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Exact Solutions for a Thermal
Nonequilibrium Model of Fluid
Saturated Porous Media Based
on an Effective Porosity
An effective porosity concept has been introduced to account for the effects of tortuosity
and thermal dispersion on the individual effective thermal conductivities of the solid and
fluid phases in a fluid-saturated porous medium. Using this effective porosity concept, a
thermal nonequilibrium model has been proposed to attack locally thermal nonequili-
brium problems associated with convection within a fluid-saturated porous medium.
Exact solutions are obtained, assuming a plug flow, for the two cases of thermally fully
developed convective flows through a channel, namely, the case of isothermal hot and
cold walls and the case of constant heat flux walls. These exact solutions for the cases of
metal foam and air combination reveal that the local thermal equilibrium assumption
may hold for the case of isothermal hot and cold walls, but may fail for the case of con-
stant heat flux walls. [DOI: 10.1115/1.4004354]
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1 Introduction

There are two kinds of models to investigate thermal behavior
of conduction and convection within a porous medium, namely,
the so-called thermal equilibrium (single phase) model and ther-
mal nonequilibrium (two phase) model. The local thermal equilib-
rium between the solid and fluid phases is assumed in the thermal
equilibrium model, whereas no such assumption is assumed in the
thermal nonequilibrium model. They are also called as one energy
equation model and two energy equation model, respectively,
since the thermal equilibrium model (which assumes that the tem-
peratures of two phases are equal) deals only one energy equation,
while the thermal nonequilibrium model (which allows the solid
temperature to differ from the fluid temperature) retains two indi-
vidual energy equations for the two phases.

One equation models based on the local thermal equilibrium
assumption have been widely used in modeling transport phenom-
ena in porous media, and have been proven to be quite effective
for many cases of steady heat transfer without internal heat gener-
ation [1–4]. However, Quintard [5] and Quintard and Whitaker
[6,7] pointed out that there are many physical situations in which
the local thermal equilibrium assumption fails, and recommended
use of a two energy equation model. The validity and assessment
of the local thermal equilibrium assumptions were discussed by a
substantial number of researchers, including Minkowycz et al. [8],
Kim and Jang [9], Kiwana and Al-Nimr [10], Al-Mimr and Abu-
Hijleh [11], Abu-Hijleh et al. [12], Khashan et al. [13], Khashan
and Al-Nimr [14], and Haddad et al. [15].

There exit analytical investigations in which the exact solutions
based on the local thermal equilibrium assumption have been exam-
ined by comparing the results against those based on a two equation

model. Nakayama et al. [1] used the two energy equation model
introduced by Hsu [16] and Hsu et al. [17], and obtained exact solu-
tions for two fundamental steady heat transfer cases, namely, one-
dimensional steady heat conduction in a porous slab with internal
heat generation, and also thermally developing unidirectional flow
through a semiinfinite porous medium. They pointed out that the
thermal equilibrium assumption ceases to be valid even for certain
steady thermal problems. Haddad et al. [15], on the other hand,
treated free convection from a vertical plate embedded in a porous
medium, and pointed out that the assumption of local thermal equi-
librium may fail when the Rayleigh number is sufficiently high. Fur-
thermore, Kuznetsov and Nield [18] investigated the onset of
convection in a horizontal layer of a porous medium saturated by a
nanofluid and reported that the effect of the local thermal equilibrium
can be quite significant in certain circumstances. Kuznetsov [19,20]
was also able to present perturbation solutions for thermal nonequili-
brium problems associated with sensible heat storage packed beds.

Many investigators, who worked on two energy equation mod-
els, neglected the effects of tortuosity on the stagnant thermal con-
ductivity, and simply evaluated the fluid phase thermal
conductivity as a product of the porosity and its thermal conduc-
tivity, and likewise for the solid phase thermal conductivity. Such
evaluations lead to significant errors in thermal conduction espe-
cially when the solid thermal conductivity is much higher than the
fluid thermal conductivity, such as in the case of metal foams.

In this study, first, we shall propose an effective porosity con-
cept to establish a two energy equation model, and derive a set of
the volume averaged energy equations, which accounts for the tor-
tuosity as well as the thermal dispersion. An aluminum foam and
air combination is considered for illustration of effective thermal
conductivities for the individual phases. Simple analytical expres-
sions will be proposed to evaluate the thermal conductivities for
the individual phases, which turn out to be significantly different
from those based on simplified two energy equation models, used
by most of previous investigators. Second, using this two energy
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equation model, fully developed convective flows in a channel
filled with an aluminum metal foam are considered to seek both
fluid and solid temperature profiles across the channel. Exact solu-
tions have been found for the case of isothermal walls as well as
the case of constant wall heat flux. These exact solutions may be
quite useful for the benchmark tests of numerical tools based on
the thermal nonequilibrium assumption. Furthermore, the results
show that the case of constant wall heat flux must be treated by
using a thermal nonequilibrium model, since the fluid and solid
phases within the channel never remain at thermal equilibrium.
Exact and approximate solutions for another fundamental prob-
lem, namely, convection in a circular tube filled with a porous me-
dium, may be found in an accompany paper [21], which provides
all details of exhaustive mathematical manipulations.

2 Effective Porosity Concept

We shall consider the energy equation for the fluid phase and
that for the solid matrix phase and integrate them over a local con-
trol volume, following the volume averaging theory [6,7,22,23].
The resulting volume averaged energy equations run as follows:

For the fluid phase

eqf cpf
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For the solid matrix phase
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where the volume average of a certain variable / in the fluid
phase is defined as

/h if � 1

Vf

ð
Vf

/dV

such that Th if is the intrinsic volume average of the fluid tempera-
ture, while Th is is the intrinsic volume average of the solid matrix
temperature, where Vf is the volume space which the fluid phase
occupies. The porosity e � Vf =V is the volume fraction of the
fluid space. The variable / is decomposed into its intrinsic aver-
age and the spatial deviation from it

/ ¼ /h ifþ ~/

Moreover, Aint is the local interfacial area between the fluid and
solid phases, while ni is the unit vector pointing outward from the
fluid side to solid side. The continuity of both temperature and heat
flux is imposed on the interface. Obviously, the parenthetical terms
on the right hand-side of Eq. (1) denote the diffusive heat transfer,
while the last term describes the interfacial heat transfer between the
solid and fluid phases. Combining the foregoing two energy equa-
tions and noting the continuity of the temperature and heat flux at
the interface, we obtain the single macroscopic equation as follows:
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For the time being, let us assume @ Th if=@xj ffi @ Th is=@xj

ffi @ Th i=@xj. Then, the equation reduces to
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where

/h i � 1

V

ð
V

/dV (5)

is the Darcian average of the variable / such that uj

� �
¼ e uj

� �f
is

the Darcian velocity vector. From the foregoing Eq. (4), the mac-
roscopic heat flux vector qi ¼ qx; qy; qz

� 	
and its corresponding

stagnant thermal conductivity kstag may be defined as follows:
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The last term in the rightmost expression describes the thermal
dispersion term, which describes an additional heat flux resulting
from the hydrodynamic mixing due to the presence of obstacles,
while the second term associated with the surface integral
describes the effects of the tortuosity on the macroscopic heat
flux. Note that the first term in the rightmost expression corre-
sponds to the upper bound of the effective stagnant thermal con-
ductivity based on the parallel model, namely, ekf þ 1� eð Þks

� 	
.

Thus, it is the tortuosity term (i.e., the second term) that adjusts
the level of the effective stagnant thermal conductivity from its
upper bound to a correct one. The effective porosity e� may be
defined such that the stagnant thermal conductivity is given by

kstag ¼ e�kf þ 1� e�ð Þks (7a)

namely

e� ¼ ks � kstag

ks � kf
¼ eþ ekf þ 1� eð Þks � kstag

ks � kf
(7b)

such that

e� � eð Þ @ Th i
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¼ 1

V

ð
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The stagnant thermal conductivity kstag is given experimentally,
or, it can be estimated using some empirical and theoretical
expressions. We shall discuss such expressions shortly. Using the
effective porosity e�, the energy Eqs. (1) and (2) may be rewritten
concisely as follows:

For the fluid phase
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For the solid matrix phase
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where the thermal dispersion term is modeled according to the
gradient diffusion hypothesis [24]

� qf cpf
~uj
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� �f¼ kdiskj

@ Th if
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(11)

while the interfacial heat transfer between the solid and fluid
phases is modeled using Newton’s cooling law

1
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njdA ¼ hv Th is� Th if

� �
(12)

where hv is the volumetric heat transfer coefficient.

3 Stagnant Thermal Conductivities of Metal Foams

Yang and Nakayama [25] proposed a general unit cell model
based on the volume averaging theory and evaluated stagnant
thermal conductivities of packed beds, screen wires, and metal
foams, which show good agreement with available experimental
data. The structure of metal foams of our interest is quite complex,
since their cells are usually polyhedrons of many faces in which
each face has a pentagon or hexagonal shape. Therefore, it may
not be practical to describe all details of the structure accurately.
Thus, Yang and Nakayama [25] appealed to a foam cell geometry
idealization and applied their general unit model to high porosity
metal foams. Faithfully following the volume average theory,
they derived an analytical expression, which runs as

kstag

kf
¼ rn2 þ 1� nð Þ2þ 2n 1� nð Þr

nþ r 1� nð Þ (13)

where

e ¼ 1� 3n2 þ 2n3 (14)

Equation (13) is a function of only two parameters, namely, the
thermal conductivity ratio r ¼ ks=kf and the porosity e. It turns
out to be mathematically identical to the formulas obtained by
Hsu et al. [17] and Paek et al. [26]. Paek et al. used Dul’nev’s
model [27], which transforms an open-cell porous medium con-
sisting of polygonal foam geometry to an equivalent cubic cell
model.

For the case of high porosity (i.e., n� 1) and high thermal con-
ductivity ratio such as in metal foam and air combinations of our
interest, we typically have r¼ 8200 and e¼ 0.95. Thus, the condi-
tion r� 3= 1� eð Þ is satisfied. For such cases, Eq. (13) along
with Eq. (14) can further be simplified as

kstag

kf
¼ r

1� e
3

(15)

which turns out to be identical to the expression derived by
Krishnan et al. [28]. They used the Lemlich theory [29], in which
it is assumed that the conduction for the case of polyhedral foams
of high porosity occurs only through the ligament of solid foams
along its axis, and not through its periphery.

Calmidi and Mahajan [30,31] approximated a complex foam
structure, introducing a hexagonal structure. In this way, they
were able to obtain an expression for the effective stagnant ther-
mal conductivity based on a one-dimensional heat conduction
concept. Their expression, which is a function of three geometri-
cal parameters in addition to the thermal conductivity ratio
r ¼ ks=kf , agrees fairly well with available experimental data,
although it is limited to their particular fibrous metal foam struc-
ture. Calmidi and Mahajan [30] carried out a series of measure-
ments using various metal foams. Air and water were used to
measure the effective thermal conductivity of metal foams. Based

on the experimental data collected, they proposed the following
empirical formula:

kstag

kf
¼ eþ 0:19 1� eð Þ0:763r (16)

Another set of experimental data were provided by Bhatta-
charya et al. [32] for a wider range of the thermal conductivity ra-
tio, using foams of reticulated vitreous carbon (RVC) with air and
water as the fluid media. Their empirical correlation, which blends
the effective thermal conductivities in series and parallel arrange-
ment of the fluid and solid phases, is given as follows:

kstag

kf
¼ 0:35 eþ 1� eð Þrf g þ 0:65

eþ 1� e
r

� � (17)

Singh and Kasana [33] collected available experimental data on
the thermal conductivities of metal foams and fitted them to deter-
mine the most appropriate expression for their exponent F as
follows:

kstag

kf
¼ eþ 1� eð Þrf gF eþ 1� e

r

� ��ð1�FÞ
(18)

where

F ¼ 0:3031þ 0:0623 ln erð Þ (19)

All the forgoing analytical and empirical expressions are plotted
together with some available experimental data for air as the fluid
medium in Fig. 1. (Note that Eq. (13) is indicated by a solid line
in the figure.) These analytical and empirical expressions indicate
reasonably good agreement with the available experimental data
collected by Calmidi and Mahajan [30]. It can be seen that, for
metal foam and air combinations, the simple expression (15) is
sufficiently accurate to correlate their stagnant thermal conductiv-
ities in a wide range of the porosity.

Calmidi and Mahajan [31] suggested using kstag




ks¼0

for the
fluid phase conductivity and kstag




kf¼0

for the solid phase conduc-
tivity for their two energy equation model. However, the fore-
going Eqs. (9) and (10), which account for both tortuosity and
dispersion, reveal that the correct stagnant thermal conductivities
for the fluid phase and solid phase are given by

e�kf ¼
r� kstag=kf

� 	
r� 1

kf (20a)

and

Fig. 1 Various expressions for stagnant thermal conductivity
of aluminum metal foam saturated with air

Journal of Heat Transfer NOVEMBER 2011, Vol. 133 / 112602-3

Downloaded 05 Oct 2011 to 133.70.80.49. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



1� e�ð Þks ¼
kstag=kf

� 	
� 1

r� 1
ks (20b)

respectively.
In Fig. 2, the thermal conductivities for the fluid phase and solid

phase are plotted for the case of aluminum foam and air combina-
tion, faithfully following the foregoing Eqs. (20a) and (20b) along
with Calmidi and Mahajan’s empirical formula (16) for kstag.

It is interesting to note that the aluminum phase stagnant con-
ductivity is fairly close to the total stagnant thermal conductivity
itself, kstag ffi 1� e�ð Þks. This is due to the fact that the aluminum
thermal conductivity is so much higher than the air thermal con-
ductivity that r� 3= 1� eð Þ and the simple expression (15) holds
such that

e� ¼ ks � kstag

ks � kf
ffi

ks �
1� e

3
ks

ks � kf
ffi 2þ e

3
(21)

Thus, the individual thermal conductivities for the air phase and
aluminum phase are given by

e�kf ¼
2þ e

3
kf (22a)

and

1� e�ð Þks ¼
1� e

3
ks ffi kstag (22b)

respectively. For the metal foam and air combinations, the for-
going approximate Eqs. (22a) and (22b) may be used for the indi-
vidual phase energy equations. It should be noted that these
results substantially differ from the conventional expressions for
the fluid phase and solid phase conductivities used by many previ-
ous investigators, namely, ekf and 1� eð Þks:

4 Convective Heat Transfer Through a Channel Filled

With a Metal Foam Bounded by Isothermal Hot and

Cold Walls

Prior to its application to the cases of metal foam and air combi-
nations, the set of the Eqs. (9) and (10) based on the effective po-
rosity concept was used to consider one of the fundamental packed
bed problems, namely, thermally developing unidirectional flow
through a semiinfinite packed bed, which was treated by Nakayama
et al. [1] using somewhat more complex two equation model intro-

duced by Hsu et al. [17]. The results based on the present model are
found to agree well with those reported by Nakayama et al. [1],
which substantiates the validity of the present model based on the
effective porosity concept.

Now, we shall seek possible exact solutions for convective heat
transfer in a channel filled with metal foams, using our thermal
nonequilibrium model. For this first case, as shown in Fig. 3, the
air is flowing through an infinitely long channel of height L filled
with a metal foam. The lower bounding wall is isothermally
heated to a constant temperature Th while the upper wall is iso-
thermally cooled to a constant temperature Tl. As pointed out by
Dukhan et al. [34] and Nakayama et al. [35], the Darcian velocity
shows its dependence on the transverse direction only in a small
region very close to the walls. Therefore, we may neglect the
boundary term (i.e., Brinkman term) and use the plug-flow
approximation. Under this approximation, sufficiently away from
the entrance, the energy Eqs. (9) and (10) for the individual phases
reduce to the following ordinary differential equations

For the fluid phase

e�kf þ ekdisyy

� 	 d2 Th if

dy2
� hv Th if� Th is

� �
¼ 0 (23)

For the solid phase

1� e�ð Þks
d2 Th is

dy2
� hv Th is� Th if

� �
¼ 0 (24)

The boundary conditions for the individual phase temperatures are
given by

y ¼ �L=2 : Th is¼ Th; Th if¼ Th � DT (25a)

y ¼ L=2 : Th is¼ Tl; Th if¼ Tl þ DT (25b)

Note that both solid and fluid phase temperatures must be pre-
scribed at the upper and lower walls. The same temperature differ-
ence DT is set at the upper and lower walls for both temperature
profiles to become symmetry about the center plane of the chan-
nel, which then guarantees the uniform heat flux across the chan-
nel. Adding these two energy equations, one obtains the total heat
flux directing upward from the lower wall to the upper wall

qw ¼ � e�kf þ ekdisyy

� 	 d Th if

dy
� 1� e�ð Þks

d Th is

dy
¼ const: (26)

which can be integrated to give the relationship between the solid
and fluid phase temperatures as

Fig. 2 Thermal conductivities of the fluid and solid phases in
aluminum foam and air combination

Fig. 3 Heat transfer in a channel filled with a metal foam
bounded by isothermal walls
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e�kf þ ekdisyy

� 	
Th if� Th � DTð Þ

� �
þ 1� e�ð Þks Th is�Thð Þ

¼ �qw yþ L

2
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For given wall temperatures, the wall heat flux qw can easily be
evaluated from

qw ¼ kstag þ ekdisyy

� 	Th � Tl

L
� 2 e�kf þ ekdisyy

� 	DT

L
(28)

Substituting the foregoing relationship into Eq. (24) to eliminate
Th if in favor of Th is, we obtain the following second order ordi-

nary differential equation with respect to Th is
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which can be solved as
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and the relationship Eq. (27) between the solid and fluid phase
temperatures gives
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where

k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kstag þ ekdisyy

� 	
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� 	
1� e�ð Þks

s
(31a)

The dimensionless temperature difference DT= Th � Tlð Þ indicates
the degree of thermal nonequilibrium. For the case of aluminum
foam and air combination, k can be approximated using Eqs. (15)
and (21) by

kdm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�e

3
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þ e
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kf

� �
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Calmidi and Mahajan [30,31] examined experimental data avail-
able for the case of aluminum foam and air combination, and pro-
posed the empirical correlations for the volumetric heat transfer
coefficient and the dispersion coefficient as follows:

Nuv¼
hvd2

m

kf
¼ 8:72 1� eð Þ1=4 1�e� 1�eð Þ=0:04

e

� �1=2
uDdm

�

� �1=2

Pr0:37

(32)

ekdisyy

kf
¼ 0:06

qf cpf
uD

ffiffiffiffi
K
p

kf

 !
(33)

where uD is the Darcian velocity, and the permeability is given by
the following empirical correlation [31]:

K=d2
m ¼ 0:00073 1� eð Þ�0:224 1:18

1� e� 1�eð Þ=0:04

ffiffiffiffiffiffiffiffiffiffiffi
1� e

3p

r !�1:11

(34)

where dm is the pore diameter. The temperature profiles for both
phases for the case of r¼ 8200, e¼ 0.95, qf cpf

uDL=kf ¼ 5000,
dm=L¼ 0.1, K=d2

m¼ 0.015, and DT= Th � Tlð Þ¼ 0.5/20¼ 0.025 are
illustrated in Fig. 4 for convective uniform flow through a channel.

Fig. 4 Fluid and solid temperature profiles in a metal foam channel with isothermal
walls
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The temperature difference between the phases is appreciable
only in a thin layer very close to the walls. After carrying out a se-
ries of computations based on Eqs. (30a) and (30b) for wide
ranges of the parameters, it has been confirmed that an increase in
DT= Th � Tlð Þ does not affect the thickness of the layer much. The
two phases are found nearly at thermal equilibrium over most of
the channel cross-section, justifying the local thermal equilibrium
assumption for this case of isothermal walls.

According to Eq. (28), the Nusselt number is given by

NuL ¼
qwL

Th � Tlð Þkf
¼ 1� e

3
rþ e

kdisyy

kf

� 2
2þ e

3
þ e

kdisyy

kf

� �
DT

Th � Tl

� �
(35)

As illustrated in Fig. 5, the Nusselt number increases with the
Reynolds number Redm

¼ uDdm=�, since the thermal dispersion
increases with the Reynolds number. However, Eq. (35) indicates
that a high degree of thermal nonequilibrium results in diminish-
ing the Nusselt number.

5 Convective Heat Transfer Through a Channel Filled

With a Metal Foam Bounded by Constant Heat Flux

Walls

In this second case, as shown in Fig. 6, both upper and lower
bounding walls are heated by constant wall heat flux qw. Thus, the
boundary condition is given by

qw ¼ e�kf þ ekdisyy

� 	@ Th if

@y







y¼6L=2

þ 1� e�ð Þks
@ Th is

@y






y¼6L=2

(36)

The energy Eqs. (9) and (10) for the individual phases for this
case may be written as

For the fluid phase

qf cpf
uD
@ Th if

@x
¼ e�kf þ ekdisyy

� 	 @2 Th if

@y2
� hv Th if� Th is

� �
(37)

For the solid phase

1� e�ð Þks
@2 Th is

@y2
� hv Th is� Th if

� �
¼ 0 (38)

which may be added to give

qf cpf
uD
@ Th if

@x
¼ @

@y
e�kf þ ekdisyy

� 	 @ Th if

@y
þ 1� e�ð Þks

@ Th is

@y

 !

(39)

Upon integrating the foregoing Eq. (39) over the channel with the
boundary condition given by Eq. (36), the energy balance readily
gives us

qf cpf
uDL

d Th ifB
dx
¼ 2qw

Hence,

d Th ifB
dx
¼ @ Th if

@x
¼ @ Th is

@x
¼ 2qw

qf cpf
uDL

(40)

for this case of constant heat flux, which can be substituted into
Eq. (39) to give

@

@y
e�kf þ ekdisyy

� 	 @ Th if

@y
þ 1� e�ð Þks

@ Th is

@y

 !
¼ 2

qw

L

which may be integrated as

e�kf þ ekdisyy

� 	 @ Th if

@y
þ 1� e�ð Þks

@ Th is

@y
¼ 2

qw

L
y

where the symmetry condition at y¼ 0 is exploited. The equation
can further be integrated as

e�kf þ ekdisyy

� 	
Tw�DTð Þ� Th if

� �
þ 1� e�ð Þks Tw� Th isð Þ

¼ qw

L

L

2

� �2

�y2

 !
(41)

where Th isjy¼6L=2¼ Tw and Th if



y¼6L=2

¼ Tw � DT. The degree of

thermal nonequilibrium, DT ¼ ð Th is� Th if Þ



y¼6L=2

, must be pre-

scribed. The foregoing relationship (41) between the solid and
fluid temperatures is substituted into Eq. (38) to obtain the follow-
ing ordinary differential equation in terms of Th is�Twð Þ, which is
a function of y alone, as

1� e�ð Þks
d2 Th is�Twð Þ

dy2
�

kstag þ ekdisyy

e�kf þ ekdisyy

hv Th is�Twð Þ

¼ � hvqw

e�kf þ ekdisyy

� 	
L

y2 þ hv DT þ qwL

4 e�kf þ ekdisyy

� 	
 !

(42)

Fig. 5 The Nusselt number for a metal foam channel with iso-
thermal walls

Fig. 6 Heat transfer in a channel filled with a metal foam
bounded by constant heat flux walls
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This ordinary differential equation, after considerable manipula-
tions, yields

Th is�Tw

Lqw= kstagþ ekdisyy

� 	¼ 1

4

y

L=2

� �2

�1þ 8

kLð Þ2
1� cosh kyð Þ

cosh kL=2ð Þ

� � !

�
e�kf þ ekdisyy

kstagþ ekdisyy

1� cosh kyð Þ
cosh kL=2ð Þ

� �

� DT

Lqw= kstagþ ekdisyy

� 	
 !

(43a)

and

Th if�Tw

Lqw= kstagþ ekdisyy

� 	
¼ 1

4

y

L=2

� �2

�1� 1� e�ð Þks

e�kf þ ekdisyy

8

kLð Þ2
1� cosh kyð Þ

cosh kL=2ð Þ

� � !

þ 1� e�ð Þks

kstagþ ekdisyy

1� cosh kyð Þ
cosh kL=2ð Þ

� �
�1

 !
DT

Lqw= kstagþ ekdisyy

� 	
 !

(43b)

where k is as already defined by Eq. (31a). Let us consider the
two asymptotic conditions for the degree of thermal nonequili-
brium, DT, namely, the local thermal equilibrium condition at the
wall, i.e. DT¼ 0, and the local uniform heat flux condition at the
wall, as given by (Fig. 6)

qw ¼
e�kf þ ekdisyy

e
@ Th if

@y







y¼6L=2

¼ 1� e�

1� e
ks
@ Th is

@y






y¼6L=2

which gives

DT

Lqw= kstag þ ekdisyy

� 	 ¼
1� e
1� e�

kstag þ ekdisyy

ks
þ tanh kL=2ð Þ

kL=2ð Þ � 1

e�kf þ ekdisyy

kstag þ ekdisyy

kLð Þ tanh kL=2ð Þ

(44)

The fluid and solid temperature profiles across the upper half
channel are illustrated for the aluminum foam and air combina-
tion, r¼ 8200, e¼ 0.95, qf cpf

uDL=kf ¼ 5000 dm=L¼ 0.1, and
K=d2

m¼ 0.015 in Figs. 7(a) and 7(b) for these two asymptotic
cases, namely, the local thermal equilibrium wall case and the
local uniform heat flux wall case, respectively. As before, Eqs.
(32)–(34) are used to evaluate the volumetric heat transfer coeffi-
cient and the dispersion coefficient. It should be noted that the
local uniform heat flux condition at the wall, as shown in Fig.
7(b), yields negative DT ¼ ð Th is� Th if Þ




y¼6L=2

, since, under such
a wall condition, the fluid temperature gradient at the wall stays
so high to generate the required heat flux, that the fluid tempera-
ture exceeds the solid temperature at the wall. However, this as-
ymptotic condition appears to be unrealistic. The other asymptotic
condition of local thermal equilibrium wall (DT ¼ 0), as illus-
trated in Fig. 7(a), may be much closer to reality for the case of
base materials with sufficiently high thermal conductivity. Thus,
the assumption of local thermal equilibrium wall (DT ¼ 0) may
be used for practical estimations. As both figures clearly show
that the solid temperature in the core region is always substan-
tially higher than the fluid temperature for the case of channels
with constant heat flux walls, irrespective of the degree of thermal
nonequilibrium, DT. Therefore, the local thermal equilibrium

assumption ceases to be valid for the case of constant heat flux
walls.

Finally, the Nusselt number for the case of local thermal equi-
librium at the wall (DT ¼ 0) is presented in Fig. 8, which

Fig. 7 Fluid and solid temperature profiles in a metal foam
channel with constant heat flux: (a) local thermal equilibrium
walls (DT 5 0) and (b) local uniform heat flux walls

Fig. 8 The Nusselt number for a metal foam channel with con-
stant heat flux walls
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indicates monotonous increase in the Nusselt number with the
Reynolds number.

NuL ¼
qwL

Tw� Th ifB
� �

kf

¼
6

kstagþ ekdisyy

kf

1þ 1� e�ð Þks

e�kf þ ekdisyy

12

kLð Þ2
1� tanh kL=2ð Þ

kL=2ð Þ

� �

¼
6

1� e
3

rþ
ekdisyy

kf

� �

1þ 1� eð Þr
2þ e

3
þ

ekdisyy

kf

� � 4

kLð Þ2
1� tanh kL=2ð Þ

kL=2ð Þ

� � (45)

6 Conclusions

Upon introducing the effective porosity to account for the effects
of tortuosity on the stagnant thermal conductivity, a thermal none-
quilibrium model has been proposed for convection in a fluid satu-
rated porous medium. Various analytical and empirical expressions
for the stagnant thermal conductivities are compared against the ex-
perimental data available for the aluminum foam and air combina-
tion. Simple analytical expressions have been proposed to evaluate
the thermal conductivities for the individual phases, which turn out
to be significantly different from those based on simplified two
equation models, used by most of previous investigators. Using the
thermal nonequilibrium model, exact solutions are found, assuming
a plug flow, for the two cases of thermally fully developed convec-
tive flows through a channel, namely, the case of isothermal hot
and cold walls and the case of constant heat flux walls. The result-
ing temperature profiles across the channel for the case of metal
foam and air combination reveals that the local thermal equilibrium
assumption may hold for the case of isothermal walls, but, may fail
for the case of constant heat flux walls.
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Nomenclature
A ¼ surface area (m2)

Aint ¼ interface between the fluid and solid (m2)
c ¼ specific heat (J/kgK)

cp ¼ specific heat at constant pressure (J/kgK)
dm ¼ mean pore diameter (m)
hv ¼ volumetric heat transfer coefficient (W/m3K)
k ¼ thermal conductivity (W/mK)
K ¼ permeability (m2)
L ¼ channel height (m)
nj ¼ unit vector pointing outward from the fluid side to solid

side (-)
Pr ¼ Prandtl number (-)

q ¼ heat flux (W/m2)
T ¼ temperature (K)

uD ¼ Darcian velocity (Uniform inlet velocity) (m/s)
ui ¼ velocity vector (m/s)
V ¼ representative elementary volume (m3)
xi ¼ Cartesian coordinates (m)

x, y, z ¼ Cartesian coordinates (m)
e ¼ porosity (-)

e� ¼ effective porosity (-)
� ¼ kinematic viscosity (m2/s)
q ¼ density (kg/m2)

Special Symbols
~/ ¼ deviation from intrinsic average

/h i ¼ Darician average
/h if ;s ¼ intrinsic average

Subscripts and Superscripts
dis ¼ dispersion

f ¼ fluid
s ¼ solid

stag ¼ stagnation
w ¼ wall

References
[1] Nakayama, A., Kuwahara, F., Sugiyama, M., and Xu, G., 2001, “A Two-Energy

Equation Model for Conduction and Convection in Porous Media,” Int. J. Heat
Mass Transfer, 44(22), pp. 4375–4379.

[2] Yang, C., Liu, W., and Nakayama, A., 2009, “Forced Convective Heat Transfer
Enhancement in a Tube With its Core Partially Filled With a Porous Medium,”
Open Transp. Phenom. J., 1, pp. 1–6.

[3] Rees, D. A. S., and Pop, I., 2000, “Vertical Free Convective Boundary Layer,
Flow in a Porous Medium Using a Thermal Nonequilibrium Model,” J. Porous
Media, 1, pp. 31–44.

[4] Kuwahara, F., Shirota, M., and Nakayama, A., 2001, “A Numerical Study of
Interfacial Convective Heat Transfer Coefficient in Two-Energy Equation
Model for Convection in Porous Media,” Int. J. Heat Mass Transfer, 44, pp.
1153–1159.

[5] Quintard, M., 1998, “Modelling local non- equilibrium heat transfer in porous
media,” Proceeding 11th International Heat Transfer Conference, 1, pp.
279–285.

[6] Quintard, M., and Whitaker, S., 1993, “One and Two Equation Models for
Transient Diffusion Processes in Two-Phase Systems,” Adv. Heat Transfer, 23,
pp. 369–465.

[7] Quintard, M., and Whitaker, S., 1995, “Local Thermal Equilibrium for Tran-
sient Heat Conduction: Theory and Comparison With Numerical Experiments,”
Int. J. Heat Mass Transfer, 38, pp. 2779–2796.

[8] Minkowycz, W. J., Haji-Sheikh, A., and Vafai, K., 1999, “On Departure From
Local Thermal Equilibrium in Porous Media Due to a Rapidly Changing Heat
Source: The Sparrow Number,” Int. J. Heat Mass Transfer, 42, pp. 3373–3385.

[9] Kim, S. J., and Jang, S. P., 2002, “Effects of the Darcy Number, the Prandtl
Number, and the Reynolds Number on Local Thermal Non-Equilibrium,” Int. J.
Heat Mass Transfer, 45, pp. 3885–3896.

[10] Kiwan, S., and Al-Nimr, M. A., 2002, “Examination of the Thermal Equilib-
rium Assumption in Periodic Forced Convection in a Porous Channel,” J. Po-
rous Media, 5, pp. 35–40.

[11] Al-Nimr, M. A., and Abu-Hijleh, B., 2002, “Validation of Thermal Equilibrium
Assumption in Transient Forced Convection Flow in Porous Channel,” Transp.
Porous Media, 49, pp. 127–138.

[12] Abu-Hijleh, B. A., Al-Nimr, M. A., and Hader, M. A., 2002, “Thermal Equilib-
rium in Transient Forced Convection Flow in Porous Channel,” Transp. Porous
Media, 49, pp. 127–138.

[13] Khashan, S., Al-Amiri, A. M., and Al-Nimr, M. A., 2005, “Assessment of the Local
Thermal Non-Equilibrium Condition in Developing Forced Convection Flows
Through Fluid-Saturated Porous Tubes,” Appl. Therm. Eng., 25, pp. 1429–1445.

[14] Khashan, S., and Al-Nimr, M. A., 2005, “Validation of the Local Thermal Equi-
librium Assumption in Forced Convection of Non-Newtonian Fluids Through
Porous Channels,” Transp. Porous Media, 61, pp. 291–305.

[15] Haddad, O. M., Al-Nimr, M. A., and Al-Khateeb, A. N., 2004, “Validation of
the Local Thermal Equilibrium Assumption in Natural Convection From a Ver-
tical Plate Embedded in Porous Medium: Non-Darcian Model,” Int. J. Heat
Mass Transfer, 47, pp. 2037–2042.

[16] Hsu, C. T., 2000, “Heat Conduction in Porous Media,” Handbook of Porous
Media, K. Vafai, ed., Marcel Dekker, New York, pp. 170–200.

[17] Hsu, C. T., Cheng, P., and Wong, K. W., 1995, “A Lumped Parameter Model
for Stagnant Thermal Conductivity of Spatially Periodic Porous Media,” ASME
Trans. J. Heat Transfer, 117, pp. 264–269.

[18] Kuznetsov, A. V., and Nield, D. A., 2010, “Effect of Local Thermal Non-Equi-
librium on the Onset of Convection in a Porous Medium Layer Saturated by a
Nanofluid,” Transp. Porous Media, 83, pp. 425–436.

[19] Kuznetsov, A. V., 1996, “A Perturbation Solution for a Nonthermal Equilib-
rium Fluid Flow Through a Three-Dimensional Sensible Heat Storage Packed
Bed,” J. Heat Transfer, 118, pp. 508–510.

[20] Kuznetsov, A. V., 1997, “A Perturbation Solution for Heating a Rectangular
Sensible Heat Storage Packed Bed With a Constant Temperature at the Walls,”
Int. J. Heat Mass Transfer, 40, pp. 1001–1006.

[21] Yang, C., Ando, K., and Nakayama, A., 2011, “A Local Thermal Non-Equilib-
rium Analysis of Fully Developed Forced Convective Flow in a Tube Filled
With a Porous Medium,” Transp. Porous Media, (in press).

112602-8 / Vol. 133, NOVEMBER 2011 Transactions of the ASME

Downloaded 05 Oct 2011 to 133.70.80.49. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

http://dx.doi.org/10.1016/S0017-9310(01)00069-2
http://dx.doi.org/10.1016/S0017-9310(01)00069-2
http://dx.doi.org/10.2174/1877729500901010001
http://dx.doi.org/10.1016/S0017-9310(00)00166-6
http://dx.doi.org/10.1016/S0065-2717(08)70009-1
http://dx.doi.org/10.1016/0017-9310(95)00028-8
http://dx.doi.org/10.1016/S0017-9310(99)00043-5
http://dx.doi.org/10.1016/S0017-9310(02)00109-6
http://dx.doi.org/10.1016/S0017-9310(02)00109-6
http://dx.doi.org/10.1023/A:1016072713296
http://dx.doi.org/10.1023/A:1016072713296
http://dx.doi.org/10.1023/A:1016072713296
http://dx.doi.org/10.1023/A:1016072713296
http://dx.doi.org/10.1016/j.applthermaleng.2004.09.011
http://dx.doi.org/10.1007/s11242-004-8305-8
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2003.09.033
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2003.09.033
http://dx.doi.org/10.1115/1.2822515
http://dx.doi.org/10.1115/1.2822515
http://dx.doi.org/10.1007/s11242-009-9452-8
http://dx.doi.org/10.1115/1.2825881
http://dx.doi.org/10.1016/0017-9310(96)00179-2
http://dx.doi.org/10.1007/s11242-011-9766-1


[22] Cheng, P., 1978, “Heat Transfer in Geothermal Systems,” Adv. Heat Transfer,
14, pp. 1–105.

[23] Nakayama, A., 1995, PC-aided Numerical Heat Transfer and Convective Flow,
CRC, Boca Raton, FL, pp. 49–50, 103–115.

[24] Nakayama, A., Kuwahara, F., and Kodama, Y., 2006, “An Equation for
Thermal Dispersion Flux Transport and Its Mathematical Modelling for
Heat and Fluid Flow in a Porous Medium,” J. Fluid Mech., 563, pp.
81–96.

[25] Yang, C., and Nakayama, A., 2010, “A Synthesis of Tortuosity and Dispersion
in Effective Thermal Conductivity of Porous Media,” Int. J. Heat Mass Trans-
fer, 53(15–16), pp. 3222–3230.

[26] Paek, J. W., Kang, B. H., Kim, S. Y., and Hyun, J. M., 2000, “Effective Ther-
mal Conductivity and Permeability of Aluminium Foam Materials,” Int. J.
Thermophys., 21(2), pp. 453–464.

[27] Dul’nev, G. N., 1965, “Heat Transfer Through Solid Disperse Systems,” J. Eng.
Phys. Thermophys., 9, pp. 275–279.

[28] Krishnan, S., Murthy, J. Y., and Garimella, S. V., 2006, “Direct
Simulation of Transport in Open-Cell Metal Foam,” J. Heat Transfer, 128, pp.
793–799.

[29] Lemlich, R., 1978, “A Theory for the Limiting Conductivity of Polyhedral
Foam at Low Density,” J. Colloid Interface Sci., 64, pp. 107–110.

[30] Calmidi, V. V., and Mahajan, R. L., 1999, “The Effective Thermal Conductiv-
ity of High Porosity Fibrous Metal Foams,” ASME Trans. J. Heat Transfer,
121, pp. 466–471.

[31] Calmidi, V. V., and Mahajan, R. L., 2000, “Forced Convection in High Porosity
Metal Foams,” ASME Trans. J. Heat Transfer, 122, pp. 557–565.

[32] Bhattacharya, A., Calmidi, V. V., and Mahajan, R. L., 2002, “Thermophysical
Properties of High Porosity Metal Foams,” Int. J. Heat Mass Transfer, 45, pp.
1017–1031.

[33] Singh, R., and Kasana, H. S., 2004, “Computational Aspects of Effective Ther-
mal Conductivity of Highly Porous Metal Foams,” Appl. Therm. Eng., 24, pp.
1841–1849.

[34] Dukhan, N., Picon-Feliciano, R., and Alvarez-Hernandez, A. R., 2006, “Heat
Transfer Analysis in Metal Foams With Low-Conductivity Fluids,” J. Heat
Transfer, 128, pp. 784–792.

[35] Nakayama, A., Kuwahara, F., Umemoto, T., and Hayashi, T., 2002, “Heat and
Fluid Flow Within an Anisotropic Porous Medium,” ASME Trans. J. Heat
Transfer, 124, pp. 746–753.

Journal of Heat Transfer NOVEMBER 2011, Vol. 133 / 112602-9

Downloaded 05 Oct 2011 to 133.70.80.49. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

http://dx.doi.org/10.1016/S0065-2717(08)70085-6
http://dx.doi.org/10.1017/S0022112006001078
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.03.004
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.03.004
http://dx.doi.org/10.1023/A:1006643815323
http://dx.doi.org/10.1023/A:1006643815323
http://dx.doi.org/10.1115/1.2227038
http://dx.doi.org/10.1016/0021-9797(78)90339-9
http://dx.doi.org/10.1115/1.2826001
http://dx.doi.org/10.1115/1.1287793
http://dx.doi.org/10.1016/S0017-9310(01)00220-4
http://dx.doi.org/10.1016/j.applthermaleng.2003.12.011
http://dx.doi.org/10.1115/1.2217750
http://dx.doi.org/10.1115/1.2217750
http://dx.doi.org/10.1115/1.1481355
http://dx.doi.org/10.1115/1.1481355

	s1
	cor1
	l
	s2
	E1
	E2
	UE1
	UE2
	UE3
	E3
	E4
	E5
	E6
	E7a
	E7b
	E8
	E9
	E10
	E11
	E12
	s3
	E13
	E14
	E15
	E16
	E17
	E18
	E19
	E20a
	F1
	E20b
	E21
	E22a
	E22b
	s4
	E23
	E24
	E25a
	E25b
	E26
	F2
	F3
	E27
	E28
	E29
	E30a
	E30b
	E31a
	E31b
	E32
	E33
	E34
	F4
	E35
	E36
	E37
	E38
	E39
	s5
	E40
	UE4
	UE5
	E41
	E42
	F5
	F6
	E43a
	E43b
	UE6
	E44
	F7
	F8
	E45
	s6
	B1
	B2
	B3
	B4
	B5
	B6
	B7
	B8
	B9
	B10
	B11
	B12
	B13
	B14
	B15
	B16
	B17
	B18
	B19
	B20
	B21
	B22
	B23
	B24
	B25
	B26
	B27
	B28
	B29
	B30
	B31
	B32
	B33
	B34
	B35

