
Exact Solutions and Bounds

for General Art Gallery Problems∗

Tobias Baumgartner† Sándor P. Fekete† Alexander Kröller† Christiane Schmidt†

Abstract

The classical Art Gallery Problem asks for the mini-
mum number of guards that achieve visibility coverage
of a given polygon. This problem is known to be NP-
hard, even for very restricted and discrete special cases.
For the case of vertex guards and simple orthogonal
polygons, Cuoto et al. have recently developed an exact
method that is based on a set cover approach. For the
general problem (in which both the set of possible guard
positions and the point set to be guarded are uncount-
able), neither constant-factor approximation algorithms
nor exact solution methods are known.

We present a primal-dual algorithm based on linear
programming that provides lower bounds on the nec-
essary number of guards in every step and—in case of
convergence and integrality—ends with an optimal so-
lution. We describe our implementation and give results
for an assortment of polygons, including non-orthogonal
polygons with holes.
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1 Introduction

The classical art gallery problem asks for the minimum
number of guards placed inside of a polygon that suffice
to perceive the entire polygon (interior and edges).
For several classes of polygons and variants on the
placement of guards this problem was shown to be NP-
hard (e.g., [16]). Originally, interest from the theoretical
side focused on extremal results, like the classical ⌊n

3 ⌋
bound first established by Chvátal [5] and very elegantly
proven by Fisk [12].

On the practical side, good solutions to art gallery
problems have gained in importance, e.g., for measuring
(the interior of) buildings using a static laser scanner
(http://www.inmetris3d.de/). For these measuring
tasks positions of the laser scanner must be identified
that ensure coverage of the given environment, e.g., a
production hall, a tunnel or a bridge construction, see
Figure 1. Hence, a solution to the art gallery problem
or good upper bounds enable the company to reduce
the working hours, both during the actual scan process
on site and for the postprocessing (scan matching etc.).
This also applies to lower bounds: Not only do they
allow quality estimates of feasible solutions, they are
also of crucial importance for contract bidding, allowing
an estimate of the necessary expenses for personnel
and equipment that cannot be avoided, neither by the
company, nor its competitors.

Related Algorithmic Work. In recent years, there
has been a growing amount of work dealing with algo-
rithmic aspects of the art gallery problem. Even for
the restricted case of vertex guards and simple poly-
gons, Eidenbenz et al. [11] established lower bounds on
the achievable approximation ratio. On the other hand,
approximation algorithms are only known for restricted
versions of the problem (e.g., [10]) and allow for a loga-
rithmic approximation ratio; one of the reasons is that
both the set of possible guard locations and the set that
is to be covered have infinite cardinality, and no easy re-
duction to discrete sets is known. Thus, previous work
mostly consists of heuristics [3] with good practical per-
formance.

The work by Couto et al. [9, 8, 6] considers exact
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Figure 1: A 360◦laser scanner of inmetris3D placed in a production hall (a) and in a tunnel with the resulting scan data
(b). (All images curtesy of inmetris3D.)

solutions for a special case of the art gallery problem.
Compared to the general problem as discussed here,
their variant has two additional restrictions:

1. polygons are simple, i.e., have no holes, and

2. guards may only be placed on polygon vertices.

Their algorithms therefore benefit from a small and
finite set of covering points in combination with various
ways of reducing the candidate set of points that need
to be covered. Their approach is based on a Set Cover
integer program, applied to a grid discretization, which
is iteratively refined if necessary. They are able to
bound the number of iterations, but have to solve an
instance of the set cover problem in each iteration. In
experiments with polygons of up to 200 vertices and
later [8], [6] with a variety of discretization strategies of
up to 1000 and 2500 vertices they are able to solve these
instances within ca. 110-1000 seconds (for the different
strategies and 1000 vertices). Note that instance sizes
and computation times are not comparable to our
results, as we consider a more general problem.

Other authors have considered even more restricted
versions of the problem; e.g., Keil [15] gave an O(n2)
algorithm for computing an optimal solution in hori-
zontally convex orthogonal polygons.

To the best of our knowledge, there is little work
on good lower bounds. Amit et al. [3] are the only ones
to consider the general art gallery problem, where the
entire interior has to be guarded. They use the lower
bound to compare heuristic solutions, with the guards
taken from different candidate sets, like vertices and
other significant points. Lower bounds for the version
in which guards only need to cover the edges of the
polygon are given by Bottino and Laurentini [4].

Our Contribution. We develop a primal-dual ap-
proach for general art gallery problems in arbitrary
polygons with holes, in which guards can be placed any-
where, such that the entire interior of the polygon is

guarded. Our method computes a sequence of lower and
upper bounds on the optimal number of guards until—
in case of convergence and integrality—eventually an
optimal solution is reached. Our algorithm is based on
a formulation of the problem as a (covering) linear pro-
gram. It solves the problem using a cutting plane and
column generation approach, i.e., by solving the primal
and dual separation problems. Computational results
show the usefulness of our method.

The rest of the paper is organized as follows. In
Section 2 the main part of our algorithm, using linear
programming, is presented, together with a discussion
of geometric aspects of separation. Section 3 discusses
implementation aspects of the algorithm and present
heuristic ingredients. We evaluate our implementation
using a set of test instances in Section 4. Problems
of convergence for degenerate cases are discussed in
Section 5. Finally, in Section 6 we discuss possible
implications and extensions.

2 An LP-Based Procedure

Notation and Preliminaries. We consider a given
polygon P , possibly with holes. For a point p ∈ P

the visibility polygon V(p) is the (star-shaped) set of all
points of P visible from p. A guard set G ⊂ P covers P

if ∪g∈GV(g) = P .
For linear programming the separation problem is

defined as follows: Given an instance of a linear pro-
gramming problem, e.g., max{cT x | Ax ≤ b} and a
point y, determine whether y belongs to the polyhedron
P = {x | Ax ≤ b} or not, and in the latter case, find
a violated constraint. Depending on whether we con-
sider the primal or dual linear program, we speak of the
primal separation problem or dual separation problem.

For linear programs with a large number of vari-
ables, i.e., columns, column generation is a finite and
exact solution method. For a subset of the columns a
restricted problem is solved. Using the dual solution to
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this problem it is possible to decide which additional
column should be integrated in the primal problem.

LP Formulations. Our approach to the art gallery
problem (AG) focuses on good lower bounds. It may
also find upper bounds, i.e., feasible solutions, although
this cannot be guaranteed.

AG can be trivially formulated as the linear prob-
lem with infinitely (actually uncountably) many binary
variables and inequalities:

min
∑

g∈P

xg(2.1)

∑

g∈V(w)

xg ≥ 1 ∀w ∈ P(2.2)

xg ∈ {0, 1} ∀g ∈ P(2.3)

Here a guard placement is modelled by setting xg = 1
iff g ∈ P is a guard position. Inequality (2.2) ensures
that the polygon is fully covered. We sometimes refer to
a point w ∈ P as a witness, with the interpretation that
this point witnesses whether it is sufficiently covered
or not. Note that the known upper bound of ⌊n

3 ⌋
guarantees that the formulation is well-defined.

Due to its infinite size, the above formulation
cannot be solved using linear programming techniques.
Instead, we consider the relaxation AGR(G, W ), in
which we relax the integrality constraint (2.3), restrict
the guard positions to be from a finite set G ⊂ P ,
and only require a finite set W ⊂ P of witnesses to be
covered. Throughout this paper, we assume that every
witness w ∈ W is visible from at least one guard position
g ∈ G. This ensures feasibility of the formulations.

AGR(G, W ) can be formulated as follows:

min
∑

g∈G

xg(2.4)

∑

g∈G∩V(w)

xg ≥ 1 ∀w ∈ W(2.5)

0 ≤ xg ≤ 1 ∀g ∈ G(2.6)

The associated dual linear program of (2.4)–(2.6) reads
as follows:

max
∑

w∈W

yw(2.7)

∑

w∈W∩V(g)

yw ≤ 1 ∀g ∈ G(2.8)

0 ≤ yw ≤ 1 ∀w ∈ W(2.9)

The primal LP is a fractional covering problem using
fractional guards, and the dual is a fractional packing
problem.

An optimal solution to AGR(G, W ) has no straight-
forward interpretation in terms of the original AG prob-
lem. It is neither a lower bound (as there may be points
in P \W that are not sufficiently covered), nor an upper
bound (as there may be guard positions in P \ G that
allow for covering with fewer guards). But fortunately
some conclusions can be drawn. Let x∗ be an optimal
solution to (2.4)–(2.6) with associated optimal dual so-
lution y∗. We use the notation z(Q) to denote

∑
q∈Q zq

for a set Q and a vector (zq)q∈Q. Consider the following:

1. The primal separation problem for AGR(G, W ) is
to identify a witness point w ∈ W whose constraint
is violated, i.e., x∗(G ∩ V(w)) < 1.

(a) If such a point exists, then w solves the separa-
tion problem for AGR(G, W ∪{w′}) and there-
fore also AGR(P, P ). This proves that x∗ is not
feasible for AGR(P, P ).

(b) If no such point exists, it proves that x∗ is
feasible and optimal for AGR(G, P ). Should
it also hold that x∗ is integral, i.e., x∗

g ∈ {0, 1}
∀g ∈ G, it also defines a feasible solution for
the original art gallery problem, i.e., an upper
bound.

2. The dual separation problem is to identify a guard
position g ∈ G with y∗(W ∩ V(g)) > 1.

(a) If this point exists, it solves the separation
problem for AGR(G∪{g′}, W ) and proves that
x∗ is not optimal for AGR(P,W ).

(b) If no such point exists, x∗ is optimal for
AGR(P,W ). As AGR(P,W ) is a relaxation of
AGR(P, P ), the objective value is a lower bound
for it and also the original art gallery problem.

3. If both 1(b) and 2(b) hold, i.e., neither guard nor
witness points can be generated, x∗ is feasible and
optimal for AGR(P, P ).

Both separation problems can be solved by the follow-
ing method: Construct the arrangement of the input
polygon and every visibility polygon V(p) for points p

with xp > 0 (resp. yp > 0 for the dual case). Now
for every element, i.e., face, edge, or vertex of the ar-
rangement all points of this element receive a constant
amount of coverage. All that is necessary is to iter-
ate over all elements to find one whose coverage is less
than 1 (resp. more than 1).

The above observations translate directly into an
algorithm, see Algorithm 2.1. It is trivial to see that,
should the algorithm terminate, it will have found an
optimal solution to AGR(P, P ) and thus a lower bound
for AG. Unfortunately, there are degenerate problem
instances for which the algorithm will never terminate—
see Section 5 for an example.
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Algorithm 2.1. (LP procedure)

Generate initial G ⊂ P , W ⊂ P

repeat

Solve AGR(G, W )
Identify witness points for condition 1(a),
add them to W

Identify guard points for condition 2(a),
add them to G

until both conditions 1(b) and 2(b) hold

return current objective value as lower bound for AG.

There are three steps where the algorithm behav-
ior can be influenced: First, what should the initial G

and W be? Guessing a hopefully good (or even opti-
mal) solution to AG and using the guard positions for
G can be a great speedup for the algorithm. Similarly,
a clever choice of W can improve algorithm runtime sig-
nificantly. Finally, the separation phases leave several
options: Prioritizing separating guards produces more
lower bounds, while prioritizing witness separation pro-
duces more upper bounds. All of this is of purely heuris-
tic nature, and will be discussed in Section 3.

Correctness of the Algorithm.

Lemma 2.1. (Lower Bound) In case algorithm 2.1
terminates, the returned objective value is a lower bound
for AG.

Proof. When algorithm 2.1 terminates, neither a wit-
ness point for condition 1(a) nor a guard point for con-
dition 2(a) exists. So, inequalities 2.5 and 2.8 hold for
W ≡ P and G ≡ P . That is, the current solution x∗

is feasible and optimal for AGR(P, P ). AGR(P, P ) is
the relaxation for AG, the linear program formulated
in (2.1)–(2.3). If we denote the optimal objective val-
ues for AGR(P, P ) and AG by opt(AGR(P, P )) and
opt(AG), resp., we have: opt(AGR(P, P )) ≤ opt(AG).
Consequently, the objective value opt(AGR(P, P )) of x∗

is a lower bound for opt(AG).

Lemma 2.2. (Upper Bound) In case the algorithm
outputs an upper bound, the returned value is an upper
bound for AG.

Proof. The algorithms claims to give an upper bound
whenever condition 1(b) holds and the current solution
x∗ is integral. With the integrality, x∗ is feasible
for inequality 2.3. Moreover, condition 1(b) assures
feasibility for inequality 2.2. Thus, x∗ is a feasible
solution for AG, and such it defines an upper bound
for opt(AG).

Lemma 2.3. (Optimality) In case algorithm 2.1 ter-
minates and the current solution x∗ is integral, the re-
turned objective value is the optimal value for AG.

Proof. The current solution x∗ is feasible and optimal
for AGR(P, P ). As AGR(P, P ) is the relaxation of AG,
an optimal integer solution for AGR(P, P ) is a feasible
solution for AG. We have opt(AGR(P, P )) ≤ opt(AG),
hence, it is also optimal for AG.

Geometric Aspects of the Separation Problem.

Solving the primal and the dual separation problem
means identifying a witness point w ∈ W whose
constraint is violated, i.e., x(G ∩ V(w)) < 1, or a
guard position g ∈ G whose constraint is violated, i.e.,
y(W ∩V(g)) > 1. The coverage of a point in P depends
on the visibility polygons of the guards (or witnesses)
p with xp > 0 (yp > 0). Let Gs = {p ∈ P : xp > 0},
gs = |Gs|, Ws = {p ∈ P : yp > 0} and ws = |Ws|.

This means that a crucial subroutine consists in
computing visibility regions inside of the polygon P ;
an important complication arises from the fact that P

may be non-simple polygon with h holes. This problem
has received a considerable amount of attention: Suri
and O’Rourke [18] were the first who gave an algorithm
for computing a visibility polygon inside a polygon
P that may have holes. Their algorithm performs
an angular plane sweep and runs in O(n log n); at
this point, we have chosen a similar approach for
ease of implementation. This theoretical runtime can
be improved by using a method by Heffernan and
Mitchell [13] to Θ(n + h log h).

For the primal and dual separation we use the same
polygon P . Hence, we can use the query versions with
one preprocessing step. For each separation we need
to compute the arrangement of gs (ws for the dual
separation) visibility polygons.

At this point we have not made use of prepro-
cessing approaches, as the most powerful methods re-
quire a large amount of memory. For example, us-
ing the algorithm of Zarei and Ghodsi [21], we need
O(gs(1+h′) log n+

∑
q∈Gs

|V(q)|) time to construct the

arrangement for the primal separation, with O(n3 log n)
preprocessing and O(n3) space. Other options include
the method of Pocchiola and Vegter [17], or by Inkulu
and Kapoor [14]. These improvements are left for future
work.

3 Implementation

In this section, we describe implementation aspects of
our algorithm. The software will be released under the
GNU General Public License on the project website1.

Our software implements the LP-based procedure
from Section 2. It uses standard linear programming
libraries to solve the LPs. Currently SoPlex [20]

1http://www.ibr.cs.tu-bs.de/projects/artgallery
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and ILOG CPLEX can be used for that matter, but
generally any solver that provides an implementation
of the primal-dual simplex algorithm could be included.
Furthermore we employ CGAL [2] for visibility queries
and the separation problems. We make heavy use of the
Arrangement 2 package [19] for both.

The arrangements use exact rational arithmetic to
avoid numerical issues. To keep the computational
overhead low, a point rounding heuristic is used. Every
separated point will be perturbed to coordinates with
smaller representation.

The implementation does not maintain the full
overlay of all visibility polygons for G resp. W , as these
tend to become complex very quickly. We have observed
that solution times improve when a different approach
is used. For every point in G (resp. W ), we compute
the visibility polygon and store it in a DCEL. In the
separation routines, we then compute the overlay only
for those points that have a positive value in the current
solution. As the cardinality of this point set is usually
much smaller than the whole variable set, the overlay is
much simpler.

Finally, our implementation has limited support for
multicore processors. We use the Boost Threads library
to parallelize parts of the computation. Support is
currently preliminary, essentially because GMP [1], the
library providing rational arithmetic, is not threadsafe.
It is obvious that many algorithmic steps can be done in
parallel. Examples are the primal and dual separation
routines, which operate on completely disjoint data
structures, or visibility polygon computations.

3.1 Separation Strategies The algorithmic frame-
work does not specify how the separation problem
should be solved. This is generally irrelevant for the
theory of the algorithm, but not for the practice. We
have implemented a number of different procedures for
these problems.

Steering towards Bounds. Attempting to solve
both the primal and the dual separation problem in
each iteration is not neccessary. By adjusting which
separator is used in an iteration, one can steer the
algorithms towards lower or upper bounds. Though this
steering is purely heuristic and cannot be guaranteed.
Our implementation offers four steering strategies:

• The “Both” strategy always runs both primal and
dual separators in each iteration. The idea is to
reach an optimal solution quickly, without caring
to find bounds before the final step.

• “Primal” focusses on finding upper bounds, i.e.,
solutions. It always runs the primal separation
routine. Dual separation only happens if the primal

fails. This is motivated by the idea to find solutions
often, and gradually turn them into optimal ones.

• “Dual” is the counterpart of Primal. It favors dual
separation over primal, in the hope of finding lower
bounds quickly.

• “Stay” alternates between the two previous ones. It
will start by only running primal separators, until
this fails for the first time. A fractional solution
is thus found. Then it heads for a lower bound
by using dual separators only, until they fail. This
is repeated, resulting in an alternating sequence of
upper and lower bounds.

Point Separators. To solve the separation problems,
we have implemented three different heuristics for each
problem. Note that for the primal separation problem it
is sufficient to consider only points in faces of the guard
arrangement. This is because x(G ∩ V(w)) is constant
for points w on such a face, and of same or higher value
on the face’s boundary. A similar argument holds for the
dual separation problem. There it suffices to consider
only vertices of the witness arrangement.

We provide the following separators. Two of them
separate several points on each call, to avoid having to
re-optimize the LP for every single new column or row.

• “Bulk” simply searches through the faces (vertices)
of the guard (witness) arrangement to find points
defining violated constraints. It returns an arbi-
trary selection of these points, with a user-provided
limit on the number of points.

• “Maximally Violated” follows the principle to al-
ways separate using the maximally violated con-
straint, i.e., arg minw∈P x(G∩V(w)) for the primal
problem and arg maxg∈P y(W ∩V(g)) for the dual.

• “Greedy” attempts to find just a few points, which
ideally become independent rows (columns) with
large support in the LP. We model dual separation
as a Set Cover problem, where a minimal number
violated guard points are used to cover the wit-
nesses. The standard greedy algorithm is used to
solve it. For the primal separation, we use an anal-
ogous procedure.

Vertex Guards. The implementation offers solving
the problem variant where only vertex guards are al-
lowed. This allows for direct comparison with the algo-
rithm from [6]. It is implemented by another steering
strategy, “Primal-Only”. This strategy runs only the
primal separator, thereby limiting the algorithm to the
guard positions that are initially available.
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4 Computational Results

We tested our implementation on a variety of different
classes of polygons, including floor plans and random
polygons already tested by Couto et al. [6]. Different
strategies for the initial guard placement were used: We
started with a single guard or initially located guards
at all vertices of the given polygon. As mentioned in
Section 2, a wise choice influences the behavior of the
algorithm.

For all figures in the following we show solutions to
the primal problem (guards) and to the dual problem
(witnesses). The coloring of the polygons makes it easier
to visually test for feasibility. For the primal problem
gray denotes covering with a value of exactly 1, solutions
with bluish coloring are feasible (they indicate a value
> 1), solutions with a yellow-green coloring (indicating
a value < 1) are not. Accordingly, for the dual problem
gray denotes covering with a value of exactly 1 again,
solutions with a yellow-green coloring are feasible (they
indicate a value < 1), solutions with bluish coloring
(indicating a value > 1) are not.

4.1 Examples. The first example (Figure 2) shows
that switching from vertex guards to general guards may
considerably improve the optimal value, at the expense
of higher computational difficulty.

The second example (Figure 3) shows the floor plan
of our institute, a non-orthogonal polygon with a single
hole and a number of columns. We start with a greedily
obtained set of witnesses (left), corresponding to an
(infeasbile) dual solution; a corresponding set of guards
is shown on the right. In iteration #3, the dual problem
is feasible, but the primal problem still has a tiny region
near the central column that is not sufficiently covered.
Finally, in iteration #5 the primal and the dual problem
are feasible, so we are in case 3 of Section 2 and have
achieved an optimal feasible solution with 10 general
guards.

A third example (Figure 4) is a random orthogonal
polygon with 100 vertices. As shown on the left, an
optimal solution of 15 vertex guards is found within four
iterations. In the center is a solution with 13 general
guards, found after 123 iterations; a corresponding proof
of optimality by means of a matching dual solution is
shown on the right of the figure.

4.2 Evaluation. For a thorough evaluation of our
implementation, we solved a number of problem in-
stances:

• The institute floor plan from Figure 3 with 94
vertices.

• Three sets of orthogonal simple polygons from [7],

Frac. Int.
Random 50 100% 100%
Random 70 92% 92%
Random 100 90% 80%
Spike Boxes 100% 100%

Table 1: Overall optimality rates.

each consisting of 30 instances. See Figure 4 for
one of them. They have 50, 70, and 100 vertices,
respectively.

• Eight spike boxes with holes, such as the one
depicted in Figure 2. Each has 60–68 vertices.

Each instance was run with different steering strategies
and separators. The tests were conducted on a Linux
PC with a 3.0 GHz CPU and 2 GB of RAM. We used
SoPlex 1.4.1 and CGAL 3.4.

Each run was abort if it exceeded 1000 iterations
or 20 minutes of CPU time. Therefore, some runs did
not finish with an optimal fractional solution. In the
remainder of this section, we report on the percentages
of runs that lead to optimal fractional solution and
to optimal integral solution. Furthermore we list how
long it took to finish on average, not counting the runs
that were aborted. Note that the algorithm can be
interrupted earlier if optimal solution are not neccessary,
as we produce lower and upper bound throughout
runtime.

The default configuration uses an initial placement
of one guard and witness per polygon vertex, the Stay
strategy, and Greedy separators. This configuration
is marked with an asterisk in table headers. Table 1
lists the percentage of runs in which any configuration
could identify an optimal fractional solution (“Frac.”)
resp. optimal integral solution (“Int.”). Clearly, these
rates are very high. This is especially surprising for inte-
gral solutions, as this problem is not directly addressed
by the algorithm. Tables 4, 5, and 7 show average algo-
rithm runtime under different configurations.

Steering Strategies. We evaluated the influence of
different steering strategies on the success rate (Table 3)
and runtime (Table 4). Recall that Primal Only differs
from the others, as it solves a different problem variant.
We conclude that Both usually outperforms the other
strategies. However, we observed that indeed Dual and
Primal produce more bounds of their respective kind.
Also Stay is almost as fast as Both, and it produces
bounds of both kinds. Tables illustrating this behavior
are omitted due to limited space.

Point Separators. Comparisons for choosing pri-
mal/dual separators different from the default Greedy
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can be found in Tables 2 and 5. Notice that they have
little influence on whether the algorithm finishes in time;
however, choosing the computationally more expensive
Greedy speeds up algorithm runtime.

Initial Placement. Finally we compared the influ-
ence of the initial choice of guard and witness points.
This is reported in Tables 6 and 7. In the runs marked
“All”, G and W were initialized with the full set of poly-
gon vertices. In “One”, just a polygon vertex was se-
lected for G and W . The latter suffers from considerable
reduction in both optimality rate and longer runtimes,
as it completely shifts the task of exploring the polygon
to the separation routines.

Vertex Guards. Using the Primal Only steering
strategy lets the algorithm solve the vertex guard vari-
ant of the problem, in order to allow for a comparison
with the algorithm in [6]. Note that there are two impor-
tant differences: Our algorithm can deal with polygons
with holes; on the other hand, [6] always produces inte-
gral solutions. Two conclusions can be drawn: Firstly,
our algorithm has a speed well comparable to [6]. Sec-
ondly, as success rates increase and runtimes drop in
this variant, we can see that the apparant loss of per-
formance in the other case stems from the increased
complexity of the problem, and not from implementa-
tion issues.

5 Problems of Convergence

For some polygons, some guards in an optimal solution
for the art gallery problem must be located at a certain
point or on a line segment, see the examples in Fig-
ure 5. This means that the measure of the solution in
an appropriate high-dimensional space is zero; as there
is no known simple description of these sets (in par-
ticular, they are not intersections of diagonals or edge
extensions), it is not surprising that dealing with these
situations is problematic.

Since our method is based on introducing guards (or
witnesses) in insufficiently covered areas, we are able
to identify a region around the guard’s only possible
position and shrink its size during the course of the
algorithm. The region will shrink to a point after
infinitely many iterations, but not within finite time.

Using a different strategy for the initial guard place-
ment, we may obtain convergence towards optimal frac-
tional solutions, but obviously this is not guaranteed.
However, real-world instances do not show these prob-
lems; moreover, such solutions are undesirable, as they
yield fragile solutions that may cause serious problems
in scan registration.

For the polygon in Figure 5, left, and only one
initial guard we have to deal with these problems of

convergence, see Figure 7 In the solution to the primal
problem after 407 iterations (see Figure 7, right) we
can identify many guard positions inserted “around” the
only feasible locations of the optimal solution, but still
the primal and the dual problem are not feasible. On
the other hand, for the same polygon we can find the
optimal solution value, based on an optimal fractional
solution, if we start with guards placed at every vertex.

6 Conclusion and Outlook

We have presented an LP-based procedure for obtain-
ing bounds on the Art Gallery Problem that—in case
of convergence and integrality—provides optimal solu-
tions. Our algorithm is based on a formulation as a
fractional covering problem and the corresponding dual
fractional packing problem. For the separation problem
we use properties of visibility polygons, i.e., information
that is intrinsic to the art gallery problem but not to the
underlying covering formulation.

There is a variety of directions for extending our
work. As discussed above, improving the separation
routine may lead to considerable speedup; however,
this may come at the expense of tremendous memory
requirements, so careful balancing will be necessary.
Other extensions arise from fine-tuning the choice of
guards and witnesses, making more extensive use of the
intrinsic geometric structure of the underlying set cover
instances.

Yet another improvement should come from com-
bining geometry with polyhedral combinatorics, refin-
ing the polyhedral description in order to remove large
classes of non-integral vertices. As shown in Figure 6,
we have identified various classes of cutting planes that
may turn out to be useful for quicker resolution of frac-
tional vertices, at the expense of solving the correspond-
ing separation problems (which are different from what
we described in Section 2.)

Finally, discussions with our inmetris3D partners
have revealed a variety of practical conditions and
relaxations on guards and environment. In particular,
there is a strong interest in fractional solutions instead
of integral ones, making our LP-based approach even
more powerful. We are optimistic that we can report on
these and other improvements in the foreseeable future.
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# 7 - 

#7

# 11 - 

#11

# 11 - 

#11

Figure 2: (Left) A lower bound of 7 on the number of vertex guards; (Center) a feasible solution with 3 general
guards; (Right) a matching set of witnesses showing optimality of the general solution.

# 1 - 

#1

# 3 - 

#3

# 5 - 

#5
# 1 - 

#1

# 3 - 

#3

# 5 - 

#5

Figure 3: Floor plan of our institute; the top row shows witness sets, while the bottom row shows guard sets for
iterations #1, #3, #5. Fractional weights are indicated by partially filled red dots. An optimal solution and a
matching lower bound are found in the fifth iteration.
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Figure 4: Solutions for a random polygon with 100 vertices: (Left) An optimal vertex solution consisting of 15
guards; (center) a general solution consisting of 13 guards; (right) a matching set of witnesses showing optimality
of the general solution.

Greedy* Primal Bulk Pri. Max Viol. Dual Bulk Dual Max Viol.
Frac. Int. Frac. Int. Frac. Int. Frac. Int. Frac. Int.

Random 50 87% 80% 87% 82% 87% 83% 88% 78% 80% 73%
Random 70 87% 85% 88% 82% 88% 75% 90% 76% 75% 65%
Random 100 73% 48% 73% 55% 75% 50% 77% 43% 50% 40%
Spike Boxes 100% 75% 100% 69% 94% 75% 88% 63% 63% 38%

Table 2: Optimality rates for different separators: Percentage of runs leading to optimal fractional (“ Frac.”) or
integral (“ Int.”) solution.

Stay* Both Primal Dual Primal Only
Frac. Int. Frac. Int. Frac. Int. Frac. Int. Frac. Int.

Random 50 87% 80% 90% 73% 63% 60% 87% 67% 100% 77%
Random 70 87% 85% 88% 62% 77% 77% 85% 62% 100% 69%
Random 100 73% 48% 80% 43% 37% 27% 67% 43% 100% 53%
Spike Boxes 100% 75% 100% 88% 63% 63% 100% 63% 100% 38%

Table 3: Optimality results for different steering strategies.

Stay* Both Dual Primal Primal Only
Random 50 1.790 1.779 2.505 1.750 0.908
Random 70 2.570 2.686 4.021 2.891 1.930
Random 100 10.373 8.709 5.842 21.482 5.159
Spike Boxes 3.909 4.316 9.870 3.535 1.917
Floor Plan 4.385 4.330 4.860 6.920 4.280

Table 4: Runtimes for different steering strategies, in seconds.

Greedy* Primal Bulk Pri. Max Viol. Dual Bulk Dual Max Viol.
Random 50 1.790 1.580 3.292 1.305 1.305
Random 70 2.570 2.355 2.649 2.628 3.192
Random 100 10.373 17.406 12.294 23.473 12.458
Spikes 3.909 5.711 4.393 3.958 12.023
Floor Plan 4.385 4.455 4.350 5.005 4.310

Table 5: Runtimes for different choices of separators, in seconds.
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All One
Frac. Int. Frac. Int.

Random 50 87% 80% 68% 63%
Random 70 87% 85% 63% 47%
Random 100 73% 48% 33% 23%
Spike Boxes 100% 75% 31% 25%

Table 6: Optimality for different G and W .

All One
Random 50 1.790 6.646
Random 70 2.570 8.981
Random 100 10.373 41.444
Spikes 3.909 115.183
Floor Plan 4.385 9.420

Table 7: Runtimes.

Figure 5: Left: For this polygon guards cannot be moved in any direction. Right: A polygon in which two guards in the
set of an optimal guard cover need to be located on the red line segments.

(a)
(b) (c) (d) (e)

Figure 6: Examples of “facet”-defining inequalities for the art gallery “polytope”.
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Figure 7: Worst-case problem instance with zero-dimensional optimal solution space. Top: The primal solution
after over 400 iterations. (Gray denotes covering with a value of exactly 1, solutions with bluish coloring are
feasible (value > 1), solutions with yellow-green coloring (< 1) are not.) Bottom: The corresponding dual
solution.
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