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Abstract. In this paper we study the coupled integrable dispersionless system (CIDS), which arises in the
analysis of several problems in applied mathematics and physics. Lie symmetry analysis is performed on
CIDS and symmetry reductions and exact solutions with the aid of simplest equation method are obtained.
In addition, the conservation laws of the CIDS are also derived using the multiplier (and homotopy)
approach.

1. Introduction

Recently, large amount of interest has been shown in the study of the dispersionless or quasiclassical
limits of integrable equations and hierarchies. Since the dispersionless hierarchies arise in the analysis of
several problems in applied mathematics and physics from the theory of quantum fields and strings to the
theory of conformal maps on the complex plane [1, 5–7, 9–12, 21, 22], their study is of great significance.
Various methods, including the inverse scattering transformation, Painlevè analysis, Bäcklund transfor-
mation and Darboux transformation, have been used in the literature to study dispersionless equations
and hierarchies. In particular, several (1+1)-dimensional equations and systems have been analyzed by
the quasiclassical version of the inverse scattering transform, including the local Riemann-Hilbert problem
approach.

In nineteen nineteens, Konno et al. [10, 11] introduced a more general set of coupled integrable
dispersionless system (CIDS), viz.,

qxt − 2αqrx − 2βqsx + γ(rs)x = 0, (1a)
rxt − 2αrrx + 2β

(
2qqx + rxs

) − 2γqxr = 0, (1b)
sxt − 2βssx + 2α

(
2qqx + rsx

) − 2γsqx = 0, (1c)

where α, β and γ are constants. The coupled integrable dispersionless system (1a)–(1c) physically describes
a current-fed string interacting with an external magnetic field in three-dimensional Euclidean space [9–
11, 17]. It also appears geometrically as the parallel transport of each point of the curve along the direction
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of time where the connection is magnetic-valued [9–11, 17]. Although these CID equations have been
shown to possess the Painlevé property, their complete integrability have been investigated by Zhao and
Lu [20] while performing the prolongation structure analysis of the system. In view of the above interests,
Zhaqilao, Zhao and Li [9] have derived new CID equations from the viewpoint of spectral transform. Many
special cases of the CIDS (1) have been studied by various authors. See, for example, [5–7, 12]. In Ref. [21],
Zhaqilao studied CIDS (1) and derived the Darboux transformation and Lax pair for the system (1) and
obtained N-soliton solutions.

It is normal to point out that solitons arise from the balance between nonlinearity and dispersion. It
is not necessary for the equation to possess dispersion in order for solitons to exist. The dispersionless
equations, such as Burgers equation, sine-Gordon equation and the CIDs all give rise to kinks, a well known
type of solitons although these equations do not posses any dispersion. This fact is examined thoroughly
in [5–7, 9–12, 17, 20–22]. In addition most of these equations are integrable and generate multiple soliton,
or kink, solutions. Moreover, these equations include the nonlinearty term uux and the dissipation term
uxx. Kink waves are travelling waves which rise or descend from one asymptotic state to another. The kink
solution approaches a constant at infinity.

In this paper we use Lie symmetry method along with the simplest equation method to obtain exact
solutions of the CIDS (1). Subsequently, the conservation laws are derived for the underlying system.

A Lie point symmetry of a differential equation is an invertible transformation of the dependent and
independent variables that leaves the equation unchanged. Finding all the symmetries of a differential
equation is an alarming task. However, in the middle of the nineteenth, Sophus Lie (1842-1899) realized
that if we restrict ourself to symmetries that depend continuously on a small parameter and that form a
group (continuous one-parameter group of transformations), one can linearize the symmetry conditions
and end up with an algorithm for calculating continuous symmetries. Lie’s continuous symmetry groups
have applications in such diverse fields as invariant theory, control theory, classical mechanics, relativity
etc. For the theory and application of the Lie group analysis methods, see for example, the Refs. [4, 8, 15, 16].

The notion of conservation laws plays an important role in the solution process of differential equations.
Finding the conservation laws of system of differential equations (DEs) is often the first step towards finding
the solution. In fact, the existence of a large number of conservation laws of a system of partial differential
equations (PDEs) is a strong indication of its integrability [4]. In [13], the invariance of a conservation
law was used to obtain solutions for a problem in thin films. In jet problems, the conserved quantity
plays an essential role in the derivation of the solution. Recently, in [14] the conserved quantity was
used to determine the unknown exponent in the similarity solution which cannot be obtained from the
homogeneous boundary conditions.

The outline of the paper is as follows. In Section 2, we obtain some symmetry reductions of the coupled
integrable dispersionless system (1) using Lie group analysis. Exact solutions are obtained in Section 3
using the simplest equation method by taking the Bernuolli and Ricatti equations as simple equations.
Then in Section 4, we construct conservation laws for (1) using the multiplier method. Finally, in Section 5
concluding remarks are presented.

2. Some symmetry reductions of (1)

The symmetry group of the coupled integrable dispersionless system (1) will be generated by the vector
field of the form

X = ξ1(x, t, q, r, s)
∂
∂x
+ ξ2(x, t, q, r, s)

∂
∂t
+ η1(x, t, q, r, s)

∂
∂q
+ η2(x, t, q, r, s)

∂
∂r
+ η3(x, t, q, r, s)

∂
∂s
.
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Applying the second prolongation pr(2)X [15] to (1) and solving the resultant overdetermined system of
linear PDEs one obtains the following infinitesimals coefficients:

ξ1(x, t, q, r, s) = F1(x),
ξ2(x, t, q, r, s) = C2 − γC5t,
η1(x, t, q, r, s) = C4(βs − αr) + C5(γq + αr − βs) + γF2(t),
η2(x, t, q, r, s) = C4(γr − 2βq) + 2βC5q + 2βF2(t),
η3(x, t, q, r, s) = C4(2αq − γs) + C5(2γs − 2αq) + 2αF2(t).

Here C2, C4, C5 are constants, and F1(x) and F2(t) are arbitrary functions of x and t, respectively. By taking
F1(x) and F2(t) to be constants, we obtain the following five Lie point symmetries of CIDS (1):

X1 =
∂
∂x
,

X2 =
∂
∂t
,

X3 = γ
∂

∂q
+ 2β

∂

∂r
+ 2α

∂

∂s
,

X4 = (βs − αr)
∂

∂q
+ (γr − 2βq)

∂

∂r
+ (2αq − γs)

∂

∂s
,

X5 = −γt
∂

∂t
+ (γq + αr − βs)

∂

∂q
+ 2βq

∂

∂r
+ 2(γs − αq)

∂

∂s
.

We now present some symmetry reductions for the coupled integrable dispersionless system (1).

Case 1. νX1 + X2
The symmetry generator νX1 + X2 gives rise to the group-invariant solution

q = E(z), r = F(z), s = G(z), (2)

where z = x − νt is an invariant of the symmetry νX1 + X2. Substituting (2) into (1) yields the system of
ODEs

−νE′′ − 2 βG′ E − 2α F′ E + γF′G + γG′ F = 0, (3a)
−νF′′ − 2γE′ F − 2αF′ F + 4 βE′ E + 2 βF′G = 0, (3b)
−νG′′ − 2γE′ G − 2 βG′G + 4αE′ E + 2αG′ F = 0. (3c)

Case 2. µ1X1 + X2 + µ3X3
The symmetry operator µ1X1 + X2 + µ3X3 provides us with the group-invariant solution of the form

q = E(z) + µ3γt, r = F(z) + 2µ3βt, s = G(z) + 2µ3αt, (4)

where z = x − µ1t is an invariant of µ1X1 + X2 + µ3X3 and the functions E, F and G satisfy the following
system of ODEs:

−µ1E′′ − 2α F′ E − 2 βG′ E + γF′G + γG′ F = 0,
−µ1F′′ − 2α F′ F + 4 βE′ E + 2 βF′ G − 2γE′ F = 0,
−µ1G′′ − 2 βG′ G + 4αE′ E + 2αG′ F − 2γE′G = 0.

Case 3. X2
The symmetry X2 gives rise to the steady state group-invariant solution

q = E(z), r = F(z), s = G(z), (5)
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where z = x is an invariant of the symmetry X2. Substitution of (5) into (1) results in the system of ODEs

−2 βG′ E − 2α F′ E + γF′G + γG′ F = 0,
−2γE′ F − 2α F′ F + 4 βE′ E + 2 βF′ G = 0,
−2γE′G − 2 βG′ G + 4αE′ E + 2αG′ F = 0.

3. Exact solutions using simplest equation method

In this section we employ the simplest equation method, which was introduced by Kudryashov [? ]
and modified by Vitanov [19], to solve the ODE system (3) and as a result we obtain the exact solutions of
our coupled integrable dispersionless system (1). The simplest equations that we use are the Bernoulli and
Riccati equations.

We first briefly recall the simplest equation method here. Let us consider the solutions of the ODE
system (3) in the form

E(z) =
M∑

i=0

Ai(H(z))i, F(z) =
M∑

i=0

Bi(H(z))i, G(z) =
M∑

i=0

Ci(H(z))i, (6)

where H(z) satisfies the Bernoulli and Riccati equations, M is a positive integer that can be determined by
balancing procedure as in [19] and Ai, Bi and Ci (i = 0, 1, · · · ,M), are parameters to be determined. The
Bernoulli and Riccati equations are well-known nonlinear ODEs whose solutions can be expressed in terms
of elementary functions.

We consider the Bernoulli equation

H′(z) = aH(z) + bH2(z), (7)

where a and b are constants. The solution of the Bernoulli equation (7) can be written in the form

H(z) = a
{ cosh[a(z + C)] + sinh[a(z + C)]

1 − b cosh[a(z + C)] − b sinh[a(z + C)]

}
,

with C is a constant of integration.
For the Riccati equation

H′(z) = aH2(z) + bH(z) + c, (8)

where a, b and c are constants, we use the solutions

H(z) = − b
2a
− θ

2a
tanh

[1
2
θ(z + C)

]
and

H(z) = − b
2a
− θ

2a
tanh

(1
2
θz
)
+

sech
(
θz
2

)
C cosh

(
θz
2

)
− 2a
θ sinh

(
θz
2

) ,
with θ2 = b2 − 4ac > 0 and C is a constant of integration.

3.1. Solutions of (1) using the Bernoulli equation as the simplest equation
The balancing procedure yields M = 1 so the solutions of the ODE system (3) are of the form

E(z) = A0 +A1H, F(z) = B0 +B1H, G(z) = C0 + C1H. (9)

Substituting (9) into (3) and making use of the Bernoulli equation (7) and then equating the coefficients of
the functions Hi to zero, we obtain an algebraic system of equations in terms of Ai, Bi and Ci (i = 0, 1).
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Solving the resultant system of algebraic equations with the aid of Mathematica, one possible set of values
ofAi, Bi and Ci (i = 0, 1, 2) are

α = −γ
2

4β
,

A1 =
4bν
γ
,

B0 =
4A0bβ − aA1β

2bγ
,

B1 = −
bν
α
,

C0 =
α (aA1 + 2A0b)

bγ
,

C1 = −
4bν
β
.

As a result, a solution of (1) is

q(x, t) = A0 +A1a
{ cosh[a(z + C)] + sinh[a(z + C)]

1 − b cosh[a(z + C)] − b sinh[a(z + C)]

}
, (10a)

r(x, t) = B0 +B1a
{ cosh[a(z + C)] + sinh[a(z + C)]

1 − b cosh[a(z + C)] − b sinh[a(z + C)]

}
, (10b)

s(x, t) = C0 + C1a
{ cosh[a(z + C)] + sinh[a(z + C)]

1 − b cosh[a(z + C)] − b sinh[a(z + C)]

}
, (10c)

where z = x − νt and C is a constant of integration.

3.2. Solutions of (1) using the Riccati equation as the simplest equation

The balancing procedure yields M = 1 so the solutions of the ODE system (3) are of the form

E(z) = A0 +A1H, F(z) = B0 +B1H, G(z) = C0 + C1H. (11)

Substituting (11) into (3) and using the Ricatti equation (8), we obtain an algebraic system of equations in
terms ofAi, Bi and Ci (i = 0, 1) by equating all coefficients of the functions Hi to zero. Solving the resultant
system, one possible set of values are

α = −γ
2

4β
,

A1 =
4aν
γ
,

B0 =
β (4aA0 −A1b)

2aγ
,

B1 = −
aν
α
,

C0 =
α (2aA0 +A1b)

aγ
,

C1 = −
4aν
β
.
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Hence solutions of (1) are

q(x, t) = A0 +A1

{
− b

2a
− θ

2a
tanh

[1
2
θ(z + C)

]}
, (12a)

r(x, t) = B0 +B1

{
− b

2a
− θ

2a
tanh

[1
2
θ(z + C)

]}
, (12b)

s(x, t) = C0 + C1

{
− b

2a
− θ

2a
tanh

[1
2
θ(z + C)

]}
(12c)

and

q(x, t) = A0 +A1

{
− b

2a
− θ

2a
tanh

(1
2
θz
)
+

sech
(
θz
2

)
C cosh

(
θz
2

)
− 2a
θ sinh

(
θz
2

)}, (13a)

r(x, t) = B0 +B1

{
− b

2a
− θ

2a
tanh

(1
2
θz
)
+

sech
(
θz
2

)
C cosh

(
θz
2

)
− 2a
θ sinh

(
θz
2

)}, (13b)

s(x, t) = C0 + C1

{
− b

2a
− θ

2a
tanh

(1
2
θz
)
+

sech
(
θz
2

)
C cosh

(
θz
2

)
− 2a
θ sinh

(
θz
2

)}, (13c)

where z = x − νt and C is a constant of integration.
A profile of the solution (12) is given in Figure 1.

Figure 1: Profile of kink solution (12)

4. Conservation laws

In this section, using the multiplier method [2, 3, 15, 18], we construct conservation laws for our coupled
integrable dispersionless system (1).

Consider a kth-order system of PDEs of n independent variables x = (x1, x2, . . . , xn) and m dependent
variables u = (u1,u2, . . . ,um), viz.,

Eα(x,u,u(1), . . . , u(k)) = 0, α = 1, . . . ,m, (14)

where u(1),u(2), . . . , u(k) denote the collections of all first, second, . . ., kth-order partial derivatives, that is,
uαi = Di(uα),uαi j = D jDi(uα), . . . respectively, with the total derivative operator with respect to xi given by

Di =
∂

∂xi + uαi
∂

∂uα
+ uαi j

∂

∂uαj
+ . . . , i = 1, . . . ,n, (15)

and where the summation convention is used whenever appropriate [8].
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The Euler-Lagrange operator, for each α, is given by

δ
δuα
=
∂
∂uα
+
∑
s≥1

(−1)sDi1 . . .Dis
∂

∂uαi1i2...is

, α = 1, . . . ,m. (16)

The n-tuple vector T = (T1,T2, . . . ,Tn), T j ∈ A, j = 1, . . . ,n, (A is the space of differential functions) is a
conserved vector of (14) if Ti satisfies

DiTi|(14) = 0. (17)

The equation (17) defines a local conservation law of system (14). A multiplierΛα(x,u,u(1), . . .) has the property
that

ΛαEα = DiTi (18)

holds identically. Here we consider multipliers of the zeroth order, i.e., Λα = Λα(t, x, q, r, s). We note that
the right hand side of (18) is a divergence expression. The determining equation for the multiplier Λα is

δ(ΛαEα)
δuα

= 0. (19)

Once the multipliers are obtained the conserved vectors are calculated via a homotopy formula [2].

Conservation laws of (1)

For the coupled integrable dispersionless system (1), we consider the following multipliers,Λ1(t, x, q, r, s),
Λ2(t, x, q, r, s) and Λ3(t, x, q, r, s) that are given by

Λ1 = −2αC1r
γ
+

2βC1s
γ
+
γ f (t)
β
, (20)

Λ2 =
2αC1q
γ
− C1s +

α f (t)
β
, (21)

Λ3 = −
2βC1q
γ
+ C1r + f (t), (22)

where C1 is a constant and f (t) is an arbitrary function of t. Corresponding to the above multipliers we
obtain the following two local conserved vectors of (1):

Tt
1 =

1
2γ

{
− 2αqxr + 2αrxq + 2βqxs − 2βsxq − γrxs + γsxr

}
,

Tx
1 =

1
2γ

{
− 2αqtr + 2αrtq + 2βqts − 2βstq − γrts + γstr

}
and

Tt
2 =

1
2β

{
γ f (t)qx + α f (t)rx + β f (t)sx

}
,

Tx
2 =

1
2β

{
− γ f ′(t)q − α f ′(t)r − β f ′(t)s − 4αγ f (t)qr − 4βγ f (t)qs + 8αβ f (t)q2

+4αβ f (t)rs + 2γ2 f (t)rs − 2α2 f (t)r2 − 2β2 f (t)s2 + γ f (t)qt + α f (t)rt + β f (t)st

}
.

Remark. The components of the second conserved vector contains an arbitrary function f (t) and hence
one can obtain an infinite number of conservation laws of (1).
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5. Concluding remarks

In this paper we studied the coupled integrable dispersionless system (1) from the Lie symmetry anal-
ysis standpoint. Similarity reductions and exact solutions with the aid of simplest equation method were
obtained. The exact solutions obtained were kink solutions. Kink waves are travelling waves which rise or
descend from one asymptotic state to another. The kink solution approaches a constant at infinity. Normally
solitons arise from the balance between nonlinearity and dispersion. However, it is not necessary for the
equation to possess dispersion in order for solitons to exist. The dispersionless equations, such as Burgers
equation, sine-Gordon equation and the CIDs all give rise to kinks, a well known type of solitons although
these equations do not posses any dispersion. This fact is examined thoroughly in [5–7, 9–12, 17, 20–22]. In
addition most of these equations are integrable and generate multiple soliton, or kink, solutions. Moreover,
these equations include the nonlinearty term uux and the dissipation term uxx. We have checked the correct-
ness of the solutions obtained here by substituting them back into the coupled integrable dispersionless (1).
Finally, conservation laws for the underlying system (1) were derived by employing the multiplier method.
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