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Abstract: This paper investigates exact solutions of cosmological interest in fractional cosmology.
Given µ, the order of Caputo’s fractional derivative, and w, the matter equation of state, we present
specific exact power-law solutions. We discuss the exact general solution of the Riccati Equation,
where the solution for the scale factor is a combination of power laws. Using cosmological data, we
estimate the free parameters. An analysis of type Ia supernovae (SNe Ia) data and the observational
Hubble parameter data (OHD), also known as cosmic chronometers, and a joint analysis with data
from SNe Ia + OHD leads to best-fit values for the free parameters calculated at 1σ, 2σ and 3σ

confidence levels (CLs). On the other hand, these best-fit values are used to calculate the age of
the Universe, the current deceleration parameter (both at 3σ CL) and the current matter density
parameter at 1σ CL. Finding a Universe roughly twice as old as the one of ΛCDM is a distinction
of fractional cosmology. Focusing our analysis on these results, we can conclude that the region in
which µ > 2 is not ruled out by observations. This parameter region is relevant because fractional
cosmology gives a power-law solution without matter, which is accelerated for µ > 2. We present a
fractional origin model that leads to an accelerated state without appealing to Λ or dark energy.

Keywords: fractional calculus; cosmological data; cosmology

1. Introduction

In fractional calculus, the classical derivatives and integrals of integer order are gen-
eralized to derivatives and integrals of arbitrary (real or complex) order [1–9]. Fractional
derivatives have attracted increasing attention because they universally appear as empirical
descriptions of complex social and physical phenomena. Fractional calculus applications
have grown enormously in recent years because these operators have memory and are more
flexible in describing the dynamic behavior of phenomena and systems using fractional
differential equations, while the description with integer order differential equations uses
local operators and they are limited in the order of differentiation to a constant. Conse-
quently, the resulting models must be sufficiently precise in many cases [10]. Research
into fractional differentiation is inherently multi-disciplinary and has applications across
various disciplines, for example, fractional quantum mechanics and gravity for fractional
spacetime [11,12] and fractional quantum field theory [13–18]. Such frameworks have been
essential in understanding complex systems in classical and quantum regimes [19–29].

Regarding the classical regime, fractional derivative cosmology has been established
by two methods: (i) The last-step modification method is the simplest one, in which the
corresponding fractional field equations replace the given cosmological field equations
for a specific model. (ii) The first-step modification method can be considered a more
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fundamental methodology. In this method, one starts by establishing a fractional derivative
geometry. More concretely, the variational principle for fractional action is applied to
establish a modified cosmological model.

Fractional calculus has recently been explored to address problems related to cosmology
in [27,30–62]. For example, in [30,34], the Riemann curvature and the Einstein tensor are
defined as usual, but now with dependence on the µ fractional parameter. Then, it is
possible to write a fractional analogous to the Einstein field equation through the expression
Gαβ(µ) = 8πGTαβ(µ), where Gαβ(µ) is the Einstein tensor in fractional calculus and G is
the Newton gravitational constant. These studies correspond to the last-step modification
method, as mentioned above. Modifications to several astrophysical and cosmological events
can be studied based on the last equation. For example, a fractional theory of gravitation
for fractional spacetime has been developed in [31,32]. Non-holonomic deformations to
cosmology lead to new classes of cosmological models, which have been studied in [33,57].

In reference [61], a joint analysis using data from cosmic chronometers and type
Ia supernovae was performed. This comparison with observational tests was used to
find best-fit values for the fractional order of the derivative. These methods are a robust
scheme for investigating the physical behavior of cosmological models [61,63–66] and can
be used in new contexts, such as in [62], where dynamical systems and phase spaces were
used to analyze fractional cosmology for different matter contents, obtaining a late-time
accelerating cosmology.

Undeniably, the late-time acceleration in the Universe expansion is one of the most
challenging topics in modern cosmology.

Since 1998, when the independent projects High-z Supernova Search Team [67] and
Supernova Cosmology Project [68] obtained results that suggested this behavior in the
Universe, the type Ia supernovae (SNe Ia) data have become a definitive proof to study
this era of the Universe and the transition between the decelerated expansion phase and
the accelerated one. However, the latter is usually model dependent [69]. In this sense,
the observational Hubble parameter data (OHD), also known as cosmic chronometers, have
become a fundamental data test, complementary to the SNe Ia data, to study the Universe’s
expansion rate in a model-independent way. Finally, using these cosmological data, we
estimate the free parameters (α0, µ).

This research’s main objective is to investigate open problems in gravity and cosmol-
ogy. Therefore, we estimate the free parameters using cosmological data. The analysis of
the type Ia supernovae (SNe Ia) data and the observational Hubble parameter data (OHD),
also known as cosmic chronometers, and the joint analysis of SNe Ia data + OHD lead to
best-fit values for the free parameters calculated at the 1σ, 2σ and 3σ confidence levels
(CLs). On the other hand, these best-fit values are used to calculate the age of the Universe,
the current deceleration parameter (both at the 3σ CL) and the current matter density pa-
rameter at 1σ CL. Finding that the Universe is roughly twice as old as the one of ΛCDM is a
distinction of fractional cosmology; apart from that, it leads to an accelerated state without
appealing to Λ or dark energy. We confirm that this result, which is in disagreement with
the value obtained with globular clusters with a value of t0 = 13.5+0.16

−0.14 ± 0.23 [70], is a
distinction of fractional cosmology. This result also agrees with the analysis performed
in ([61], Section 5, page 4817). Despite the discrepancy between the age of the Universe and
that determined by globular clusters, it is essential to highlight that fractional cosmology
contributes to the solutions to other problems associated with the ΛCDM model, for ex-
ample, late-time acceleration without dark energy, as we explained before. In this sense,
the non-inclusion of a cosmological constant (CC) or some DE can alleviate some other
problems related to these components. One of these problems is the so-called CC problem,
in which the observational value of the CC differs between 60 and 120 orders of magnitude
compared with the value anticipated by particle physics [71–75]. Another problem related
to the DE is the coincidence problem, which stipulates that, currently, we are living in an
extraordinary epoch in the cosmic evolution, in which DM and DE densities are of the same
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order of magnitude, with a fine-tuning problem associated with the context of the ΛCDM
model [76–78].

Another issue that fractional cosmology can possibly alleviate is the Hubble ten-
sion. Measurements of the Hubble parameter at the current time, H0, exhibit a dis-
crepancy of 5σ between the observational value obtained from the Hubble Space Tele-
scope (HST) [79] and the one inferred from Planck CMB [80]. The first corresponds
to model-independent measurements, while the second depends on the ΛCDM model.
According to Riess et al. [81], observational issues such as the H0 tension are strong ev-
idence that physics beyond the ΛCDM model is required. Therefore, and following
this line, a possible alternative to solve this tension considers extensions beyond ΛCDM
(see Di Valentino et al. [82] for a review). In [61], some results were discussed related to the
H0 tension in the context of fractional cosmology, and a trend of H0 to the value obtained
by SH0ES [81] at current times was observed, in agreement with Planck’s value [80] for
z . 1.5. However, the H0 tension is not fully resolved in the region 1.5 < z < 2.5.

Moreover, prospects for the density perturbation growth and cosmological structure
formation could be described in this context. For example, in [83], it was shown that
in the ΛCDM cosmology, the perturbations do not change the stability of the late-time
attractor of the background equations and the system still results in the dark-energy-
dominated de Sitter solution, with a dark matter era transition and a growth index of
γ ≈ 6/11. Here, γ is defined through the relation d ln δm/d ln a ≈ Ωγ

m, where δm is the
matter contrast and Ωm is the fractional energy density of matter. This result for the linear

growth rate, d ln δm/d ln a ≈ Ωγ
m, was corrected to d ln δm/d ln a ≈ Ω

6
11
m − 1

70 (1−Ωm)
5
2

in [84]. In fractional cosmology, the dimensionless energy density of dust matter depends
on t through Ωm,µ = Ωm × t−(µ−1); thus, the growth index γ in the matter-dominated
solution should be different to 6/11. In addition, it could be exciting to investigate and try
fractional cosmology within a very early universe, fitting data and determining the impact
of the fractional derivative term on primordial nucleosynthesis. Fractional cosmology
ingredients may enhance inflation, raising the question whether it is possible that issues
such as the cosmic no-hair conjecture, isotropization, etc., could be solved [85–91].

According to previous statements, it is essential to see if fractional calculus or fractional
cosmology can well-describe the observational data. Then, we can perform more sophisti-
cated calculations to describe the late-time Universe or the very early Universe. Therefore,
one can argue that the Universe can be better described with a fractional derivative, not
just to fit the data but also to describe the fundamental dynamics, highlighting the demand
for new physics. These approaches can help to understand the Universe’s acceleration with
the mathematical background of fractional calculus. The mathematical richness generated
by the corrections due to the fractional index µ of the fractional derivative can resolve the
previous problems in future studies. Indeed, we can examine these topics in a forthcoming
series of manuscripts with applications in inflation and dark energy models, investigating
the physical implications and producing observational constraints.

In this paper, we investigate exact solutions of cosmological interest in fractional
cosmology. In particular, we study the cosmological applications of power-law solutions of
the type a = (t/t0)

α0 , where α0 = t0H0 is the current age parameter. Additionally, given
µ, the order of Caputo’s fractional derivative, and w, the equation of state (EoS) of matter,
one must impose two compatibility conditions which allow particular solutions to (µ, w).
Moreover, we are interested in an exact solution that gives the general solution of the
system. For this purpose, one can solve the Riccati equation independent of the EoS, where
the solution for the scale factor is a combination of power-law solutions. Additionally, we
investigate if the solutions take account of the current late-time acceleration.

The paper is organized as follows. Section 2 discusses the basics of the fractional
variational approach to cosmology and presents the cosmological equations for a perfect
fluid. In Section 2.3, we comment on the crucial difference between fractional and standard
cosmology; that is, we obtain late-time acceleration without adding a cosmological con-
stant, quintessence scalar field or other exotic fluids as compared to standard cosmology.
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In Section 2.5, we consider a model with cold dark matter to present a specific realization of
these possibilities and we interpret the fractional modification as dark energy in Section 2.6.
Section 3 is devoted to finding exact solutions for the Hubble factor in this scenario. They
correspond mainly to power-law solutions for the scale factor and a combination of power-
law functions. In Section 3.4, we provide a precise scheme to find approximated analytical
solutions to aid in the asymptotic analysis. A discussion is presented in Section 3.5. We
solve Bernoulli’s equation using differential inequalities and asymptotic expansions to
estimate H(z) in redshift. A physical discussion of the results is presented in Section 3.6.
In Section 4, a joint analysis using OHD and type Ia supernovae data is performed. This
comparison with observational tests was used to find best-fit values for the fractional order
of the derivative and the current age parameter α0. Section 5 is the conclusion.

2. Fractional Action Integral

Recently, a wide range of definitions of fractional derivatives [92], such as the Riemann–
Liouville derivative (RLD) and the Caputo derivative (CD), among others, have been used
in many applications.

2.1. Some Fractional Derivatives

The RLD with µ ≥ 0 for f (t) is defined by

Dµ
t f (t) = Γ(n− µ)−1 dn

dtn

∫ t
c

f (τ)
(t−τ)µ−n+1 dτ, (1)

where n = [µ] + 1 and µ ∈ (n− 1, n).
Note that the main parameter of fractional calculus is given by µ, recovering standard

calculus when µ→ 1.
The Caputo left derivative is defined as

CDµ
t f (t) = Γ(n− µ)−1

∫ t

c

dn

dτn f (τ)
(t− τ)µ−n+1 dτ, (2)

where n =

{
[µ] + 1 µ /∈ N

µ µ ∈ N . In fractional calculus, we now have the following relation

(see [92]) for the case of more than one derivative:

Dµ
t

[
Dβ

t f (t)
]
= Dµ+β

t f (t)−
n

∑
j=1

Dβ−j
t f (c+)

(t− c)−µ−j

Γ(1− µ− j)
, (3)

or in other words Dµ
t Dβ

t f (t) 6= Dµ+β
t f (t), if not all derivatives Dβ−j

t f (c+) are equal to zero
at c. Additionally, the fractional derivative of the Leibniz rule [92] reads as

Dµ
t [ f (t)g(t)] =

∞

∑
k=0

Γ(µ + 1)
k!Γ(µ− k + 1)

Dµ−k
t f (t)Dk

t g(t), (4)

having the usual when µ = n ∈ N.

2.2. Frational Action-like Variational Problems

Within the first-step modification method, one procedure uses the fractional variational
approach developed in [30,93–97] with the following fractional action integral,

S(τ) =
1

Γ(µ)

∫ τ

0
L(θ, qi(θ), q̇i(θ), q̈i(θ))(τ − θ)µ−1dθ, (5)

where Γ(µ) is the Gamma function, L is the Lagrangian, µ is the constant fractional
parameter and τ and θ are the observers and intrinsic time, respectively, and the action
integral depends on second order derivatives of the generalized coordinates qi.
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Variation in (5) with respect to qi leads to the Euler–Poisson equations [97]:

∂L(θ, qi(θ), q̇i(θ), q̈i(θ))

∂qi
− d

dθ

∂L(θ, qi(θ), q̇i(θ), q̈i(θ))

∂q̇i
+

d2

dθ2
∂L(θ, qi(θ), q̇i(θ), q̈i(θ))

∂q̈i

=
1− µ

τ − θ

(
∂L(θ, qi(θ), q̇i(θ), q̈i(θ))

∂q̇i
− 2

d
dθ

∂L(θ, qi(θ), q̇i(θ), q̈i(θ))

∂q̈i

)
− (1− µ)(2− µ)

(τ − θ)2
∂L(θ, qi(θ), q̇i(θ), q̈i(θ))

∂q̈i
. (6)

2.3. Applications to Cosmology

In cosmology, it is assumed that the flat Friedmann provides the geometry of spacetime
Lemaître–Robertson–Walker (FLRW) metric:

ds2 = −N2(t)dt2 + a2(t)(dx2 + dy2 + dz2), (7)

where a(t) denotes the scale factor and N(t) is the lapse function. This result is based on
Planck’s observations [80].

For the metric (7), the Ricci’ scalar depends on the second derivatives of a and first
derivatives of N and reads

R(t) = 6

(
ä(t)

a(t)N2(t)
+

ȧ2(t)
a2(t)N2(t)

− ȧ(t)Ṅ(t)
a(t)N3(t)

)
. (8)

Consider the point-like action integral

S(τ) =
∫ τ

0

[
R(θ)

2
+ L(θ)

]
a3(θ)N(θ)dθ, (9)

where R(θ) is the Ricci scalar (8). In cosmology, the Einstein–Hilbert Lagrangian density
is related to the Ricci scalar. Generically, one takes integration by parts, such that a total
derivative is removed for the action, and the derivatives ä(t) and Ṅ(t) are eliminated. We
will use a fractional version of the Lagrangian (9); thus, we do not follow the standard
procedure and keep the higher order derivatives and use formulation (5) leading to the
Euler–Poisson Equation (6). We use fractional variational calculus with classical and
Caputo derivatives.

For simplicity, we consider units in which 8πG = c = 1 and assume a perfect fluid for
the matter content of the Universe, where L(θ) = −ρ0a(θ)−3(1+w) for w 6= −1 is the usual
matter Lagrangian of a perfect fluid as in [98–100] and contains integer-order derivatives in
the Lagrangian. We consider the transition to the effective fractional action used in [61], i.e.,

Seff(τ) =
1

Γ(µ)

∫ τ

0

[
R(θ)

2
+ L(τ, θ)

]
(τ − θ)µ−1a3(θ)N(θ)dθ, (10)

where Γ(µ) is the Gamma function, L(τ, θ) = L(θ)(τ − θ)−(µ−1)(w+1), which recovers the
usual matter Lagrangian of a perfect fluid as µ → 1 [98–100], µ is the constant fractional
parameter and τ and θ are the observers and intrinsic time, respectively [34]. w = p/ρ is a
constant EoS for matter.

For a fixed τ, the expressions

ρ(θ) = ρ0a(θ)−3(1+w)(τ − θ)−(µ−1)(w+1), (11)

and
p(θ) = wρ0a(θ)−3(1+w)(τ − θ)−(µ−1)(w+1), (12)

define the energy density and the isotropic pressure of the matter fields. Then,
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ρ̇(θ) =
d
dθ

[
ρ0a(θ)−3(1+w)(τ − θ)−(µ−1)(w+1)

]
= (w + 1)ρ(θ)

(
−3ȧ(θ)

a(θ)
− µ− 1

θ − τ

)
= −3

(
ȧ(θ)
a(θ)

+
1− µ

3(τ − θ)

)
(ρ(θ) + p(θ)). (13)

Defining qi ∈ {N, a } in (5) for a fixed τ, we have the Lagrangian

L
(
θ, N(θ), Ṅ(θ), a(θ), ȧ(θ), ä(θ)

)
:=

3a(θ)
(

N(θ)
(
a(θ)ä(θ) + ȧ2(θ)

)
− a(θ)ȧ(θ)Ṅ(θ)

)
N2(θ)

− ρ0N(θ)a(θ)−3w(τ − θ)−(µ−1)(w+1). (14)

The Euler–Poisson Equations (6) obtained after varying the action (10) for qi ∈ {N, a }
lead to the field equations(

ȧ(θ)
a(θ)

)2

+
(1− µ)

(τ − θ)

ȧ(θ)
a(θ)

=
1
3

ρ0a(θ)−3(1+w)(τ − θ)−(µ−1)(w+1), (15)

ä(θ)
a(θ)

+
1
2

(
ȧ(θ)
a(θ)

)2

+
(1− µ)

(t− θ)

ȧ(θ)
a(θ)

+
(µ− 2)(µ− 1)

2(τ − θ)2 = −1
2

ρ0wa(θ)−3(1+w)(τ − θ)−(µ−1)(w+1). (16)

Here, we have substituted the lapse function N = 1 after the variation.
To designate the temporary independent variables, the rule (τ, θ) 7→ (2t, t) is applied,

where new cosmological time t [34] is used, where the dots denote these derivatives.
Furthermore, the Hubble parameter is H ≡ ȧ/a. Hence, Equations (15) and (16) and the
conservation Equation (13) can be written as

Ḣ(t) +
(1− µ)H(t)

t
+

3H(t)2

2
+

(µ− 2)(µ− 1)
2t2 = −1

2
p(t), (17)

H(t)2 +
(1− µ)H(t)

t
=

1
3

ρ(t), (18)

ρ̇(t) = −3
(

H(t) +
(1− µ)

3t

)
(p(t) + ρ(t)) (19)

where expressions (11) and (12) are transformed to

ρ(t) = ρ0

[
a(t)−3t−(µ−1)

]1+w
, and p(t) = wρ0

[
a(t)−3t−(µ−1)

]1+w
, (20)

which defines the energy density and the isotropic pressure of the matter fields in cosmo-
logical time.

2.4. Some Cosmological Solutions

From (18) and assuming p = 0 (w = 0), the Hubble parameter is

H(t) =
µ− 1

2t

1 +

√
1 +

4
3

ρ(t)
(

t
µ− 1

)2
. (21)

We have considered the positive root because we are interested in expanding universes.
To understand the self-accelerating behavior of H, let us assume that there is no matter,

i.e., ρ = 0 and µ > 1. Then, from (18),

H(t) =
µ− 1

t
=⇒ a(t) =

(
t
t0

)µ−1
. (22)
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Henceforth,
H(t→ ∞)→ 0, a(t→ ∞)→ ∞, if µ > 1 (23)

and the deceleration parameter can be expressed as 1 + q = −Ḣ/H2. Therefore,

q = −1 +
1

µ− 1
, (24)

and
µ > 1 =⇒ q > −1, (25)

where the usual case q = −1, corresponding to a cosmological constant Λ, is excluded.
The case ρ = 0 can also be interpreted as a fluid whose energy density quickly vanishes

with evolution. The asymptotic solution (22) was examined in detail using a dynamical
systems analysis in reference [61], and its properties are summarized in Table 1. The table
summarizes the asymptotic behavior for µ > 1 when the energy density of matter tends
to zero. Hence, even in the absence of matter, fractional cosmology gives a power-law
solution a(t) = (t/t0)

µ−1, which is accelerated for µ > 2. This is a crucial difference to
standard cosmology, where we must add a cosmological constant, quintessence scalar field,
or other exotic fluids to accelerate the expansion.

Table 1. Asymptotic solution P4, examined in reference [61].

Label Ωm H q Acceleration? Stability Scale Factor

P4 0 µ−1
t − µ−2

µ−1 Accelerated (µ > 2) Sink (µ > 2) Power law

Decelerated (1 < µ < 2) Source (µ < 7/4) a(t) = (t/t0)
µ−1

Saddle (7/4 < µ < 2)

Solving algebraically Equations (17)–(19) for Ḣ, ρ̇ and ρ, we obtain

Ḣ = −1
2

p +
(µ− 1)H

t
− 3

2
H2 − (µ− 2)(µ− 1)

2t2 , (26)

ρ̇ = −3(µ− 1)2H
t2 +

12(µ− 1)H2

t
− 9H3 + p

(
µ− 1

t
− 3H

)
, (27)

ρ = 3H2 − 3(µ− 1)H
t

. (28)

In General Relativity (GR), we have the flat Friedmann–Lemaître–Robertson–Walker
metric; the main equations are the Friedmann constraint and conservation equation,

3H2 = ρ, (29)

ρ̇ + 3H(ρ + p) = 0. (30)

Using (29) and (30), we obtain

2Ḣ = −(ρ + p). (31)

Now, using (29) and (31) we re-obtain (30). That is, we have three equations, two
of them independent. However, as we discussed before, [62] studied Equations (17)–(19),
and using a similar procedure as in GR, we obtain a new equation (see Equation (34))
instead of showing that two out of three equations are independent.

By demanding that (18) is conserved in time, i.e.,

d
dt

[
H(t)2 +

(1− µ)H(t)
t

− 1
3

ρ(t)
]
= 0, (32)
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we calculate the corresponding derivatives and substitute them into (26)–(28) to obtain

(µ− 1)(t(tp− 3H(tH + 2µ− 6)) + 3(µ− 2)(µ− 1))
6t3 = 0. (33)

This equation is an identity for µ = 1 as expected in standard cosmology. However,
for µ 6= 1, we acquire the new relation for the pressure of the fluid:

p(t) =
6(µ− 3)H(t)

t
+ 3H2(t)− 3(µ− 2)(µ− 1)

t2 . (34)

Using a similar procedure as in GR, we obtain a new Equation (34) instead of showing
that two out of three equations are independent. This characteristic of fractional cosmology
leads to some restrictions of the matter fields in the Universe that were explored in [62] for
different matter fields.

Replacing the expression of p defined by (34) into (26) and (27), we obtain

Ḣ = −2(µ− 4)H
t

− 3H2 +
(µ− 2)(µ− 1)

t2 , (35)

ρ̇ =
3(µ− 1)(4µ− 11)H

t2 − 3(µ− 13)H2

t
− 18H3 − 3(µ− 2)(µ− 1)2

t3 . (36)

The previous results are valid for any ideal gas source.
Moreover, following references [61,62], the system can be extended by including

several matter sources in Equations (15) and (16). After performing algebra, and using
8πG = 1, the following Raychaudhuri equation (with N(t) = 1) is obtained:

Ḣ +
(µ− 1)H

2t
+

(µ− 2)(µ− 1)
2t2 = −1

2 ∑
i
(pi + ρi), (37)

along with the Friedmann equation

H2 +
(1− µ)

t
H =

1
3 ∑

i
ρi. (38)

Furthermore, the continuity equation leads to

∑
i

[
ρ̇i + 3

(
H +

1− µ

3t

)
(ρi + pi)

]
= 0, (39)

where ρi and pi are the density and pressure of the ith matter component, respectively, and
the sum is over all species, e.g., matter, radiation, etc. Note that when µ = 1 in Formula (38)
and Formula (39), the standard cosmology without Λ is recovered, which by itself does not
produce an accelerated expanding universe.

Using the equation of state pi = wiρi, where wi 6= −1 and are constants, we have

∑
i
(1 + wi)ρi

[
ρ̇i

(1 + wi)ρi
+ 3

ȧ
a
+

1− µ

t

]
= ∑

i
(1 + wi)ρi

d
dt

[
ln
(

ρi
1/(1+wi)a3t1−µ

)]
. (40)

Assuming separate conservation equations for each species and integrating for each
ρi, we have the following solution:

ρi(t) = ρ0ia(t)−3(1+wi)(t/t0)
(µ−1)(1+wi), (41)
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where a(t0) = 1, t0 is the age of the universe and ρ0i is the current value of the energy
density of the ith species. Therefore, by substituting (41) into (38), we have

H2 +
(1− µ)

t
H =

8πG
3 ∑

i
ρ0ia−3(1+wi)(t/t0)

(µ−1)(1+wi). (42)

Note that for µ 6= 1, the modified continuity Equation (39) provides the condition

8πG
3 ∑

i
pi =

2(µ− 3)H
t

+ H2 − (µ− 2)(µ− 1)
t2 . (43)

Combining these results with (37) and (38), we have the Riccati equation (35). This
equation generically appears in fractional cosmology, independent of the matter content.
Therefore, in the following, we consider only one matter source.

Comparing with other fractional formulations, according to [42,44], and assuming
Λ = 0 and using 8πGΓ(µ) = 1 for simplicity, we obtain the field equations

2Ḣ + 3H2 + 2
(1− µ)

t
H +

(1− µ)(2− µ)

t2 = −t1−µP, (44)

3H2 + 3(1− µ)
H
t
= t1−µ$, (45)

$̇ + 3H($ + P) = 0, (46)

where $ and P are the bare dark matter energy density and pressure, respectively.
Equations (44)–(46) are equivalent to (17)–(19) under the scaling

(ρ, p) = t1−µ($, P). (47)

Now, we consider a constant EoS,

P = w$. (48)

Then, one obtains,

w = −1 +
2
3

[
1 + q(t)− (µ− 1)

2tH(t)
− (µ− 1)(µ− 2)

2(tH(t))2

](
1− µ− 1

tH(t)

)−1
. (49)

Then, for µ = 1 we have

3H2 = ρ, (50)

2Ḣ + 3H2 = −p =⇒ 2Ḣ = −(ρ + p), (51)

and

q =
1
2

[
1 + 3

(
p
ρ

)]
=

1
2
(1 + 3w) =⇒ w =

1
3
(2q− 1). (52)

Furthermore, we recover GR.
From Equations (45) and (44) and µ 6= 1, it follows that

2Ḣ − (1− µ)

t
H +

(1− µ)(2− µ)

t2 = −t1−µ(1 + w)$. (53)

Replacing (45), we recover (49).



Fractal Fract. 2023, 7, 368 10 of 36

Setting w = 0, from (49) we obtain

q(t) =
1
2
+

(
µ− 1
tH(t)

)(
(µ/2− 1)

tH(t)
− 1
)

. (54)

That is, a “correction” to the usual CDM (µ = 1, w = 0, q = 1/2).
Using (54) and the relation q = −1− Ḣ/H2, we obtain the equation for H as

Ḣ =
(µ− 1)H

t
− 3

2
H2 − (µ− 2)(µ− 1)

2t2 . (55)

For µ = 1, we recover the usual CDM (w = 0, q = 1/2),

H(t) =
2H0

3H0(t− t0) + 2
, q =

1
2

. (56)

For µ = 2, the solution of (55) is

H(t) =
4H0t

3H0(t− t0)(t + t0) + 4t0
, q(t) =

1
2
− 1

tH
= −1

4
− t0

H0t2 +
3t2

0
4t2 . (57)

We will search for solutions considering relativistic matter/radiation. Setting w = 1/3,
from (49), we obtain

q(t) = 1 +
(µ− 2)(µ− 1)

2t2H(t)2 − 3(µ− 1)
2tH(t)

. (58)

Using (58) and the relation q = −1− Ḣ/H2, we obtain the equation for H as

Ḣ =
3(µ− 1)H

2t
− 2H2 − (µ− 2)(µ− 1)

2t2 . (59)

For µ = 1, we recover the usual radiation (w = 1/3, q = 1),

H(t) =
H0

2H0(t− t0) + 1
, q = 1. (60)

For µ = 2, the solution of (59) is

H(t) =
5H0t3/2

4H0

(
t5/2 − t5/2

0

)
+ 5t3/2

0

, (61)

and

q(t) =
(µ− 2)(µ− 1)t3

0(5− 4H0t0)
2

50H2
0 t5

−
(µ− 1)(8µ− 31)t3/2

0 (4H0t0 − 5)
50H0t5/2

+
1

25

(
8µ2 − 54µ + 71

)
. (62)

Another case of interest is when w = −1 (quasi-vacuum matter, according to [42,44]).
The equation for H becomes

Ḣ = − (µ− 1)H
2t

− (µ− 2)(µ− 1)
2t2 . (63)
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The solution to H(t) turns out to be

H(t) = H0

(
t
t0

)− µ−1
2

+
(µ− 2)(µ− 1)

(3− µ)t

1−
(

t
t0

) 3−µ
2

. (64)

According to (64),

q(t) = −1 +

[
H0(µ− 1)

(
t
t0

) 1
2−

µ
2

2t
−

(µ− 2)(µ− 1)
(

1−
(

t
t0

) 3
2−

µ
2
)

(µ− 3)t2

+
(µ− 2)(µ− 1)

(
t
t0

)− µ
2−

1
2

2t2
0

]
H(t)−2. (65)

For 0 < µ < 3, we have
q(t→ ∞)→ −1. (66)

Hence, we obtain a late-time de Sitter solution without including a cosmological
constant.

In summary, fractional cosmology allows for an accelerated expansion without adding
exotic fluids to the model. Therefore, we now consider a model with cold dark matter to
present a specific realization of these possibilities.

2.5. Model with Cold Dark Matter

Assume
H(t) =

α

t
, (67)

where α is a constant and µ > 1. If α = µ− 1, we recover Equation (22).
The conservation equation for matter (19), for cold dark matter (pCDM = wCDMρCDM

and wDM = 0), takes the form

ρ̇CDM + 3H
(

1 +
1− µ

3Ht

)
ρCDM = 0, (68)

when then reduces to

ρ̇CDM +
(3α− µ + 1)ρCDM

t
= 0. (69)

Hence, we have for the matter energy density,

ρCDM = ρCDM(0)(t/t0)
−3α+µ−1

. (70)

Choosing

α =
µ + 1

3
, (71)

we obtain
ρCDM = ρCDM(0)(t/t0)

−2. (72)

Then, from Equation (28), we obtain

ρCDM(0) =
2(2− µ)(µ + 1)

3t2
0

. (73)

Using the redshift parameter 1 + z = 1/a, we obtain

H(t) =
α

t
=⇒ a(t) =

(
t
t0

)α

, (74)
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and

1 + z =
1
a
=⇒

(
t
t0

)
= (1 + z)−

1
α , (75)

then,
ρCDM(z) = ρCDM(0)(1 + z)

2
α and H(z) = H0(1 + z)

1
α , (76)

where α is defined by (71). Comparing with GR, where the EoS weff is defined through

ρCDM(z) = ρCDM(0)(1 + z)3(1+weff), (77)

we have

weff = −1 +
2

3α
= −1 +

2
µ + 1

and q = −1 +
1
α
= −1 +

3
µ + 1

. (78)

Similarly to GR, we have the usual relation q = 1
2 (1 + 3weff). Therefore, in fractional

cosmology, we have an acceleration (ä > 0, q < 0) as is present in GR when the effective
fluid has weff < −1/3. Hence,

ä(t) < 0, q > 0, weff > −1/3⇐⇒ 1 < µ < 2, (79)

and
ä(t) > 0, q < 0, weff < −1/3⇐⇒ µ > 2. (80)

Finally, we have an accelerated expansion if µ > 2, caused by the fractional derivative
correction and not by the matter content. That is the powerful advantage of fractional cos-
mology over GR. This is consistent as ρCDM → 0 with the asymptotic solution H(t) = µ−1

t ,
where q = − µ−2

µ−1 , which is a power-law solution a(t) = (t/t0)
µ−1. It is accelerated if µ > 2

and decelerated if 1 < µ < 2, as proven in [61].

2.6. Interpretation of the Fractional Term as a Dark Energy Source

We write (18) as

3H2 = ρCDM + ρfrac, (81)

where

ρCDM(z) = ρCDM(0)(1 + z)
2
α =

2(2− µ)(µ + 1)
3t2

0
(1 + z)

6
1+µ , (82)

where

ρfrac(t) =
3(µ− 1)

t
H =⇒︸ ︷︷ ︸

using (67) and (75)

ρfrac(z) = ρfrac(0)(1 + z)
2
α , (83)

and

ρfrac(0) =
3(µ− 1)

t0
H0 =

(µ− 1)
t0H0

3H2
0 . (84)

Using H = d ln a/dt and 1 + z = 1/a, we obtain

t0H0 =
∫ ∞

0

dz
(1 + z)E(z)

. (85)

Substituting (see Equation (67))

E(z) = (1 + z)
1
α = (1 + z)

3
1+µ , (86)
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with α defined by (71), we obtain

H0t0 = (1 + µ)/3. (87)

On the other hand, using (81), (83) and (84), we obtain

E2(z) =
3H2(z)

3H2
0

=
ρCDM(z)

3H2
0

+
ρfrac(z)

3H2
0
⇐⇒ E2(z) = ΩDM(z) + Ωfrac(z), (88)

=⇒ Ωfrac(0) = 1−ΩDM(0) =
µ− 1
t0H0

=
3(µ− 1)

µ + 1
∼ 0.744%, µ ∼ 1.65957, (89)

where ΩDM(0) ∼ 0.256%. Compare the value µ ∼ 1.66, with the observational tests
performed in [61] for a flat prior 1 < µ < 3, where the best-fit value for µ is µ∗ = 1.71.

We inspect more the nature of ρfrac as an effective fluid in GR, i.e.,

ρfrac =
3(µ− 1)

t
H, q = −1− Ḣ

H2 =⇒ ρ̇frac = −H
(

1 + q +
1

Ht

)
ρfrac, (90)

=⇒ ρ̇frac + 3H(1 + wfrac)ρfrac = 0, (91)

where wfrac =
1
3

(
q− 2 + 1

α

)
. According to (78), we deduce again (77),

wfrac = −1 +
2

3α
, (92)

corresponding to quintessence (−1 < wfrac < −1/3) if µ > 2.

3. Exact Solutions
3.1. First Exact Solution

From Equations (28) and (34) and defining the effective equation of state w := p/ρ,
we have

w =
µ− 2

tH
+

2µ− 5
tH − µ + 1

. (93)

Assuming w 6= −1 and is a constant, and by solving (93) algebraically for H, we obtain

H1,2(t) =
α±
t

, (94)

α± = −6− 2µ + (1− µ)w±
√

µ2(w2 + 8) + w2 − 2µ(w(w + 2) + 18) + 4w + 44
2(w− 1)

. (95)

Hence, in the intervals −1 < w < 1, 1 < µ < 2, both H1,2(t) are non-negative.
For −1 < w < 1, µ > 2, H1(t) is negative and H2(t) is positive. For µ ∈ {1, 2}, H1(t)
is zero.

The deceleration parameter for each algebraic solution is a constant

q1,2(t) := −1− ˙H1,2(t)/H2
1,2(t) = −1 + 1/α±, (96)

such that the solutions for the scale factor are power laws.
Therefore, upon physical consideration, we select the one that gives an acceler-

ated Universe. The deceleration parameter q1(t) is negative in the parameter region
−1 < w < 1, 1 < µ < 2, and we have an accelerated expansion when H(t) = H1(t) and
(µ, w) ∈ [−1, 1]× [1, 2]. If we choose the range −1 < w < 1, 2 < µ < 3, the solution H1(t)
becomes nonphysical, and the one that gives accelerated expansion is H2(t) because q2(t)
is negative in the parameter region −1 < w < 1, 2 < µ < 3.
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Substituting (94), (28) and (34) into (26) and (27), we obtain the compatibility conditions

− 2α±µ− 3(α± − 3)α± + µ2 − 3µ + 2 = 0, (97)

(2α± − µ + 1)
(

2α±µ + 3(α± − 3)α± − µ2 + 3µ− 2
)
= 0, (98)

where α± is defined by (95) for the existence of an exact solution. We define the current
value of H(t0) = H0 through H0t0 = α±, and α± is interpreted as the age parameter α = tH
evaluated at t0 (the current time).

Therefore, to obtain solutions, we solve (97) and (98) simultaneously for µ and w.
Upon physical consideration, we remove the cases with w = −1 and µ ∈ {1, 2}, and we
assume −1 < w < 1.

From (94), the definition of q and Equations (28), (34) and (93), we have

a(t) =
(

t
t0

)α±
, H(t) =

α±
t

, q(t) = −1 +
1

α±
,

p(t) =
3
(
α2
± + 2α±(µ− 3)− (µ− 2)(µ− 1)

)
t2 , ρ(t) =

3α±(1− µ + α±)

t2 ,

and

w := p(t)/ρ(t) =
µ

α±
+

2α± − 3
1− µ + α±

− α± + 2
α±

, (99)

where we set the conditions a′(t0) = H0, and fix the current value of the scale factor to
a(t0) = 1.

For simplicity, let us assume that the source is dust, with p = 0 (w = 0). Then, we
have α± = 3− µ + ε

√
µ(2µ− 9) + 11, where ε = ±1, which makes (99) an identity.

Hence, we have

H1,2(t) =
3− µ + ε

√
µ(2µ− 9) + 11

t
, (100)

ρ(t) =
3
(

µ− ε
√

µ(2µ− 9) + 11− 3
)(

2µ− ε
√

µ(2µ− 9) + 11− 4
)

t2 . (101)

Substituting in (26) and (27), we obtain the compatibility conditions (replace w = 0
in (97) and (98)),

− 3(µ(2µ− 9) + 11) +
√

µ(2µ− 9) + 11(4µ− 9)ε + 2 = 0, (102)

− (17µ− 39)(µ(2µ− 9) + 11) + 6µ + 6(µ(2µ− 9) + 11)3/2ε

+ (µ(12µ− 55) + 59)
√

µ(2µ− 9) + 11ε− 14 = 0. (103)

For ε = −1, the two conditions are simultaneously satisfied only for µ ∈ {1, 2}.
For ε = 1, the two conditions are simultaneously satisfied only for µ ∈ {5/2, 7/2}.

Since we are interested in the case where µ /∈ {1, 2} and an expanding Universe (H > 0),
the parameter that gives the physical solution H(t) = H2(t) is µ = 5/2. Substituting these
values for w and µ, we obtain

(p(t), ρ(t), H(t))→
(

0, 0,
3
2t

)
=⇒ a(t) = a0t3/2. (104)

That means if we fix the equation of state w, there are specific values that µ has to
satisfy to obtain an exact solution.
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3.2. Second Exact Solution

One can also solve a Riccati equation for µ 6= 1:

Ḣ(t) =
(µ− 1)(3w + 2)H(t)

2t
− 3

2
(w + 1)H(t)2 − (µ− 2)(µ− 1)

2t2 (105)

which follows from substituting p = wρ into (26) and removing ρ using (28). We obtain the
exact solution

H(t) =
1

3t(w + 1)

[
µ + β +

3
2
(µ− 1)w−

2b1tβ
0 β

tβ + b1tβ
0

]
, (106)

where

b1 =
2(β + µ)− 6H0t0(w + 1) + 3(µ− 1)w
2β + 6H0t0(w + 1)− 2µ− 3µw + 3w

(107)

is an integration constant, H0 is the current value of H at t = t0 and

β =
1
2

√
−4(µ(2µ− 9) + 6) + 9(µ− 1)2w2 + 24(µ− 1)w. (108)

Substituting in (26) and (27), we obtain the compatibility conditions

− 4β(β− 4µ + 9) +
8β2(w− 1)t2β(

tβ + b1tβ
0

)
2
− 3(µ− 1)(3µ− 13)w2 + w

(
4β(5µ− 12)− 8µ2 + 42µ− 6

)
+ 24

− 8βtβ(−β + 4µ + w(β + 5µ− 12)− 9)

tβ + b1tβ
0

= 0, (109)

t2β
(

4β(β + 4µ− 9) + 3(µ− 1)(3µ− 13)w2 + w
(

4β(5µ− 12) + 8µ2 − 42µ + 6
)
− 24

)
+ 2b1tβtβ

0

(
w
(

4β2 + µ2(9w + 8)− 6µ(8w + 7) + 39w + 6
)
− 24

)
+ b1

2t2β
0

(
4β(β− 4µ + 9) + 3(µ− 1)(3µ− 13)w2 + w

(
β(48− 20µ) + 8µ2 − 42µ + 6

)
− 24

)
= 0. (110)

These compatibility conditions have to be satisfied for all t, such that b1 = 0.
Then, (106) becomes

H(t) =
1

3t(w + 1)

[
µ + β +

3
2
(µ− 1)w

]
, (111)

and the compatibility conditions are

− 4β(β + 4µ− 9)− 3(µ− 1)(3µ− 13)w2 + w
(

β(48− 20µ)− 8µ2 + 42µ− 6
)
+ 24 = 0, (112)

4β(β + 4µ− 9) + 3(µ− 1)(3µ− 13)w2 + w
(

4β(5µ− 12) + 8µ2 − 42µ + 6
)
− 24 = 0. (113)

Therefore, to obtain solutions, we solve (112) and (113) simultaneously for µ and w.
Upon physical consideration, we remove the cases with w = −1 and µ ∈ {1, 2}, and we
assume −1 < w < 1.

As before, we choose dust matter (p = 0, w = 0). Then,

H(t) =
µ +

√
(9− 2µ)µ− 6

(
1− 2b1

b1+t
√

(9−2µ)µ−6

)
3t

. (114)

As before, two compatibility conditions are satisfied only for b1 = 0 and µ ∈ {5/2, 7/2}.
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For b1 = 0 and µ = 5/2, we have the physical solution

(p(t), ρ(t), H(t))→
(

0, 0,
3
2t

)
=⇒ a(t) = a0t3/2. (115)

For b1 = 0 and µ = 7/2, we have the nonphysical solution

(p(t), ρ(t), H(t))→
(

0,− 9
2t2 ,

3
2t

)
. (116)

As in the previous section, if we impose the equation of the state of the fluid as dust,
this fixes the values of µ to 5/2.

3.3. General Solution

In this section, we are interested in an exact solution that gives the general solution of
the system. For this purpose, one can solve the Riccati Equation (35) independent of the
EoS. That has the H(t) solution defined by

H(t) =
1
3t

[
9− 2µ + r

2
−

crαr
0

cαr
0 + (H0t)r

]
, (117)

where

c =
−2µ + r− 6α0 + 9
2µ + r + 6α0 − 9

, and r =
√

8µ(2µ− 9) + 105, (118)

and for the current time α0 = H0t0, where t0 is the value of t today. H0 is the current value
of the Hubble factor, α0, for which we obtain the best-fit values.

That is the exact solution for H(t) studied in [62] (see an analogous case in [36],
Equation (36), and in [61], Equation (24)). In this case, expressions (28) and (34) are used
to calculate ρ(t) and p(t). Substituting all the expressions in the system (26)–(28) leads to
identities. There is an arbitrary constant of integration and the equations are identically
satisfied (no compatibility equations are required); thus, this is the general solution of
the system. This result is generic since it does not require specifying the EoS. Hence,
Equation (117) gives a one-parameter family of solutions that gives a complete solution
and is independent of the matter content.

Defining the dimensionless time variable τ = H0t such that α0 = H0t0 and
ξ = τ/α0 = t/t0, by definition, the current value of ξ is ξ0 = 1 and the expressions become

a(ξ) = ξ
1
6 (−2µ−r+9) 3

√
c + ξr

(c + 1)
, (119)

z(ξ) = −1 + ξ
1
6 (2µ+r−9) 3

√
(c + 1)
c + ξr , (120)

E(ξ) =
H(ξ)

H0
=

1
3α0ξ

[
9− 2µ + r

2
− cr

c + ξr

]
, (121)

p(ξ) =
H2

0

(
2(4µ− 9)r

(
ξ2r − c2)+ r2(ξr − c)2 − 7(4µ(2µ− 9) + 45)(c + ξr)2

)
12α2

0ξ2(c + ξr)2 , (122)

ρ(ξ) =
H2

0

(
−2(5µ− 12)r

(
ξ2r − c2)+ r2(ξr − c)2 + (2µ− 9)(8µ− 15)(c + ξr)2

)
12α2

0ξ2(c + ξr)2 , (123)
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q(ξ) = −
c2(2µ + r− 9)(2µ + r− 3) + 2c

(
4µ2 − 24µ + 5r2 + 27

)
ξr + (−2µ + r + 3)(−2µ + r + 9)ξ2r

((−2µ + r + 9)ξr − c(2µ + r− 9))2 , (124)

weff(ξ) =
2(4µ− 9)r

(
ξ2r − c2)+ r2(ξr − c)2 − 7(4µ(2µ− 9) + 45)(c + ξr)2

((−2µ + r + 9)ξr − c(2µ + r− 9))((−8µ + r + 15)ξr − c(8µ + r− 15))
, (125)

Ωm(ξ) =
(−8µ + r + 15)ξr − c(8µ + r− 15)
(−2µ + r + 9)ξr − c(2µ + r− 9)

. (126)

Taking the limit ξ → ∞, we have

lim
ξ→∞

z(ξ) = −1, lim
ξ→∞

a(ξ) = ∞, lim
ξ→∞

E(ξ) = 0, lim
ξ→∞

p(ξ) = 0, lim
ξ→∞

ρ(ξ) = 0,

lim
ξ→∞

q(ξ) =
−13− 2(µ− 4)µ +

√
8µ(2µ− 9) + 105

2(µ− 2)(µ− 1)
,

lim
ξ→∞

weff(ξ) =
−7 +

√
8µ(2µ− 9) + 105
4(µ− 1)

, lim
ξ→∞

Ωm(ξ) =
5−

√
8µ(2µ− 9) + 105

2(µ− 2)
,

and

lim
ξ→∞

α(ξ) =
1
6

(
9− 2µ +

√
8µ(2µ− 9) + 105

)
≥ 0, (127)

where α(t) = tH is the age parameter.
The main difficulty of this approach is the need to invert (120) to obtain ξ as a function

of z because the data are in terms of redshift, which is impossible using analytical tools.
After all, the equation is a rational one. However, the variable ξ can be used as a parameter
instead of z in the parametric representation.

3.4. Asymptotic Analysis

The following is a precise scheme which does not require inverting (120).
By introducing the logarithmic independent variable s = − ln(1+ z), with s→ −∞ as

z→ ∞, s→ 0 as z→ 0 and s→ ∞ as z→ −1, and defining the age parameter as α = tH,
we obtain the initial value problem

α′(s) = 9− 2µ− 3α(s) +
(µ− 2)(µ− 1)

α(s)
, (128)

t′(s) = t(s)/α(s), (129)

α(0) = t0H0, t(0) = t0. (130)

Equation (128) gives a one-dimensional dynamical system. The equilibrium points
are T1 : α = 1

6

(
9− 2µ−

√
8µ(2µ− 9) + 105

)
, that satisfies α > 0 for 1 < µ < 2, and

T2 : α = 1
6

(
9− 2µ +

√
8µ(2µ− 9) + 105

)
, that satisfies α > 0 for µ ∈ R.

The eigenvalue of T1 is −3− 36(µ− 2)(µ− 1)
/(

2µ +
√

8µ(2µ− 9) + 105− 9
)2

> 0
for 1 < µ < 2. Hence, T1 is a source whenever it exists.

The eigenvalue of T2 is−3− 36(µ− 2)(µ− 1)
/(
−2µ +

√
8µ(2µ− 9) + 105 + 9

)2
< 0

for µ ∈ R. Hence, T2 is always a sink. It has asymptotic behavior for large s, which is
consistent with [62], in which the attractor solution has an asymptotic age parameter

lim
t→∞

tH =
1
6
(9− 2µ + r). (131)
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We introduce the parameter ε0 such that

ε0 =
1
2

lim
t→∞

(
t0H0 − tH

tH

)
, α0 =

1
6

(
9− 2µ +

√
8µ(2µ− 9) + 105

)
(1 + 2ε0), (132)

where ε0 is a measure of the limiting value of the relative error in the age parameter tH
when it is approximated by t0H0. When ε0 = 0, α0 = 1

6 (−2µ + r + 9), which implies c = 0
in (120) and (121). Thus, we obtain the leading term

E(z) = (1 + z)
6

(9−2µ+r) . (133)

We obtain the exact value of E(z) by integrating the initial value problem numerically

E′(z) =
E(z)τ(z)(3E(z)τ(z) + 2µ− 8)− (µ− 2)(µ− 1)

(z + 1)E(z)τ(z)2 , E(0) = 1, (134)

τ′(z) = − 1
(1 + z)E(z)

, τ(0) =
1
6
(2ε0 + 1)(9− 2µ + r). (135)

3.5. Approximated Analytical Solution

Substituting α = e−3sy
1
2 into (128), it is transformed into the following equation:

dy
ds

= 2(µ− 2)(µ− 1)e6s + 2(9− 2µ)e3sy
1
2 . (136)

Let m be the solution of the following Bernoulli equation

dm
ds

= 2(9− 2µ)e3sm
1
2 . (137)

The solutions of Bernoulli’s Equation (137) are three:

m(s) =



0 such that m(0) = 0

1
9

[
(9− 2µ)(1− e3s)− 3m

1
2
0

]2
such that m(0) = m0

1
9

[
(9− 2µ)(1− e3s) + 3m

1
2
0

]2
such that m(0) = m0

. (138)

Taking the difference term by term of (136) and (137), we obtain

dy
ds
− dm

ds
= 2(µ− 2)(µ− 1)e6s + 2(9− 2µ)e3s

[
y

1
2 −m

1
2

]
. (139)

Assuming y = m + n, where n ≥ 0 is the remainder in the approximation of y by m,
and considering the following inequality

(m + n)
1
2 ≤ m

1
2 + n

1
2 (140)

for m ≥ 0 and n ≥ 0, from (139), we then obtain the differential inequality

dn
ds
≤ 2(µ− 2)(µ− 1)e6s + 2(9− 2µ)e3sn

1
2 . (141)

Suppose that n = A2e6s, where A is to be determined. Then, Equation (141) leads to

3A2 ≤ (µ− 2)(µ− 1) + (9− 2µ)A. (142)
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The equality occurs at A values of

A− =
1
6

(
9− 2µ−

√
8µ(2µ− 9) + 105

)
, A+ =

1
6

(
9− 2µ +

√
8µ(2µ− 9) + 105

)
, (143)

which are the α values of the equilibrium points T1 and T2 of the one-dimensional dynamical
system (128).

We choose the third solution of Bernoulli’s equation in (138). Hence, we obtain an
approximation of y, given by

yapprox =
1
9

[
(9− 2µ)(1− e3s) + 3m

1
2
0

]2
+ A2e6s. (144)

Then, we obtain an approximation of α, given by

αapprox(s) =

[
1
9

(
(9− 2µ)(1− e3s) + 3m

1
2
0

)2
e−6s + A2

] 1
2

. (145)

Calculating the limit

lim
s→+∞

αapprox(s) =
1
3

√
9A2 + (9− 2µ)2, (146)

and imposing the equality with (131), we have

A2 =
1
9

µ

(
µ−

√
8µ(2µ− 9) + 105 + 9

)
+

1
2

√
8µ(2µ− 9) + 105− 23

6
, (147)

which is non-negative and satisfies inequality (142) for 2 ≤ µ ≤ 1
10

(
63 +

√
849
)
. 9.21376.

Moreover, A ∈ [0, A+] for 2 ≤ µ ≤ 3.25162 or 7.59791 ≤ µ ≤ 9.21376.
To calculate m0, we use the condition αapprox(0) = α0 := t0H0. Hence, m0 = α2

0 − A2.
In terms of redshift, we have

αapprox(z) =

[
1
9

(
(9− 2µ)

(
1− (1 + z)−3

)
+ 3
(

α2
0 − A2

) 1
2
)2

(1 + z)6 + A2

] 1
2

, (148)

where A is defined by (147).
For Equation (129), we obtain

t−1 dt
ds

=

[
1
9

(
(9− 2µ)(1− e3s) + 3m

1
2
0

)2
e−6s + A2

]− 1
2

, (149)

with the solution given by

t(s) = t0 exp


∫

s

0

[
1
9

(
(9− 2µ)(1− e3ζ) + 3m

1
2
0

)2
e−6ζ + A2

]− 1
2

dζ

. (150)

Now, considering an asymptotic expansion of the integral for large values of s, where
m0 = α2

0 − A2 and A is defined by (147), we obtain

t(s) ' t0e

∫
s

0
3√

9A2+(9−2µ)2
dζ

= t0e
3s√

9A2+(9−2µ)2 . (151)
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Consequently,

H(s) ' H0

α0

[
1
9

(
(9− 2µ)(1− e3s) + 3m

1
2
0

)2
e−6s + A2

] 1
2

e
− 3s√

9A2+(9−2µ)2 . (152)

We have substituted an asymptotic expansion of the integral for large s given by (151).
Finally,

E(z) =
H(z)
H0
' Eapprox(z)

=
1
α0

[
1
9

(
(9− 2µ)

(
1− (1 + z)−3

)
+ 3m

1
2
0

)2
(1 + z)6 + A2

] 1
2

(1 + z)
3√

9A2+(9−2µ)2 (153)

and

t(z) ' tapprox(z) = t0(1 + z)
− 3√

9A2+(9−2µ)2 , (154)

as z→ −1, where α0 is defined by (132), A is defined by (147) and m0 = α2
0 − A2.

Figure 1 presents Expression (153) compared to the numerical solutions

of (134) and (135), leading term (1 + z)
6

(9−2µ+r) and E(z) of ΛCDM for µ = 2.5 and dif-
ferent values of ε0. The figure shows that generically, for 2 ≤ µ . 9.21376, there is a
good accuracy of the approximation of the exact value E(z) by the asymptotic approxima-
tion (153) as z→ −1.
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Figure 1. Expression (153) compared the numerical solution of (134) and (135), the leading term

(1 + z)
6

(9−2µ+r) , E(z) (ΛCDM) for µ = 2.5 and different values of ε0.
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3.6. Discussion

Our analysis shows differences between standard ΛCDM cosmology-based GR and
the fractional version. Given the energy density expression ρ in GR, one can calculate
the Hubble parameter through the Friedmann equation. Therefore, we deduce H and we
investigate the cosmological history. Finally, we consider the existence of dark matter
(w = 0), as w = −1 for Λ and −1 < w < −1/3 for quintessence, as suggested from
the observations.

If we proceed as before, to give w, we use w = p/ρ and then use the equations for ρ
and p, i.e., Equations (28) and (34). With these expressions, one can calculate H(t) and q(t).
In fractional cosmology, the asymptotic behavior H(t) ∼ 1/t is a characteristic due to the
fractional parameter µ > 1.

We related the possible matter scenarios, and according to the relevant discussion on
the EoS w, we have two regimes of interest.

First, consider ρ-like dark matter with the behavior of dark energy, −1 < w < −1/3,
i.e., quintessence. This case was investigated and the relevant results are summarized in
the following.

In the first approach, we solve (93) for H, obtaining two solutions H1,2(t) =
α±
t , where

the α parameter is defined by (95) and takes the values α±.
Therefore, to obtain solutions, we solved (97) and (98) simultaneously for µ and w.

For ε = −1, we have the following solutions for Equations (97) and (98):

• w =
7+
√

8µ(2µ−9)+105
4(1−µ)

if µ < 1 or 1 < µ < 2 or 2 < µ < 5
2 or µ > 5

2 .

• µ = 1 if w 6= 1.
• µ = 2 if 1 < w ≤ 2 or w < 1.
• µ = 5

2 if w ≥ 4
3 .

• µ = 5
2 if w = −2.

In this case, the equation of state for radiation is not recovered.
For ε = 1, Equations (97) and (98) lead to

• w =
−7+
√

8µ(2µ−9)+105
4(µ−1) if µ < 1 or 1 < µ < 2 or 2 < µ < 5

2 or µ > 5
2 . In this case,

the equation of state for radiation is recovered for µ = 41/8.
• µ = 2 if w ≥ 2.
• µ = 5

2 if 1 < w ≤ 4
3 or w < 1.

• µ = 1 if w = − 5
7 .

• µ = 2 if w = − 1
2 .

The second approach consisted of solving the Riccati equation (105) for µ 6= 1 fol-
lowing substitution of p = wρ in (26) and removing ρ using (28). The exact solution
is (106), where H0 is the current value of H at t = t0. From (26) and (27), we found that
compatibility conditions have to be satisfied for all t. It is necessary that b1 = 0. Therefore,
to obtain solutions, we solved (112) and (113) simultaneously for µ and w. We have the
following solutions:

• w = −1 if µ ≥ 3.

• w =
7+
√

8µ(2µ−9)+105
4(1−µ)

if 2 < µ < 5
2 or µ > 5

2 or µ < 2.

• w =
−7+
√

8µ(2µ−9)+105
4(µ−1) if 2 < µ < 5

2 or 5
2 < µ ≤ 1

4

(
9 +
√

201
)

or µ < 2.

• µ = 2 if w ≤ − 4
3 .

• µ = 5
2 if w ≥ − 8

9 .
• µ = 1 if w = − 5

7 .
• µ = 2 if w = − 1

2 .
• µ = 5

2 if w = −2.

Upon physical consideration, we remove the cases with w = −1 and µ ∈ {1, 2} and we
assume −1 < w < 1.
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Using the two previous approaches, one obtains power-law solutions of the type
a = (t/t0)

α. Additionally, one has to impose two compatibility conditions which allow
particular solutions to (µ, w). That means that any solution of the power law type is indeed
a particular exact solution of the system, but not the general solution. To obtain an exact
solution that gives the general solution of the system (for any value of the free parameters
that have an integration constant), we solved the Riccati Equation (35) independent of the
EoS. This gave us solution (117). This result is generic since it does not require specifying
the EoS. That led to a(τ) given by (119), H(τ) given by (121), p(τ) given by (122), ρ(τ)
given by (123), q(τ) given by (124), weff(τ) given by (125) and Ωm(τ) given by (126),
where we defined the new time variable τ = H0t, such that α0 = H0t0, c = −2µ+r−6α0+9

2µ+r+6α0−9 ,

and r =
√

8µ(2µ− 9) + 105.
We have

lim
t→∞

weff(t) =
−7 +

√
8µ(2µ− 9) + 105
4(µ− 1)

, lim
t→∞

Ωm(t) =
5−

√
8µ(2µ− 9) + 105

2(µ− 2)
, (155)

such that −1 ≤ limt→∞ weff(t) ≤ −1/3 for µ ≤ 5
2 and 0 ≤ limt→∞ Ωm(t) ≤ 1 for

1 ≤ µ ≤ 5
2 . For large t, we have the asymptotic solution

H(t) ' 1
6t

(
9− 2µ +

√
8µ(2µ− 9) + 105

)
, (156)

and

lim
t→∞

α(t) =
1
6

(
9− 2µ +

√
8µ(2µ− 9) + 105

)
≥ 0, (157)

where α(t) = tH is the age parameter.
Finally, combining the solution of Bernoulli’s Equation (137) and inequality (140) and

then solving the differential inequality (141) and approximating the different quadrature,
we have

E(z) ' 1
α0

[
1
9

(
(9− 2µ)

(
1− (1 + z)−3

)
+ 3m

1
2
0

)2
(1 + z)6 + A2

] 1
2

(1 + z)
3√

9A2+(9−2µ)2

and

t(z) ' t0(1 + z)
− 3√

9A2+(9−2µ)2 ,

as z→ −1, where α0 is defined by (132), A is defined by (147), satisfying inequality (142)
and m0 = α2

0 − A2. This is an accurate approximation of E(z) as z → −1 provided

2 ≤ µ ≤ 1
10

(
63 +

√
849
)

. 9.21376. Moreover, A ∈ [0, A+] for 2 ≤ µ ≤ 3.25162
or 7.59791 ≤ µ ≤ 9.21376.

4. Cosmological Constraints

In this section, to study the capability of the models obtained in fractional cosmology
to describe the late-time accelerated Universe expansion, we shall constrain the free pa-
rameters with the SNe Ia data and OHD. In particular, for the first one, we consider the
Pantheon sample [101], which consists of 1048 supernovae data points in the redshift range
0.01 ≤ z ≤ 2.3. On the other hand, we consider the OHD compiled by Magaña et al. [102],
which consists of 51 data points in the redshift range 0.07 ≤ z ≤ 2.36.

For the constraints, we compute the best-fit parameters and their respective confidence
regions at 1σ(68.3%), 2σ(95.5%) and 3σ(99.7%) confidence levels (CLs) with the affine-
invariant Markov chain Monte Carlo (MCMC) method [103], implemented in the pure-
Python code emcee [104] by setting 35 chains or “walkers”. As a convergence test, we
computed the autocorrelation time τcorr of the chains provided by the emcee module
at every 50th step. Hence, if the current step is larger than 50τcorr and the values of τcorr
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changed by less than 1%, then we will consider that the chains are converged and the
constraint is stopped. The first 5τcorr steps are thus discarded as “burn-in” steps. This
convergence test was complemented with the calculation of the mean acceptance fraction,
which must have a value between 0.2 and 0.5 [104] and can be modified by the stretch move
provided by the emcee module.

For this Bayesian statistical analysis, we need to construct the following Gaussian
likelihood:

L = N exp

(
−

χ2
I

2

)
, (158)

whereN is a normalization constant, which does not influence the MCMC analysis, and χ2
I

is the merit function of each dataset considered, i.e., I stands for SNe Ia, OHD and their
joint analysis. In the following subsections, we will briefly describe the construction of the
merit function of each dataset, and we will present the main results and discussions.

4.1. Observational Hubble Parameter Data

The merit function for the OHD is constructed as

χ2
OHD =

51

∑
i=1

[
Hi − Hth(zi, θ)

σH,i

]2

, (159)

where Hi is the observational Hubble parameter at redshift zi with an associated error
σH,i, all of them provided by the OHD sample, Hth is the theoretical Hubble parameter
at the same redshift and θ encompasses the free parameters of the model under study.
It is important to mention that the current value of the Hubble parameter, H0, is a free
parameter of the model, which for the constraint is written as H0 = 100 km/s

Mpc h, where h
is dimensionless. Considering that we expect a value of H0 between the value obtained
from Planck CMB of H0 = 67.4 [80] for the ΛCDM model and the value obtained by A. G.
Riess et al. of H0 = 74.03 [81] in a model-independent way, then we consider for h the flat
prior h ∈ F(0.4, 1).

4.2. Type Ia Supernovae Data

Similarly to the OHD, the merit function for the SNe Ia data is constructed as

χ2
SNe =

1048

∑
i=1

[
µi − µth(zi, θ)

σµ,i

]2

, (160)

where µi is the observational distance modulus of each SNe Ia at redshift zi with an
associated error σµ,i, µth is the theoretical distance modulus for each SNe Ia at the same
redshift and θ encompasses the free parameters of the model under study. Following this
line, for a spatially flat FLRW spacetime, the theoretical distance modulus is given by

µth(zi, θ) = 5 log10

[
dL(zi, θ)

Mpc

]
+ µ̄, (161)

where µ̄ = 5
[
log10 (c) + 5

]
and where c is the speed of light given in units of km/s.

The above expression relates the merit function with the theoretical Hubble parameter
through the luminosity distance, dL, as follows

dL(zi, θ) = (1 + zi)
∫ zi

0

dz′

Hth(z′, θ)
. (162)

On the other hand, the distance estimator used in the Pantheon sample is obtained
by a modified version of Tripp’s formula [105], with two of the three nuisance parameters
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calibrated to zero with the BEAMS with bias correction (BBC) method [106]. Hence,
the observational distance modulus for each SNe Ia reads

µi = mB,i −M, (163)

where mB,i is the corrected apparent B-band magnitude of a fiducial SNe Ia at redshift zi
with an associated error σmB ,i, all of them provided by the Pantheon sample (currently avail-
able online in the GitHub repository https://github.com/dscolnic/Pantheon (accessed on
28 April 2023). The corrected apparent B-band magnitude mB,i for each SNe Ia with their
respective redshifts zi and errors σmB ,i are available in the document lcparam_full_long.txt),
andM is a nuisance parameter which must be jointly estimated with the free parameters
θ of the theoretical model. Furthermore, the Pantheon sample provides the systematic
uncertainties in the BBC approach, Csys (currently available online in the GitHub reposi-
tory https://github.com/dscolnic/Pantheon (accessed on 28 April 2023) in the document
sys_full_long.txt). Therefore, we can rewrite the merit function (160) in matrix notation
(denoted by bold symbols as)

χ2
SNe = M(z, θ,M)†C−1M(z, θ,M), (164)

where [M(z, θ,M)]i = mB,i − µth(zi, θ)−M and C = Dstat + Csys is the total uncertainty
covariance matrix, where Dstat = diag(σ2

mB ,i) is the statistical uncertainty of mB.
Finally, one can marginalize over the nuisance parameters µ̄ and M by defining

M̄ = µ̄ +M. Then, the merit function (164) can be expanded as [107]

χ2
SNe = A(z, θ)− 2B(z, θ)M̄+ CM̄2, (165)

where
A(z, θ) = M(z, θ,M̄ = 0)†C−1M(z, θ,M̄ = 0), (166)

B(z, θ) = M(z, θ,M̄ = 0)†C−11, (167)

C = 1C−11. (168)

Therefore, by minimizing the expanded merit function (165) with respect to M̄,
M̄ = B(z, θ)/C is obtained and the expanded merit is function reduced to

χ2
SNe = A(z, θ)− B(z, θ)2

C
, (169)

which depends only on the free parameters of the theoretical model.
It is essential to mention that the expanded and minimized merit function (169) pro-

vides the same information as the merit function (164). This is a consequence of the fact
that the best-fit parameters minimize the merit function. Therefore, the evaluation of the
best-fit parameters in the merit function can be used as an indicator of the goodness of the
fit independently of the dataset used; the smaller the value of χ2

min, the better the fit.

4.3. Joint Analysis and Theoretical Hubble Parameter Integration

The merit function for the joint analysis is constructed directly as

χ2
joint = χ2

OHD + χ2
SNe, (170)

with χ2
OHD and χ2

SNe given by Equations (159) and (169), respectively. Following this
line, note how in the merit function of the two datasets, the respective model is con-
sidered through the (theoretical) Hubble parameter as a function of the redshift (see
Equations (159) and (162)). Hence, for the constraint, we numerically integrate the sys-

https://github.com/dscolnic/Pantheon
https://github.com/dscolnic/Pantheon
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tem given by Equations (128) and (129), which represents a system for the variables
(α, t) as a function of s = − ln (1 + z), and for which we consider the initial conditions
α(s = 0) ≡ α0 = t0H0 and t(s = 0) ≡ t0 = α0/H0. Then, the Hubble parameter is obtained
numerically by Hth(z) = α(z)/t(z). For this integration, we consider the NumbaLSODA
code, a python wrapper of the LSODA method in ODEPACK to C+ (currently available
online in the GitHub repository https://github.com/Nicholaswogan/numbalsoda (ac-
cessed on 28 April 2023)). Furthermore, for further comparison, we also constrain the free
parameters of the ΛCDM model, whose respective Hubble parameter as a function of the
redshift is given by

H(z) = H0

√
Ωm,0(1 + z)3 + 1−Ωm,0. (171)

Finally, based on the analysis made in Section 3.5, we consider the parameterization
given by Equation (132) for the free parameter α0. Therefore, the free parameters of the
fractional cosmological model are θ = {h, µ, ε0} and the free parameters of the ΛCDM
model are θ = {h, Ωm,0}. For the free parameters µ, ε0 and Ωm,0, we consider the following
flat priors: µ ∈ F(1, 4), ε0 ∈ F(−0.1, 0.1) and Ωm,0 ∈ F(0, 1). It is important to mention
that due to a degeneracy between H0 andM, the SNe Ia data are not able to constrain the
free parameter h (as a reminder, H0 = 100 km/s

Mpc h), contrary to the case for the OHD and,
consequently, in the joint analysis. Thus, the posterior distribution of h for the SNe Ia data
is expected to cover all the prior distributions. On the other hand, the prior is chosen as ε0
because ε0 is a measure of the limiting value of the relative error in the age parameter tH
when it is approximated by t0H0 as given by Equation (132). For the mean value ε0 = 0,
we acquire α0 = 1

6 (−2µ + r + 9), which implies c = 0. Then, we have the leading term for
E(z) defined by (133). The lower prior of µ is because the Hubble parameter (22) becomes
negative when µ < 1 in the absence of matter, as we can see from Section 2.3.

4.4. Results and Discussion

In Table 2, we present the total steps, the mean acceptance fraction and the autocor-
relation time, τcorr, of each free parameter obtained when the convergence test is fulfilled
during our MCMC analysis for both the fractional cosmological model and the ΛCDM
model. The values of the mean acceptance fraction are obtained for a value of the stretch
move of a = 7 for the ΛCDM model and a = 3.5 for the fractional cosmological model.

Table 2. The total number of steps, means acceptance fraction (MAF) and autocorrelation time, τcorr,
for the free parameters of the fractional cosmological model and the ΛCDM model. These values
are obtained when the convergence test described in Section 4 is fulfilled for an MCMC analysis
with 35 chains, a value of the stretch move of a = 7 for the ΛCDM model and a = 3.5 for the
fractional cosmological model and for the flat priors h ∈ F(0.4, 1), Ωm,0 ∈ F(0, 1), µ ∈ F(1, 4) and
ε0 ∈ F(−0.1, 0.1).

Data Total Steps MAF
τcorr

h Ωm,0 µ ε0

ΛCDM model
SNe Ia 1300 0.328 24.0 20.8 · · · · · ·
OHD 950 0.364 16.1 15.4 · · · · · ·

SNe Ia + OHD 850 0.364 15.4 16.5 · · · · · ·

Fractional cosmological model
SNe Ia 5250 0.339 50.9 · · · 104.3 69.9
OHD 3150 0.377 35.9 · · · 62.3 58.4

SNe Ia + OHD 1900 0.413 27.8 · · · 33.8 32.1

The best-fit values of the free parameters space for the ΛCDM model and the fractional
cosmological model, obtained for the SNe Ia data, OHD and in their joint analysis, with their
corresponding χ2

min criteria, are presented in Table 3. The uncertainties correspond to 1σ,

https://github.com/Nicholaswogan/numbalsoda
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2σ and 3σ CL. In Figures 2 and 3, we depict the posterior distribution and joint admissible
regions of the free parameter space of the ΛCDM model and the fractional cosmological
model, respectively. The joint admissible regions correspond to 1σ, 2σ and 3σ CL. Due
to the degeneracy between H0 andM, the distribution of h for the SNe Ia data was not
represented in its full parameter space.

Table 3. Best-fit values and χ2
min criteria for the fractional cosmological model with free parameters

h, µ and ε0 and for the ΛCDM model with free parameters h and Ωm,0. The values were obtained
by the MCMC analysis described in Section 4 for the SNe Ia data, OHD and their joint analysis.
The uncertainties presented correspond to 1σ(68.3%), 2σ(95.5%) and 3σ(99.7%) confidence levels
(CLs), respectively. The ΛCDM model is used as a reference model.

Data
Best-Fit Values

h Ωm,0 µ ε0 × 102 χ2
min

ΛCDM model
SNe Ia 0.692+0.209 +0.296 +0.307

−0.120 −0.278 −0.292 0.299+0.022 +0.046 +0.068
−0.021 −0.042 −0.059 · · · · · · 1026.9

OHD 0.706+0.012 +0.024 +0.035
−0.012 −0.024 −0.036 0.259+0.018 +0.038 +0.059

−0.017 −0.033 −0.047 · · · · · · 27.5

SNe Ia + OHD 0.696+0.010 +0.020 +0.029
−0.010 −0.020 −0.029 0.276+0.014 +0.030 +0.043

−0.014 −0.027 −0.040 · · · · · · 1056.3

Fractional cosmological model

SNe Ia 0.696+0.215 +0.293 +0.302
−0.204 −0.284 −0.295 · · · 1.340+0.492 +2.447 +2.651

−0.245 −0.328 −0.339 1.976+0.599 +1.133 +1.709
−0.905 −1.848 −2.067 1028.1

OHD 0.675+0.013 +0.029 +0.041
−0.008 −0.015 −0.021 · · · 2.239+0.449 +0.908 +1.386

−0.457 −0.960 −1.190 0.865+0.395 +0.650 +0.793
−0.407 −0.657 −0.773 29.7

SNe Ia + OHD 0.684+0.011 +0.021 +0.031
−0.010 −0.020 −0.027 · · · 1.840+0.343 +1.030 +1.446

−0.298 −0.586 −0.773 1.213+0.216 +0.383 +0.482
−0.310 −0.880 −1.057 1061.1

0.66 0.70 0.74
h

0.25

0.30

0.35

m
,0

0.25 0.30 0.35
m, 0

SNe Ia
OHD
SNe Ia + OHD

Figure 2. Posterior distribution and joint admissible regions of the free parameters h and Ωm,0 for the
ΛCDM model, obtained by the MCMC analysis described in Section 4. The admissible joint regions
correspond to 1σ(68.3%), 2σ(95.5%) and 3σ(99.7%) of confidence level (CL), respectively. The best-fit
values for each model free parameter are shown in Table 3.
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Figure 3. Posterior distribution and joint admissible regions of the free parameters h, µ and ε0 for the
fractional cosmological model, obtained by the MCMC analysis described in Section 4. The admissible
joint regions correspond to 1σ(68.3%), 2σ(95.5%) and 3σ(99.7%) confidence levels (CLs), respectively.
The best-fit values for each model free parameter are shown in Table 3.

From the values for the χ2
min criteria presented in Table 3, it is possible to see that the

ΛCDM model is the best model to constrain the SNe Ia data, OHD and SNe Ia + OHD
data. Nevertheless, the fractional cosmological model studied in this paper exhibits values
of the χ2

min criteria close to the values of the ΛCDM model, with differences of 1.2 for the
SNe Ia data, 2.2 for the OHD data and 4.8 for their joint analysis. Thus, this fractional
cosmological model is suitable for describing the SNe Ia and OHD data, as can be seen
from Figures 4 and 5, which are characterized by accounting for a universe that experiences
a transition between a deceleration expansion phase and an accelerated one. Therefore,
fractional cosmology can be considered an alternative valid cosmological model to describe
the late-time Universe. It is essential to mention that the core of this work is to probe this
possibility by studying a particular model; the ΛCDM model is used only as a reference
model for this aim.

The analysis of the SNe Ia data leads to h = 0.696+0.302
−0.295, µ = 1.340+2.651

−0.339 and

ε0 =
(

1.976+1.709
−2.067

)
× 10−2, which are the best-fit values at 3σ CL. In this case, the value

obtained for h cannot be considered as a best fit due to the degeneracy between H0 andM.
On the other hand, the lower limit of the best fit for µ is very close to 1. That is because the
posterior distribution for this parameter is close to this value, as seen from Figure 3. This
indicates that a value of the SNe Ia data prefers µ < 1, but, as a reminder, this value leads
to a negative Hubble parameter in the absence of matter. However, as can be seen from the
same Figure 3, the posterior distribution for these parameters is multi-modal (this explains
the large value of τcorr presented in Table 2) and, therefore, it is possible to obtain a best-fit
value that satisfies µ > 1. It is important to mention that the OHD and the joint analysis do
not experience this issue, which allows us to maintain the validity of the prior used for µ.
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Figure 4. (Top panel) Theoretical apparent B-band magnitude for the ΛCDM model (red dashed
line) and the fractional cosmological model (solid blue line) as a function of the redshift z, contrasted
with the pantheon dataset. (Bottom panel) Variation in the theoretical apparent B-band magnitude
of the fractional cosmological model compared to the ΛCDM model as a function of the redshift
z. The curve is obtained through the expression ∆mB = mB,Model − mB,ΛCDM. The figures were
obtained using the best-fit values for the SNe Ia+OHD data presented in Table 3.
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Figure 5. Theoretical Hubble parameter for the ΛCDM model (red dashed line) and the fractional
cosmological model (solid blue line) as a function of the redshift z, contrasted with the OHD sample.
The shaded curve represents the confidence region of the Hubble parameter for the fractional
cosmological model at a 3σ(99.7%) confidence level (CL). The figure was obtained using the best-fit
values for the SNe Ia+OHD data presented in Table 3.

On the other hand, the analysis from OHD leads to h = 0.675+0.041
−0.021, µ = 2.239+1.386

−1.190

and ε0 =
(

0.865+0.793
−0.773

)
× 10−2, which are the best-fit values at 3σ CL. In this case, note how

the OHD can properly constrain the free parameters h, µ and ε0, i.e., we obtain the best
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fit for the priors considered in our MCMC analysis. Furthermore, note how the posterior
distribution of µ includes the value of 1, as seen from Figure 3, but for a CL greater than 3σ.

Finally, the joint analysis with data from SNe Ia + OHD leads to h = 0.684+0.031
−0.027,

µ = 1.840+1.446
−0.773 and ε0 =

(
1.213+0.482

−1.057

)
× 10−2, which are the best-fit values at 3σ CL.

Focusing our analysis on these results, we can conclude that the region in which µ > 2
is not ruled out by observations. On the other hand, these best-fit values lead to an age
of the Universe with a value of t0 = α0/H0 = 25.62+6.89

−4.46 Gyrs at 3σ CL. Universe age is
roughly double the one of the ΛCDM models, and is also in disagreement with the value
obtained with globular clusters, with a value of t0 = 13.5+0.16

−0.14 ± 0.23 [70]. This discrepancy
is a distinction of fractional cosmology. This result also agrees with the analysis made
in Section 8 of [61], where the best-fit µ-value was obtained from the reconstruction of
H(z) for different priors of µ. The results are summarized in Table 4. In [61], a set of 31
points obtained by differential age tools was considered, namely cosmic chronometers
(CC), to represent the measurements of the Hubble parameter, which is cosmologically
independent [69] (in the present research we consider the datasets from [102], which
consists of 51 data points in the redshift range 0.07 ≤ z ≤ 2.36, 20 more points as compared
with [69]). The 1048 luminosity modulus measurements, known as the Pantheon sample,
from Type Ia Supernovae cover the region 0.01 < z < 2.3 [101]. In [61], it is unclear if the
different priors used for µ lead to properly constraining µ. Their analysis is inconclusive
because of their present different values of µ for the different priors used.

Table 4. The best-fit values (µ, t0) for different priors of µ derived in [61].

Prior µ t0

0 < µ < 1 0.50 41.30 Gyrs
1 < µ < 3 1.71 27.89 Gyrs
0 < µ < 3 1.15 33.66 Gyrs

In order to establish that this fractional cosmological model can describe a universe
that experiences a transition from a decelerated expansion phase to an accelerated one, we
computed the deceleration parameter q = −1− Ḣ/H2, using the Riccati Equation (35),
which leads to

q(α(s)) = 2 +
2(µ− 4)

α(s)
− (µ− 2)(µ− 1)

α2(s)
. (172)

Following this line, in Figure 6, we depict the deceleration parameter for the fractional
cosmological model as a function of the redshift z obtained from the best-fit values for the
SNe Ia+OHD data presented in Table 3, with an error band at 3σ CL. We also depict the
deceleration parameter for the ΛCDM model as a reference model. From this figure, we
can conclude that the fractional cosmological model effectively experiences this transition
at zt ' 1, with the characteristic that zt > zt,ΛCDM, where zt,ΛCDM is the transition redshift
of the ΛCDM model. Furthermore, the current deceleration parameter of the fractional
cosmological model is q0 = −0.37+0.08

−0.11 at 3σ CL. On the other hand, in Figures 7 and 8, we
depict the matter density and fractional density parameters for the fractional cosmological
model (the last one interpreted as dark energy), respectively, as a function of the redshift
z for the best-fit values for the SNe Ia+OHD data presented in Table 3, with an error
band at 1σ CL. We depict the matter density and dark energy density parameters in
both figures for the ΛCDM model. From Figure 7, we can see that the matter density
parameter for the fractional cosmological model, obtained from Equation (126), presents
significant uncertainties, which could be a consequence of their reconstruction from a
Hubble parameter that does not take into account any EoS. In this sense, the current value
of this matter density parameter at 1σ CL is Ωm,0 = 0.531+0.195

−0.260, a value that is in agreement
with the asymptotic value obtained from Equation (155) of Ωm,t→∞ = 0.519+0.199

−0.262, computed
at 1σ CL for the best-fit values for the SNe Ia+OHD data presented in Table 3. Therefore,
this larger value of Ωm,0 for the fractional cosmological model can, in principle, explain
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the lower value of the current deceleration parameter q0 and the excess of matter in the
effective term ρfrac = 3(µ− 1)t−1H with Ωfrac(α(s)) = (µ− 1)/α(s) (see Section 2.6). Note
that the current value Ωfrac,0 can be interpreted as the dark energy density parameter for
the fractional cosmological model as Ωfrac,0 = 0.469+0.260

−0.195, which satisfies the condition
Ωm,0 + Ωfrac,0 = 1.
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Figure 6. Deceleration parameters for the ΛCDM model (red dashed line) and the fractional cos-
mological model (solid blue line) as a function of the redshift z. The shaded curve represents the
confidence region of the deceleration parameter for the fractional cosmological model at a 3σ(99.7%)

confidence level (CL). The figure was obtained using the best-fit values for the SNe Ia+OHD data
presented in Table 3.
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Figure 7. Matter density parameters for the ΛCDM model (red dashed line) and the fractional
cosmological model (solid blue line) as a function of the redshift z. The shaded curve represents
the confidence region of the matter density parameter for the fractional cosmological model at
a 1σ(68.3%) confidence level (CL). The figure was obtained using the best-fit values for the SNe
Ia+OHD data presented in Table 3.
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Figure 8. Dark energy density parameters for the ΛCDM model (red dashed line) and the fractional
cosmological model (solid blue line) as a function of the redshift z. The shaded curve represents
the confidence region of the dark energy density parameter for the fractional cosmological model
at a 1σ(68.3%) confidence level (CL). The figure was obtained using the best-fit values for the SNe
Ia+OHD data presented in Table 3.

Finally, we compute the cosmographic parameter known as the jerk, which quantifies
if the fractional cosmological model tends to Λ or if it another kind of DE, which can be
written as

j(s) = q(s)(2q(s) + 1)− dq(s)
ds

, (173)

where q is given by Equation (172). Hence,

j(α(s)) =
12(µ− 4)

α(s)
+

(µ− 21)µ + 50
α(s)2 − 2(µ− 3)(µ− 2)(µ− 1)

α(s)3 + 10. (174)

Figure 9 represents the jerks for the ΛCDM model (red dashed line) and the fractional
cosmological model (solid blue line) as a function of the redshift z. The figure was obtained
using the best-fit values for the SNe Ia+OHD data presented in Table 3 with an error band
at 3σ CL, represented by a shaded region. A departure of more than a 3σ CL for the current
value for ΛCDM shows an alternative cosmology with an effective dynamical equation of
state for the Universe for late times in contrast to ΛCDM.

On the other hand, for the reconstruction of the H0(z) diagnostic [108] for the fractional
cosmology, we define

H0(z) =
H(z)√

Ωm,0(1 + z)3 + 1−Ωm,0
, (175)

where the Hubble parameter is obtained numerically by H(z) = Hth(z) as we explained
before. Therefore, in Figure 10, we depict H0 diagnostic for the ΛCDM model (red dashed
line) and the fractional cosmological model (solid blue line) as a function of the redshift
z. The figure was obtained using the best-fit values for the SNe Ia+OHD data presented
in Table 3, with an error band at 3σ CL, represented by a shaded region. As a reminder,
in both Figures 9 and 10, we also depict the jerk and the H0 diagnostic for the ΛCDM
model as a reference model.
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Figure 9. Jerks for the ΛCDM model (red dashed line) and the fractional cosmological model (solid
blue line) as a function of the redshift z. The shaded curve represents the confidence region of the jerk
for the fractional cosmological model at a 3σ(99.7%) confidence level (CL). The figure was obtained
using the best-fit values for the SNe Ia+OHD data presented in Table 3.

0.51.01.52.0
z

64

66

68

70

72

0(
z)

CDM
Model
±3

Figure 10. H0 diagnostics for the ΛCDM model (red dashed line) and the fractional cosmological
model (solid blue line) as a function of the redshift z. The shaded curve represents the confidence
region of the H0 diagnostic for the fractional cosmological model at a 3σ(99.7%) confidence level
(CL). The figure was obtained using the best-fit values for the SNe Ia+OHD data presented in Table 3.

5. Conclusions

In this paper, we investigated the cosmological applications of power-law solutions of
the type a = (t/t0)

α0 in fractional cosmology, where α0 = t0H0 is the current age parameter.
Additionally, given µ, the order of the fractional derivative, and w, the matter equation of
state, we have imposed compatibility conditions which allow particular solutions to (µ, w).
That means that any solution of power law type is indeed a particular exact solution of
the system, e.g., solution (22) for ρ = 0; solution (74) for dust matter where α is defined
by (71); solutions H1,2 defined by (94), with α± defined by (95) and where the compatibility
conditions (97) and (98) are satisfied simultaneously for µ and w; and the solution (111)
such that µ and w satisfy (112) and (113), respectively. However, they are not the general
solution. Moreover, we are interested in an exact solution that gives the general solution
of the system. For this purpose, we solved the Riccati equation (35) independent of the
EoS, where the solution for the scale factor is a combination of power laws, i.e., (117). This
solution is analyzed in Section 3.3.
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Finally, combining the solution of Bernoulli’s Equation (137) and the inequality (140),
solving the differential inequality (141) and approximating the different quadrature, we
have obtained the approximate analytical solution Eapprox(z) given by (153), and tapprox(z)
given by (154) as z → −1, where α0 is defined by (132), A is defined by (147) and satis-
fies (142) and m0 = α2

0− A2. This is an accurate approximation of E(z) as z→ −1 provided

2 ≤ µ ≤ 1
10

(
63 +

√
849
)
. 9.21376.

Finally, we estimated the free parameters (α0, µ) using cosmological data and the
re-parameterization H0 = 100 km/s

Mpc h, α0 = 1
6

(
9− 2µ +

√
8µ(2µ− 9) + 105

)
(1 + 2ε0).

Separate analyses of the SNe Ia data and OHD, and the joint analysis with SNe Ia data
+ OHD, led, respectively, to h = 0.696+0.302

−0.295, µ = 1.340+2.651
−0.339 and ε0 =

(
1.976+1.709

−2.067

)
× 10−2;

h = 0.675+0.041
−0.021, µ = 2.239+1.386

−1.190 and ε0 =
(

0.865+0.793
−0.773

)
× 10−2; and h = 0.684+0.031

−0.027,

µ = 1.840+1.446
−0.773 and ε0 =

(
1.213+0.482

−1.057

)
× 10−2, where the best-fit values were calculated at

3σ CL. On the other hand, these best-fit values led to an age of the Universe with a value of
t0 = α0/H0 = 25.62+6.89

−4.46 Gyrs, a current deceleration parameter of q0 = −0.37+0.08
−0.11 (both

at 3σ CL) and a current matter density parameter of Ωm,0 = 0.531+0.195
−0.260 at 1σ CL. Finding a

Universe roughly twice as old as the one of ΛCDM is a distinction of fractional cosmology.
Focusing our analysis on these results, we can conclude that the region in which µ > 2
is not ruled out by observations. This region of a parameter is relevant because, in the
absence of matter, fractional cosmology gives a power-law solution a(t) = (t/t0)

µ−1, which
is accelerated for µ > 2. We presented a fractional origin model that leads to an accelerated
state without appealing to Λ or dark energy.
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