potential is

Yk~ (MGa,)'* Inlr? +(|z| + k)], (13)

which can be obtained by direct integration of equation (11).
The MOND rotation curve of a Kuzmin disc is, by equation
(11), _

v¥(r)=a 0 Yg(r,0%)/a,) r*[(r? + h?)'/?, (14)
where gu(r,0%)=MG[(r? +h?). 1t is clear then that we can
write

vr)=vin(, u), (15)

where v, =(MGa,)"/* is the asymptotic rotational speed,
{ = MG [h®a, is a measure of how deep in the MOND regime
we are, and u=r/h. If we take, for instance, u(x)=x/
(1+x2)"2, then1~!(y) =[y?/2 +(y*+y*/4)!/*]'? and

s , u2 CZ 1/2 C 1/2
=02, + + .
vAn=ve T2 (M s Taie e (16)
In the limit of very-low-acceleration discs, {0, one has,
independently of the exact form of u(x),
vi(r)=vZu?/(1+ u?), (17)

as in this limit 7~ !(y) =y'/2.
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Milgrom 1994b has proved a virial-like relation for self-
gravitating, low-acceleration systems, in the BM formulation.
For thin discs this relation reads (Milgrom 1994b)

% M**(Ga,)' =J 2nr2(r)v’(r)dr, _ (18)
0

where v(r) is the circular rotation speed; it can be readily
verified to hold for the pair of Z(r) and v(r), given by equa-
tions (10) and (17), respectively.

Kuzmin discs may be generalized into a family of disc-
plus-bulge models that are exactly solvable in MOND. These
may be generated in a number of equivalent ways.

For example, beginning with the Newtonian potential of a
Kuzmin disc ¢g(R), we define a new mass distribution whose
Newtonian potential is

¢ =Ulgy). (19)
We choose U such that U(x)—x for x—0; thus, at spatial
infinity @ has the same behavior as @k, and satisfies the
correct boundary behaviour for a potential of a mass M. The
potential ¢ is produced, outside the disc, by a mass distribu-
tion

p(R)=(4nG)"'V2@=(4nG)™ ' U"(¢)(V k), (20)

where we have made use of the fact that V2¢gy=0. From
equation (20), the equidensity surfaces coincide with the
equipotential surfaces (common to ¢ and ¢g), because
(V @y)? is a function of ¢y.

In addition, a disc is needed at z =0, with surface density

3)=(226)" 3¢ = Ul 013l 1)

with @g(r,0)=— MG [r* +h?)'/2, For p to be non-negative
we must have U" = 0; thus, U’ is an increasing function. Since
the maximum value of ¢y is 0, and there U' =1, we have
U'<1 everywhere, or =(r)<Z(r). The total mass (bulge plus
disc) contained within an equipotential surface gy is

M(gx) = U'(@x) My @), (22)

where My is the mass within @y for the generating Kuzmin
disc. This can be seen by applying the Gauss’s theorem to the
equipotential surface.

All the potentials ¢ defined by equation (19) satisty
equations (6) and (7) because @y does. Thus the algebraic
relation (4) gives the MOND solutions for all these model
galaxies in terms of the Newtonian field V¢ = U'( @)V .

A different approach, which generates the same family of
solvable models, starts with some spherical density distribu-
tion that is centred at — h: p(R)= 06(q), g=[r>+(| z| + h)*]'/%.
Take the MOND potential in the z>0 region to coincide
with that of p(R). In the z <0 region the potential is defined
symmetrically. For spherical systems the MOND field is
related to the Newtonian field by the algebraic relation (4).
Thus, this is also the case for the model under construction.
The ‘bulge’ density that produces the potential is just the part
of the spherical density distribution o(R) that is above the
mid-plane; we can dictate it at will. A disc with surface
density Z(r) must supplement the bulge to match the jump in
the z-gradient. If M(q)= [§4rA?6(1)dA is the spherical mass
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within distance g =(r? + h?)'/2 from the centre of po(R), then

=(r) =—2n7; . (23)

Z(r) is just the surface density of a Kuzmin disc with the
same s and a mass equal to the total spherical mass within
the sphere going through the point at r on the disc. Com-
paring with equation (21) we find the corresponding
U'(@x)=M(q)/M(), with g = = MG [¢x.

A third approach, which we shall not detail here, is to start
with the MOND potential for the Kuzmin disc, ¥y, and
construct new potentials 9 =S(y).

We reiterate that in all the above models, the bulge
equidensity surfaces coincide with equipotential surfaces of
the model. This means that we can readily construct, for the
bulge, distribution functions with isotropic velocity distribu-
tions. These are of the form f(E), with E=v%/2 + (r), for
which p(r)=[d*vf(E) = F[y(r)].

4 SOME OTHER DISC-GALAXY MODELS

How good an approximation is the algebraic relation in
general? There clearly are disc models for which it fails
rankly. Consider, for example, a disc whose surface density
vanishes at the centre. Then, |V ¢y| vanishes both near the
centre and at infinity, while the potential, which vanishes at
infinity, is non-zero at the centre. Thus |V ¢/ is anything but
a function of ¢y, and the algebraic approximation must
break appreciably.

We have found that for the very pertinent case of a disc
with an exponential surface-density law, Z(r)=X, exp(— r/h),
the algebraic approximation holds very well. A disc for which
it holds less well is the so-called Kalnajs disc (characterized
by a constant angular velocity on circular orbits inside the
material disc), whose surface density is Z(r)=Z,[1 —(r/h ]2,
We now discuss these two examples in more detail.

As explained in Section 2, to be able to foretell the quality
of the algebraic approximation for a given disc, it is enough
to look at the tightness of the relation |V ¢y| versus ¢y. In
Fig. 1 we show this relation for both of the above surface-
density distributions, as obtained from numerical calcula-
tions using a multigrid scheme. The code is capable of
solving the non-linear MOND equation, and is described in
detail in Brada 1995 (in preparation). For reference we also
show in Fig. 1(a) the numerical results for the Kuzmin disc,
which show that the numerical scattering about the expected
exact relation, |V @y | = ¢%/MG (marked by crosses), is quite
negligible (the slight departure from the exact relation is
numerical, and stems from the cut-off in the disc at the end of
the mesh). The correlation for the exponential disc (Fig. 1b)
is also rather tight (but does not follow the asymptotic rela-
tion). We thus expect the algebraic approximation to be
rather good for the MOND field, for all values of the mean
acceleration. We plot in Fig. 2 the relative departure, J, from
the algebraic relation:

s=UV¥l/a)Vy— Vo
IVl

For a very-low-acceleration Kuzmin disc we see that 6 =0
everywhere, as expected. For an exponential disc in the same

(24)
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Figure 1. Plots of | V| versus @y for Kuzmin (a), exponential (b), and Kalnajs (c) discs, and for an exponential disc cut-off below one-and-a-

half scalelengths. The crosses mark the relation | Voy | = ¢2/MG.

limit (£, < a,/G), we see that | 6| <1 everywhere outside
the disc, in keeping with the tight | V@y| versus’ ¢y relation.
For the Kalnajs disc, we see in Fig. 1(c) that the | V ¢y | versus
@y relation has rather more scattering, and indeed the plot of
d, shown in Fig. 2(c) (again for £, < a,/G), evinces a more
substantial departure from the algebraic approximation. An
exponential disc with a hole within one-and-a-half scale-
lengths is an even more extreme case, as shown in Figs 1(d)
and 2(d).

5 ROTATION CURVES BASED ON THE
ALGEBRAIC APPROXIMATION

If the algebraic relation (4) holds outside the disc it cannot be
correct in the mid-plane of the thin disc; so, we cannot use

equation (2) [u(a/a,)a =ay) to obtain the rotation curve of
the model galaxy. Rather, we have to follow the following
procedure: we need the radial acceleration, a,, in the mid-
plane of the disc. As the acceleration component parallel to
the disc is continuous across the thin disc, a, is the same as
a[, the radial acceleration just outside the disc. This can be
obtained from the algebraic relation in terms of the total
Newtonian acceleration just outside the disc ag, and its
radial component. The latter can again be equated to its
value in the mid-plane of the disc (as it too is continuous),
and so we obtain

arN = arV
wla fay) wlIVagja) (25)

vir)fr=a,=a} =
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(b) Exponential disc
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Figure 2. A plot of 6 - a measure of the departure from the algebraic relation - for the four discs as in Fig. 1. The large arrow is of unit length.

To complete the expression we express ay in terms of New-
tonian radial acceleration in the mid-plane, directly related
to the Newtonian rotation curve a3 =[a%+(2nGZ)?"/2 The
MOND rotation curve is thus given by a simple function of
the corresponding Newtonian quantity. The correction to
equation (2) involves the addition of the 2 GZ term in the
argument of /! in equation (25).

Relation (2) was found numerically (Milgrom 1986) to
constitute a good approximation for a large class of bulge-
plus-disc galaxy models, but, as we said, it is not exact in the
BM formulation, even for configurations for which it is
correct outside the disc. For example, for the low-surface-
density Kuzmin disc, relation (2) gives for the rotation speed

v{r)=(MGa,)'?r3/(r? + h2)3/4, (26)

to be compared with the somewhat different exact expres-
sion (17) [where the r dependence is r?/(r? + h?)]. This latter
expression is obtained from equation (25).

We suggest that equation (25) is, generically, a better
approximation for the rotation curve of disc galaxies in the
BM formulation than equation (2) is, even when the algebraic
approximation is not so good outside the disc (see some

examples below); it is as easy to apply as the latter formula-
tion. [We remind the reader that in the formulation of
MOND as a modification of inertia (Milgrom 1994a) relation
(2) gives the rotation curve exactly.|

In Fig. 3, we give three rotation curves for each of a few
galaxy models. The galaxy models presented are the bare
Kuzmin disc, a bare exponential disc, and a Kalnajs disc, all
in the deep MOND limit. We give the exact rotation curve
calculated numerically, the curve calculated from the
approximation expression (2), and that calculated from what
we propose as an improved approximation (25). We expect
the performance of equation (2) to be worst for pure discs in
the deep MOND limit: adding a spherical component, and/
or going nearer to the Newtonian regime can only improve
performance of equation (2) [but not that of approximation
(25)1.

Interestingly, the MOND rotation curve for a Kalnajs disc
seems to be given exactly by v « r - as in the Newtonian limit
- no matter how deep in the MOND regime we are. We do
not yet understand the origin of this behaviour. Once this is
accepted as fact, the proportionality factor, i.e., the constant
angular velocity, 2, may be calculated for very-low-accelera-
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Figure 3. The rotation curves for the first three disc models of Fig. 1: the line is the exact curve; triangles and squares mark the curves

calculated, respectively, by the algebraic relation and by the improved approximation.

w

tion discs from the virial relation (18) for discs to get
Q2=15x%3732(2x%,Ga,)"/*/ h, compared with the Newtonian
angular velocity which is Q% =n>GZ/2h.

6 DISCUSSION

We have described models of disc galaxies for which exact
solutions of the Bekenstein-Milgrom field equation can be
obtained in the form of a simple algebraic relation between
the MOND solution and the Newtonian field of the same

we can linearize the MOND equation in small increments.
We may, for instance, proceed as follows: suppose that the
|Voy| versus ¢y has some scattering, but that we can
reasonably define a mean relation |Vey|= f(¢@y). The
acceleration field that is derived from the algebraic relation,
which is to serve as our zeroth order approximation, is not
derivable from a potential, in general. So, it is more con-
venient to work with accelerations, not with potentials.
Define then

mass distribution. This relation holds approximately for a q=u(|Vyl/a,)Vy, (27)
wider class of configurations, which include exponential which is inverted, as in equation (5), to give

discs. We have given a simple criterion to assess the validity,

or near validity of this relation; the use of this criterion Vy=v(q/a,)q, (28)

assumes knowledge of the Newtonian field ¢y only: it
requires that | V ¢y | be tightly correlated with ¢y outside the
disc. We have also suggested an improved approximation —
inspired by the above approximation - for calculating rota-
tion curves in the BM formulation.

When accuracy beyond the algebraic approximation is
needed it may serve as a first approximation around which

where g=|gq|. The algebraic relation would equate ¢ to
V @y, but we now write

q=Voytn, (29)

with #=|Vgy| 6 being a curl field which is assumed to be
small compared with V ¢, and which we shall treat to first-
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order. By the MOND equation we now have

V-p=0, (30)
and from equation (28)
Vx[v(q/a,)q]=0. (31)

Equations (30) and (31) are equivalent to the original
MOND equation for the potential y (see Milgrom 1986). We
now substitute equation (29) into equation (31), and take the
first-order in # (noting that V|V ¢y| X V ¢y, which measures
the departure from the algebraic relation, is also first order)
to get

Vxgt+iex[Vien)= f(on)n]=7V|VeylXe, (32)

where e(r)= — Vy/|V @y is a unit vector in the direction of
the local Newtonian acceleration, and #(r) is the logarithmic
derivative of v calculated at |Veyl/a,(?=1 in the deep
MOND limit). The linear equations (30) and (32) determine
.

Our construction of the solvable disc models began with a
known MOND solution which does not involve a disc, such
as a point mass, or, in general, a spherical mass distribution.
We then place that mass distribution anywhere relative to the
z=0 plane; then we take the MOND potential, above the
plane only, to be that of the mass in question, defining the
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potential below the plane as the minor image of the one
above. The disc that matches the jump of the z-gradient of
the potential is then found; hence a family of solvable disc
models is born. Clearly, we may start with any axisymmetric
mass distribution for which the MOND solution is known
analytically or numerically - not just a spherical one - and
get a new family of disc models. Such initial non-disc MOND
solutions can be found by starting from a potential, then
calculating the density distribution from equation (1), making
sure that the resulting o is positive everywhere, and other-
wise has a reasonable value.
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