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For chains of harmonic oscillators with random masses a set of equations is derived, which 
determine the spatial Fourier components of the average one-particle Green's function. These 
equations are valid for complex values of the frequency. A relation between the spectral density and 
functions introduced by Schmidt is discussed. Exact solutions for this Green's function and the less 
complicated characteristic function - the analytic continuation into the complex frequency plane of the 
accumulated spectral density and the inverse localization length of the eigenfunctions - are derived for 
exponential distributions of the masses. For some cases the characteristic function is calculated 
numerically. For gamma distributions the equations are cast in the form of ordinary, higher order 
differential equations; these have been solved numerically for determining the characteristic function. 
For arbitrary mass distributions a cumulant expansion and a peculiar symmetry of the Green's 
function are discussed. 

The method is also applied to chains where the spring constants and/or the masses have random 
values. Also for these systems exact solutions are discussed; for exponential distributions, e.g., of both 
masses and spring constants the characteristic function is expressed in Bessel functions. The relation 
with certain random relaxation models is shown. Finally, X-Y Hamiltonians with random exchange 
constants and/or magnetic fields - or, equivalently, tight-binding electron models with diagonal and/or 
off-diagonal disorder - are considered. Here the Green's function does not depend on the wave number 
if the distribution of exchange constants is symmetric around the origin. New solutions for the 
characteristic function and Green's function are derived for a number of cases, including exponentially 
distributed magnetic fields and power law distributed exchange constants. 

1. Introduction 

In  ordered as well as in r a n d o m  s y s t e m s - w h i c h  will be the subject of  this 

p a p e r - t h e r m o d y n a m i c  funct ions  are the first quant i t ies  of  interest. In  one- 

d imens ional  systems where the equa t ion  of  m o t i o n -  which may  be a classical one 

or a SchrSdinger or a Master  e q u a t i o n - i s  l inear  they are de termined by the 

spectral density of  eigenfrequencies or the densi ty of  states. The characteristic 

funct ion  is the indefinite integral  of  the trace of  the one-part icle Green ' s  funct ion;  

it extends the accumula ted  spectral densi ty into the complex frequency plane.  The 

real par t  of  this func t ion  a long its cut is connected  to the exponent ia l  local izat ion 

of  the eigenfunctionsl,2); its imaginary  par t  is p ropor t iona l  to the accumula ted  

density of  states. Exact  solut ions for either the density of  states or the character-  
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istic function have been found for random harmonic chains by Dyson 3) and Domb 

et al.4), for a particle in a Gaussian white-noise potential by Frisch and LloydS), 

for tight-binding electron models by Lloyd 6) and for several random 

Kronig-Penney models by the authorT). In these cases the thermodynamics is 

known completely. An explicit calculation of the derivative of the specific heat 

with respect to temperature for the case of a chain consisting of harmonic 

oscillators for arbitrary distributions of the random masses was reported 

recently8). 

Time-dependent properties are determined by one-particle Green's functions; 

they express the solutions of the equations of motion at time t into the initial 

condition as uk(t) = Zt G(k, t I l, 0)ut(0). In random systems the process of aver- 

aging over the random variables has to be performed at the right moment; in 

particular the average of a two-particle Green's function is not equal to the 

average of the one-particle Green's function squared. Depending on the model one 

considers the quantities of interest are linear or quadratic in the Green's functions: 

i) in disordered harmonic systems Uk(t) is the displacement of the kth particle 

from its equilibrium position; diffusion of displacement and momentum along the 

chain as well as one-phonon contribution to the differential cross-section for 

neutron scattering are described by equations that are linear in Uk(t) (see also 

section 2); diffusion of energy by quadratic ones; 

ii) in the case of random walks on (random) lattices Uk(t)= Pk(t) is the 

probability for a particle to be at site k at time t. Quantities of interest (e.g. 

frequency dependent hopping conductivity, long time tails in correlation func- 

tions) are determined by the one-particle Green's function; 

iii) in quantum systems u,(t), or u(x, t), is a probability amplitude and observ- 

ables are determined by ]u,I 2. The average one-particle Green's function, however, 

still determines the density of states at given values of energy and wavenumbers. 

In this paper we will calculate the Fourier-Laplace transform (with respect to 

space and time, respectively) of the average one-particle Green's function. Exact 

solutions for this function were given by Lloyd 6) for tight binding electron models 

for arbitrary lattices in arbitrary dimension, provided that the site energies have 

Cauchy distributions. These distributions, however, have unphysical properties; 

for instance they yield a divergent zero-point energy per particle2'7). In order to 

construct a method that is valid for arbitrary distributions, we restrict ourselves 

to the case of one space-dimension, although it seems possible to generalize the 

method to higher dimensions. For obtaining exact solutions, as we will do too, 

this restriction is unavoidable. Our work extends both a scheme of equations for 

determining the imaginary part of the Green's function, derived by Halpering), 

into the complex frequency (energy-) plane and a method for obtaining the 

characteristic function2). 

The set up of the paper is as follows: in section 2.1 for the case of harmonic 
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oscillators with random masses, after discussing some applications of  the average 

one-particle Green's function, a straightforward derivation of  a scheme of  

equations is given, The solutions of  these equations determine the 

Fourier-Laplace transform of  this Green's function and the characteristic func- 

tion. In section 2.2 a relation for the spectral density is given, from which we derive 

easily its boundedness and continuity, provided the mass distribution is absolutely 

continuous. In section 3.1 we derive explicit solutions for this Green's function 

and for the characteristic function for the case of  exponential mass distributions; 

in section 3.2 the application to gamma distributions is considered. In section 3.3 

it is shown how a straightforward expansion in cumulants of  the mass distribution 

can be obtained. 

In section 4.1 we briefly extend the method to harmonic chains where both the 

masses and springs are random variables; in some specific cases the characteristic 

function can be expressed in known (Bessel-) functions. In section 4.2 we discuss 

the relation with the problem of  random walks on certain random lattices. 

In section 4.3 the relation with X - Y  and tight binding electron models is 

discussed. A summary of  the main results is given in section 5. 

2. Equations for the phonon Green's functions 

2.1. Random masses 

In this section we discuss a scheme for the evaluation of  the Fourier components 

of  the average one-particle Green's function. It is an extension into the complex 

frequency plane of  a method developed by Halperin 9) and also a generalization 

of  a method introduced before 2) for the calculation of  the characteristic function. 

For  the sake of  clearness the corresponding equations of  the last paper will be 

rederived. We consider an ensemble of  chains of  harmonic oscillators, connected 

to their neighbours with ideal springs, with spring constants normalized to unity. 

The mass of  each particle is a random variable, which is independent of  the other 

masses. All masses have the same distribution. The equation for uk, the Fourier 

component  with frequency ¢0 of  the displacement of  the k th particle from its 

equilibrium position, has the form 

PkUk(~) - -  Uk+ 1(~)  - -  U ~ _ , ( ~ )  = O,  

where, with ~ - -o9  z, 

Pk = 2 - mkw 2 = 2 + m,¢.  

We choose fixed boundary conditions 

u0=O,  u l = l ;  

(2.1a) 

(2.1b) 

(2.2) 
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the requirement that uN+l(~)= 0 fixes the eigenfrequencies to~ ~° . . . .  , ~o~. This 

equation can be written in the matrix form 

(Me + # ) u  = 0,  (2.3) 

where M is the diagonal mass matrix (Mkk = m,; k = 1 . . . . .  N); • is the symmetric 

force matrix (~kg = 2, k = 1 . . . . .  N; ~ k , k +  1 = ~ k + l , k  = - -  1 ,  k = 1 , . . . ,  N - 1; else 

~ij = 0) and u is a vector with components Uk. The Green function of  this problem 

is defined as 

1 

- Me + ~ '  (2.4a) 

we will consider the slightly more general Green function 

1 
G = AfaA* = A - - A  t , (2.4b) 

m~ + #  

where A is a diagonal matrix with elements Akk = ~k, which may depend on the 

type of  atom at site k. For  large systems the average of  G will be translationally 

invariant, since the distribution of  the random values of  the masses is the same 

for each site in the chain and independent of  the values of  the other masses. 

Therefore ( G ) ,  i.e. the average of  G over the masses, is diagonal in Fourier-space 

(q-space), with components given for finite N by 

1 N 

G(~°( q' ~ ) - ( G(q~)( ~ ) ) = N k,~ ~ e-iq(k-O( G~'~( ~ ) ) 

= E 2keg(i) e-iqk2*e,(i) e iq' , (2.5a) 
"= k,l = 1 

where, with ¢ ~  = -to~ ~0=, 

ek(i) = ug ({}~°) { ~,=1 mlu2(~}~)} -1/2 " (2.5b) 

The last equality in (2.5a) follows from expansion in eigenfunctions; it will also 

be discussed later. In a number of  fields this Green's function plays an important  

role. We mention only two applications: 

i) contribution of  ions to the dielectric constant. In the long wave length 

approximation the equation of  motions of  ions with charge Qk in the presence of 

a local electric field Ek cos ~o0t is given by 

mkii~(t) = U~ + l(t) + Uk-l(t) -- 2uk(t) + QkEk COS Ogot. (2.6) 

This equation has an advanced and retarded solution, of  which only the last one 
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is relevant. For the average dipole moment per particle we obtain 

1 N 1 ~¢ 
(P( t ) )  = ~[k~ ' (QkUk(t)) = ~ ~ Re(Qkffk,(-- CO2 + iO)QtE, el'°°'), (2.7) 

= k , l =  1 

where choosing +i0  in ff yields the retarded solution. After assuming that the 

local electric field E t does not depend on l (which needs not be a good 

approximation in disordered systems), we observe that the r.h.s, of this equation 

has the form (2.4b), (2.5a) with 2, = Q, and q = 0 (long wave length approxi- 

mation). Note that the average dipole moment is delayed in time with respect to 

the local electric field. This does not happen in ordered systems, where the q = 0 

modes can only occur at a finite number - determined by the number of atoms per 

unit cell and the d imens ion -o f  frequencies (resonances). In disordered crystals 

these resonances are smeared out; the divergence of (P ( t ) )  at these frequencies 

is suppressed, but there occurs a delay. For the calculation of the ionic 

contribution to the dielectric constant one further needs to know the dependence 

of the local electric field on the average electric field in the medium and on the 

polarization. For the case that a large number of non-interacting chains are 

embedded somehow in a three dimensional crystal, this will be determined by the 

actual positions of the chains. An example of  such a system is Hg3_~AsF6 10), 

where, however, only one type of atoms (mercury atoms) can move in one- 

dimensional channels; 

ii) for neutron scattering on a one-dimensional system the one-phonon inelastic 

contribution to the differential cross section per unit solid angle, per unit energy 

is given by")  (with h = 1) 

I*'l 
dO dco - 2rc~] I q2O(q' co)" (2.8) 

Here k (k') is the wave vector of  the incident (reflected) neutron, q is the 

component of k - k '  along the chain and co is the energy transfer from a neutron 

to the system (creation of  a phonon if co > 0, absorption if 09 < 0). The function 

D(q, co) is the Fourier transform of a correlation function 

/ i / D(q, co) = ~V k., bkb, ei~'((u,(t)uk(O))) e -i~k-° , (2.9) 

- oo  

where the double angular brackets stand for averaging the quantum mechanical 

expectation values of  the operators with respect to the thermal distribution of the 

phonon occupation numbers and the single angular brackets stand for averaging 

with respect to the values of mk (mass of k th atom) and bk (scattering length of 

kth atom in a crystal). We have also assumed that the equilibrium positions of 

the atoms are equally spaced, with spacing equal to unity. With methods known 
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in ordered systems, see for instance ref. 11, the thermal averages can be carried 

out and D takes the form 

o,q 1 + sg(co) Im G(q, -~o z -  i0), (2.10) 

where the last factor was introduced in (2.4), (2.5) if we identify 2k with the 

scattering length b k. Since here only the imaginary part of  G ( q , - i n  2 -  i0) is 

needed D(q, ~o) can be determined from the work of Halperin9). 

We now proceed with the evaluation of  G(q, ~). The Green's function f#~ 

satisfies the equation 

-- -- ~k_l,l~--~k,I • (2.11) 

The solution is 

I Dk+I'NDI'I-I  k >~ I, 

f#~,tm = D1,N ' (2.12a) 

Dt+l,NDl.k-i k <~1, 

D1,N 

where, together with Dk,k-1 = 1 and Dk.k-2 = O, 

Ok --1 0 

- - I  Pk+l --1 

DkS = -- 1 , (2.12b) 

- 1  

0 - 1  Pt 

see for instance Herbert  and Jones'2). 

Note that the solution of  (2.1) with fixed boundary conditions u0 = 0, u, = 1 is 

given by U k = DI, k_ 1" Using the equality 

Dk+I,uDI,N 1 -- Dk+l,u-lDl,u = Dl,k-1 , (2.13) 

which can be proven by induction, we find 

~ ~ ~(k~ -- ( ~ / -  ') -- D,,, 1D,,k , = UkU ~ 

D1,N 1D1,N UNUN+I 
(2.14) 

In a similar way we define H ~  in terms of  G~,~; its Fourier transform is given by 

n(qNq)(~) ~ ~ n~l  e-i(k-l)q ~. ~ ~'kUke-iqk~Uleiql 

k,l = I k,l = 1 UNUN + 1 
(2.15) 

Here the uk depend parametrically on ¢. A more familiar form is obtained if we 
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use the equality 

N 
uu(~)u~v+l(4)- us+l(~)u 'u(4)  = ~, mju2(4)  (2.16) 

j = l  

for ~ close to one of  the eigenvalues ~ u ) =  _~o~m2, where, by definition, 

uN+ ~(~)= 0. We then obtain, together with G (°) = 0, v qq 

H~qm(~) = NG~mq (~) - ( N  - 1)G~qq u-  1)(~), (2.17) 

where G (A°qq was defined in (2.5). The equality between (2.15) and (2.17) holds, 

because both expressions are equal to the quotient of  polynomials of  degree 

2 N -  2 and 2 N -  l, respectively, and have the same poles and equal residues. 

From this equation we can solve the desired quantity G~qm: 

1 s 

G~qq~(4) = ~ , ~ 1 H ~ )  • (2.18) 

In the following it will become clear that the H ~  ) have a limit as n--* oo. Taking 

the average over all values of  the masses mk and parameters 2k we obtain for the 
average Green's function in the limit N ~  

G(q,  4)  = (Oqq(4)}  = (Hqq)  . (2.19) 

For the evaluation of  the r.h.s, of  this equation we introduce the quantities 

uk(¢) 
zk(~) - - -  

uk+l(¢)' 

eiq(k + 1) k 

Uk(q, 4)  -- Uk+ 1(~)j__E l ~ , j e - i q J u j ( 4 ) ,  (2.20) 

e-iq(k+l) k 
- -  _ _  ~ . ?  e i q J u j ( ~ ) .  0k(q' 4) uk+l(4) j=~ 

The quantity Uk was also used by Halpering). Note  that we do not define f.7 k as 

the complex conjugate of  Uk, since then we would loose the analytic properties 

in the complex ~-plane. For fixed values of  q and ~ these quantities satisfy the 
equations, as follows from (2.1), 

1 
Zk  - -  - -  , Z 0 = 0 , 

P k  - -  z k -  1 

U k  ~ -  Zk  e i q ( u k  - , '{- ) 'k),  U0 = 0 ,  (2.21) 

Ok=Zke-iq(Ok_, + 2'~.), /.7o=0. 

The Zk are analytic functions of  4, with single poles o n  the negative real C-axis; 

one has Im zk(4) .~ 0 i f lm ~ ~ 0. Because the uk(~) are polynomials in ~, with only 
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zeros for negative real 4, we can introduce the functions, analytic in u and 4, 

1 
R~m(u; ~) = / u  _ z u ( 4 ) / ,  (2.22a) 

/ 
R~m(u; q; 4) = \ u  -----z-u~)l ' 

/ Uu(q; 4 ) \  

K~°(u; q; 4) = \ u ~ z ~ / ,  (2.22b) 
/UN(q; ~)Ou(q; ~))  

q, 4) = \ u S 

They have no singularities in the combined parts of  the complex u and ~ plane, 
where s g ( I m u ) = s g ( I m  4). The function D was introduced before 2) for the 

calculation of the characteristic function 

t2(~) = f log(4 + co 2) dH(09 2) + (log m ) ,  (2.23) 

where H is the average accumulated spectral density. Along the negative real 

4-axis this function has the decomposition 

f2 ( -  092 +_ i0) = ? (09 2) _ itcH(092). (2.24) 

The quantity ?(092) is often called "exponential growth rate ''13) or "inverse 

localization length"1); it is positive for disordered chains, which is connected to 

the exponential localization of all the eigenfunctions~'L3'~4). From the definition 

(2.4a) it can be shown that for N ~  

( 1  1 ) i d q  f2'(4) = Tr 4 + M -~O = ~ (1 - 2(1 - cos q)f~(q, 4)). (2.25) 

Comparing this with (2.24) we see that the quantity p(092, q) = (2(1 - cos q)/n09 z) 
Im if(q, -092 _ i0) may be interpreted as the density of states at given wave number 
q. The total density of states then follows as dH/d09 2= ~_~ (dq/27r)p(09 2, q). 

Of course the function R0(u) is equal to D'(u)+ 1/u; we only introduce it 
separately for convenience. As N ~ o o  we obtain from (2.21) a closed set of 

equations 

(( ' )  ('u)) D(u) = D & -  u + log p j -  -- D ( ~ ) ,  (pj = 2 + mj4), (2.26a) 
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R0(u)=~- 5 R0 p j -  + , (2.26b) 

Rl(U)=e:iq {Rl(pj-!).gr,~TRo(Pj-!)), (2,26d) 

( ')  R (u) = 6 -  u +  fi' 

Here the angular brackets indicate averaging with respect to mj and 2j and we 

suppresssed the indices q and ~. In 2) it was shown that the characteristic function 

is given by 

~(~) = D ( ~ ;  ~), (2.27) 

while from (2.15), (2.19), (2.20 and (2.23) it follows that the Green's function is 
equal to 

G(q, ~) = -R2(0; q; ~). (2.28) 

Eqs. (2.26)-(2.28) together constitute a scheme for the evaluation of the 

characteristic function and the average one-particle Green's function for real or 

complex values of ~. They are valid for arbitrary distributions of the masses (in 

particular for all cases discussed by Alexander et a1.15)) and the parameters 2:. 

The solutions to these equations are unique as can be shown using arguments 

of analyticity2). Similar equations are valid for other models, as will be discussed 

in subsequent sections. If 2: = 1 for special distributions of the masses explicit 

solutions can be constructed (sections 3.1, 3.2); for arbitrary distributions 

expansions in cumulants can be made (section 3.3). It should also be possible to 
deduce results obtained by Alexander et al. 1~) and Stephen and Kariotis 16) for the 

frequency dependent diffusion coefficient. In a certain model this quantity is 

proportional to ~(0, ~) (section 4.2). 

Here we still discuss the relation with the functions P0, Pl and/'2, introduced 

by Halperin9), for the calculation of the wave vector dependent spectral density 
A(q,o~)  = 2[w[/• Im G ( q , - 0  2 -  i0) for real values of eo (negative ~ = -02) .  

These functions are defined by 

Po(u; N) = ( 6 ( u  - zN)), 

P~(u; N )  = ( UN6(u -- z ~ ) ) ,  (2.29) 

P2(u; N )  = (]UN]26(u - z~)>. 
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Comparing with (2.22) we see that P0(u; N) = (I/K) Im R~oN)(u - i0) and a similar 

relation exists between P1 and R~ m. The relation between P2 and R2, however, is 

given by 

P2(u; N) - P2(oo; N) =-1 Im R~U)(u - i0) . (2.30) 
rt 

This is caused by the fact that R~zm(U; q; 4) does not only have singularities at the 

points where u =zu(-co2) ,  but also at the points where uu+t( -co2)= 0, i.e. 

zu(-o~ 2) = ~ .  Therefore, unlike Rim(u), Pz(U; N) does not vanish as u---, ~ .  With 

the above mentioned relations the equations for the functions P0, Pl and P2, 

derived by Halpering), follow also from (2.26). Finally, the identity A (q, o9) = 21o9 I 

l i m u ~  (1/N)Pz(u; N) for fixed value of u follows because from (2.28), (2.30) we 

have in the limit N ~  

A(q, ~o) = - 21°9[ Im R~m(O - i0) = 21o9[{P2(oo; N) - P2(0; U)} 
7~ 

= 2[~1{P2(oo; N) - P2(~; U - 1)}. (2.31) 

The last equality follows, for instance, from the definition o f / 2 ,  eq. (2.29). 

2.2. On the existence of  the spectral density 

In this section we derive a formula for dO/d~ in terms of the function Ro(u; ¢) 

and an expression for G(q, 4) in terms of R0, R, and R1. The fact that the function 

R2 is not needed may be of practical use; these equations can also be used to 

investigate the existence of the spectral density in a simple manner. 

We start with the derivative ofeq. (2.26a) with respect to ~ in the point 1/u and 

define E(u) = D(u) -- D ( ~ )  + log(-- u); 

OcE ( ~ ) = ( OcE(pj - u ) + mjRo(pj - u ) ) - OcE(O) . (2.32) 

In this equation we regard R0 known as solution of (2.26b). The unknown terms 

c~¢E are found to cancel if we multiply both sides by R0(u) and integrate over u 

from - A  to + A for A ~ oo. If  we use the definition (2.22) for R0(u ), interchange 

the integral over u and the averaging over the values of the masses, use the fact 

that sg(Im zj) = - s g ( Im  4) and the equation of motion (2.26b) for R0(u), we can 

prove the properties 

A 

i) lira / Ro(u) du = - h i  sg(Im ~), 

-A (2.33) 
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A 

ii) ~irn f R o ( u ) { O c E ( ~ ) - d ¢ ( E ( p j - u ) ) } = T r i s g ( I m ¢ ) d c E ( O )  

- A  

= - r t i  sg(Im ~)0¢t2. 

Combining these equations we obtain 

dcf2(~) - - sg ( Im ~) i 2rri du(mjRo(Pj -  u)Ro(u)) . (2.34) 

- o o  

In the same way we find from (2.26e), where Rz(u) plays the role of ~¢E(u), 

G(q, ~) - - sg(Im2rci ~) [ duRo(u)( 2*R~(pj - u) + 2j/~l(&- u) 

- o o  

+ u)). (2.35) 

Eq. (2.34) can also be proved from the definition 15) 

l U ~v,l ~ l (  p Dk+21 ~ mk Dl,k_ 2 / (2.36) 0¢ g2(~ = ~ , E  (mkff~)) = , 
= 

* D,+I,N D l , , - d  

where f#~,~) was defined in (2.11) and we used the equality 

D].u = p,DI.,_ 1D, + i,u - Dl.k - 2D, + ].N -- Dl.k- lD* + 2.N. (2.37) 

For large N the contributions from the terms with 1 ~ k ,~ N will be equal and 
we thus have 

t~f2 = p j -  z---- z" ' (2.38) 

where z is the limit of zu, defined in (2.20) and z' is a similar, but independent 

stochastic quantity; both are independent of mj. This expression is equivalent to 
(2.34). In a similar manner eq. (2.35) can be deduced directly from definition 
(2.5a). In order to discuss the application of (2.34) to the density of states we put 

= - ( o 2 + i 0  and introduce the "Schmidt"-function W(u, co2), which is the 
distribution function of zN(-to 2) as N ~ o o  17,2): 

W(u; 092) = lim {Prob(zN(-- (o 2) < u) -- Prob(zN(- co 2) < 0)} 
N---~ ct~ 

= O(u) -- 1 D ( u  + i0; --092 + i0). (2.39a) 
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Existence of the limit and the second equality have been proved in 2). It satisfies 

an equation, which follows from the equation (2.26a) for D(u), 

W(u;0)2) ( W (  2-m~0)2 1 ) )  = __;0)2  - W(-~;0)2)-O(-u).  (2.39b) 
U 

The integrated spectral density is given by 

H(0) 2) = - W ( -  or; 0)z), (2.40) 

which is seen from (2.24) and (2.39b). With this function the real and imaginary 

parts of (2.34) may be written for real 0) as 

c o  

ff ; mj d~o 2 ),(0)2) = P.V. dW(u; 0)2) dW(u' ;  0)2) dR(mj) u + u' - 2 + mj0) 2' 

- o o  

dd2 H(0)2) = idW(u)fdR(ms)mjW'(2-mj0)Z-u), 
- o o  

(2.41) 

(2.42) 

where R(mj) is the common distribution function of the independently distributed 

masses m s ( j  = 1, 2, 3 . . . .  ). An equation related to the last one was derived also 

by Halpering); he also deduced an expression for the imaginary part of 

G(q, _ 0 ) 2 _  i0), related in a similar way to (2.35). 

The importance of eq. (2.42) lies in the fact that, contrary to the derivative of 

eq. (2.40), it relates dH/d0) 2 to the behaviour of W(u; 0) 2) in its first variable u, 

which can be found from the solution of (2.39). Here we only focus on the question 

whether dH/d0) 2 is a finite, continuous function of 0)2; a similar analysis can be 

given for the imaginary part of  G(q, _0)2+  i0). First, we assume that the mass 

distribution has a bounded density 

msR'(mj) <<. C. (2.43) 

Extending the integral over x j =  -rnj0) 2 to ( - o %  oo) and using 

W ( - 0 9 ) -  W ( ~ ) =  1 we obtain from (2.42) the bound 

dH(0) 2) C 
d 0 ) ~  ~< c° 2 , (2.44) 

which proves that it is finite, except possibly for 09 40 (there it behaves like 

~ / 2 0 ) ) .  It is strictly positive, since else W'(u) has to vanish on a whole 

interval, which is also inconsistent with (2.39). From the continuity of W(u, o92) 
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in u (proven by Schmidt17)) and in co2t follows, again via (2.42), cont inui ty  o f  

dH/dco 2. For  the case that  R'(m) has a power  singularity, with power  strictly less 

than one, it can be shown that  the assumpt ion  that  W'(u) has a p o w e r - o r  

logari thmic singularity at some point  u0, is inconsistent with the convolut ional  

structure o f  (2.39). This structure also causes W to be absolutely con t inuous  if 

R(rn) is. Therefore,  it seems that  for all absolutely continuous mass distr ibutions 

the spectral density dH/dco is a finite, con t inuous  funct ion o f  the frequency co. This 

conclusion was also reached by Wegner  ts) for  tight binding electron models  for 

distributions satisfying a similar bound  as (2.43). Fo r  binary distributions of  the 

masses, on  the other  hand,  Schmidt  ~7) showed that  under  some circumstances the 

funct ion W'(u) is either zero or  infinite on a set o f  points  that  is dense everywhere. 

I f  W'(u) is infinite on such a set, eq. (2.42) will p robab ly  yield an infinite value 

for dH/dco 2, i.e. the density o f  states does no t  exist for  a binary mass distr ibution 

(at least not  for high frequencies under  some constraints  on the values o f  the 

masses and the probabilit ies for  their occurrence).  This conclusion was reached, 

though  not  proved,  by  m a n y  authors:  numerical  evidence was found  by Guber-  

natis and Taylor~9). 

3. Exact solutions for characteristic function and Green's function 

3.1. Exponential distributions 

In  this section we construct  an explicit solut ion for  the characterist ic funct ion 

and for the Green ' s  funct ion f¢ = 1/(M~ + ~). The start ing point  is (2.26) with 

2 j=  1, implying Rl(u; q; ~ ) =  Rl(U; - -q ;  ~). This set o f  equat ions will be solved 

exactly for  the special case o f  exponential  mass  distributions. Here to  we put  

m j = m + a x j ,  O~<xj<  ~ ,  (3.1a) 

where xj has an exponential  distr ibution 

r(xj) = e-XJ . (3.1b) 

In a previous paper  7) we have considered a r a n d o m  alloy model  where there is 

a similar equat ion for D(u). The me thod  o f  solution given there for the special 

case o f  exponential ly distributed f -po ten t i a l  strengths can be copied here and 

t Continuity of W(u, co 2) in 092 is proven as follows: consider an infinite sequence co ] with limit co2. 
The sequence of non-decreasing functions W(u, co~) will have at least one convergent subsequence. If 
there are two of such subsequences, we define A W(u) as the difference of the two limit functions; this 
function satisfies the homogeneous version of (2.39), because W is continuous in u. Then it is seen 
that A W(-- ~)  = 0, because otherwise either the maximum or the minimum of d W(u) cannot be taken. 
The proof that W = 0 for all u goes analogous to the proof given in appendix B of ref. 2; the parameter 
p, occurring there, is equal to one. 
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extended for the solution of the functions Ro, R~ and R2. The reason for solvability 

for the special choice of  mass distributions (3.1) is the identity 

oo 

[ 1 - a ~ u 2 0 , ] f e - X J d x j D ( 2 + m ~ + a ~ x j - ~ ) = D ( 2 + m ~ - ~ ) ,  (3.2) 

0 

which is also valid for the functions R0, R~ and R2. Therefore, eqs. (2.26) can be 

put in the form of differential~lifference equations instead of  integral equations, 

[ l - a ~ u 2 t 3 j D ( u ) = D ( 2 + m ~ - ! ) + l o g ( 2 + m ~ - 1 ) - D ( o o ) .  (3.3) 

We define, with Re p/> 0, 

a~ (3.4a) c o s h / ~ = l + ½ m ~ ,  r / - 2 s i n h #  

and change variables by 

_ e z - 1  1 2 s i n h #  
u e z - ~ - e ~ ;  D ( u ( z ) ) = G ( z ) +  og ] Z ~ .  (3.4b) 

The resulting equation for G(z) is a differential~lifference equation 

[1 + t/(e ~ - 2 + e-Z)t?~]G(z) = G(z + 2#) - t2 +/~ + q(1 - e-Z), (3.5) 

where we used the equality D(oo; 4) = f2(¢). The solution is given by 7) 

1 -- e -kz 
G(z) = Ck - - ,  (3.6) 

k = l  k 

with ck--*0 as k ~ oo. The convergence of this expression for Re(z) > 0 is required, 

at least for ¢ real and positive, by arguments of  analyticity, since G(z) should have 

no singularities there. The coefficients Ck satisfy the equations 

1 

c~ = 1 - - (t2 - # ) ,  (3.7a) 
r/ 

1 - e-2ku'~ 
Ck+~+Ck-l= 2 +  -rlk )Ck=pkCk ( k = l , 2  . . . .  ) ,  (3.7b) 

where we defined Co = 1. These equations have the sameforrn as the equations of  

motion (2.1), but here there are no random parameters. This is a special property 

of the exponential distributions. The solution for the Ck, which satisfies the correct 

boundary conditions, has the form 7) 

Ck = AIA2 . . . A~ , (3.8a) 
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where the A k are continued fractions 

c k 1 1 1 
Ak  --  . . . . . .  . ( 3 . 8 b )  

Ok-1 i l k - -  i l k + l - -  ilk + 2 - -  

In particular we obtain from (3.7a) for the characteristic function the explicit 

expression 

t2 = # + r/(1 - A1). (3.9) 

In figs. la, b we present plots of the spectral density p(o) )=  d H / d ~ o  and the 

exponential growth rate of inverse localization length ?(co 2) for several values of 

m. We normalize the average of  mj to unity, implying 0 ~< m ~< 1 and a = 1 - m. 

A calculation of the specific heat has been reported in s). 

Next we extend this method of solution to the other equations. The function 

R0(u) equals D'(u) + 1/u;  it becomes in terms of the variable z 

- e- ~(e ~- ~' - -  eU) 2 ~ 1 -- e 2u -~ 
Ck e -kz + - -  (3.10) 

R o ( u ( z ) )  - 2 sinh # k= 1 2 sinh # 

Using identity (3.2) the equation for R l ( U )  takes the form 

[ 1 - 2 q  s i n h # u 2 O . ] u e - ~ q R ~ ( u ) = R l ( 2 C o s h # - ~ ) +  Ro (2 cosh # - 1 ) .  

(3.11) 

07 
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M =-~ - 1 = ... 

II 0 100 2 ~ 0  
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Fig. 1. Spectral density p and exponential  g rowth  rate ~, as funct ion o f  the frequency to. F o r  to J,0: 

p ~ I /n,  ~, = (1/8)(1 - m)2to2; p = 0 for to > tom, = 2/V/~.  Except if m = M = 1 (ordered case) 

p ~ e x p ( - A ( t o ~ , -  t o ) - 9  for to Tto,,~,, with ~ = 1.1 + 0.1 (see ref. 7 for  a similar situation). In the 

ordered case m = M = 1 one has  T = 0 inside the spectrum, because the eigenfunctions (plane waves) 
are no t  localized; ~ ~ log t o2+  ( tog  mj )  for  to2--*oo. 
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Defining similarly to (3.10) 

e z- ~ _ e u 
- -  )f~ dk e - k z  , 

R l ( u ( z ) )  = 2 sinh p k= 1 

we obtain the set o f  equations,  for  k = 1, 2 , . . . ,  

- k d k  + l - ( k  - 1 ) d ~ _ l  + ( 2 k -  1 +  ! (1 - -e t '+ iq -2k '~ ) )  d 

eiq 
= - -  (Ck- l e2" -- Ck) e -2k~' • 

tl 

They take simpler forms in terms o f  the quantit ies 

(3.12) 

(3.13) 

' h  = dk /  a ,  , 

where al = x/~-/2 and 

a,  + 1 - kak k ! ~  k o d d ,  
\ a l  

(3.14a) 

(3.14b) 

which go like 1/x/~ for  large k. The  equat ions  for  the 6k are 

fik'~* -- 5k + I --  '~k- 1 = irk, (3.15a) 

with 50 = 0 and 

( 1 ) 
/~k = a 2 2k - 1 + ~ (1 - e u + iq - 2 k , u )  , (3.15b) 

eiq - 2kp 

ak = ak - -  (Ck - l e2U -- Ck) . (3.15C) 
rl 

They  can be solved because they have the same structure as eq. (2.11) for  f#kt. The  

result is 

with 

6k = fgktat , (3.1 6) 
I = 1  

~,= (3.17) 
h--[Ol, k_lc . l ,  k <~ l .  

The de te rminants / ) , , j  are defined by (2.12b) with p k ~ k  and Ck = Dk+ 1,~o/Dk.oo is 

given by (3.8) after  the same replacement.  The  expressions for  the coefficients dk 

and Sk, related in a similar way to Rl(U), follow after  the replacement  q ~ - q .  
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Finally, the equation for R2(u), corresponding to (3.11), has the form 

( 1 -  2 r / s i n h # u 2 d u ) R 2 ( u ) = R 2 ( 2 c o s h # - ~ ) + R , ( 2 c o s h p - ~ )  

,318, 

Defining 

oo 1 - -  e - k z  

R 2 ( u ( z ) )  = R2(0) + k= ~ ek 2-k-si~ff-/~ ' (3.19) 
=1 

we obtain for ek the equations 

- 1  
pkek --  ek + 1 --  e k -  1 = Zk (k = 1, 2, 3 . . . .  ) ,  (3.20a) 

tl 

1 
- -  R : ( 0 )  - - -  ( e - " ( d l  + ' / l )  + 1 - -  Cl e - 2 ~  - -  r / e l ) ,  ( 3 . 2 0 b )  

2 sinh # 

where Pk is defined in (3.7b), e0 = 0 and 

Zk = e "-  2k,(__ 4 -- aIk + e-2"(dk +1 + a/k + 1)) 

+ e-2k"(--Ck+~ e -2" + 2ck -- Ck_x e 2") (k = 1, 2 . . . .  ) .  (3.21a) 

We further define 

z0 = e-"(dl + aTi) -- Cl e -2" + 2. (3.21b) 

The solution for (3.20a) follows again in the form of a Green's function, like in 

(3.16). In particular we obtain el = ( -1 / t / )g f f=~  CkXk, with Ck given in (3.8). 

Inserting this into (3.20b) the explicit expression function has the form 

1 - 1 + CkZk • (3.22) 
N(q' ~) -- 2 sinh~ 

It also follows from eq. (2.35) if we put u ~p j  - u and use the equation of  motion 

(2.26b) for P~(u). Another, equivalent expression for ~(q, ~) is obtained from 

(2.35) if one does not make this substitution and uses the equations of  motion for 

R0, Rl and /~l: 

1 ( 1 +  ~ Ckgk) ,  (3.23a) 
f#(q' ~) -- 2 sinh-----~ k=O 

where 

Zk = e-tk~'(e-iq(dk + l - -  d k )  "ac eiq(aTk + 1 - -  t~k) -]- Ck +1 - -  2 C k  -}" Ck - 1 ) ,  (3.23b) 

~0 = e - i q d l  n t- eiqt~l - -  2 + cl. (3.23c) 
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The equality between (3.22) and (3.23) may be shown with the equations for the 

coefficients c~ and dk, though the proof is not trivial. Eq. (3.23) can be used as a 

check on a numerical calculation of the Green's function if(q, ~). 

3.2. Gamma distributions 

In this section we consider the mass distributions with density 

n 
r(m:) = ~ e-n":(nmj) n-I (0 <~ m: < oo). (3.24) 

The average mass and width are given by 

1 
< m j ) =  1; x/<m~>--(m:> 2 / -  (3.25) 

x/n 

For n ~ o o  the ordered case (r(mj)= 6 ( m j - 1 ) )  is recovered. The parameter n, 

occurring in (3.24) has to be positive; we will take it to be integer: n = 1, 2, 3 . . . . .  

Performing n partial integrations we obtain from (2.26a) 

( 1 - ~ u 2 O u ) " D ( u ) = D ( 2 - ~ ) + l o g ( 2 - ~ ) - D ( ° o )  . (3.26) 

This equation is of "type n"  as defined in 7), but here we are dealing with a 

parabolic M6bius transformation u--+2 - 1/u. The transformations used in section 

(3.1) are now singular. We define D ( u ) =  E ( u / ( u -  1)) which immediately yields 

a differential-difference equation 

)" log v 1 + -  ~v2c3v E ( v ) = E ( v + I ) +  +1  
n v 

- E ( 1 ) .  (3.27) 

Writing E as the Laplace transform of another function G(z)/z, 

i l - e -zv E(v ) = G (z ) dz - log v, 
Z 

0 

we obtain an ordinary differential equation tbr G, 

(1--~zO~)" G(z) = e-ZG(z) 

and 

f2 = E(1) = ~ (k - 1)! G(k)(O). 
k=l 

(3.28) 

(3.29) 

(3.30) 



G R E E N ' S  F U N C T I O N S  IN R A N D O M  O N E - D I M E N S I O N A L  SYSTEMS 215 

The function G is analytic at the origin and has to satisfy the boundary  conditions 

G(O) = 1 ; G(k)(z)~O as z-~oo (k = 0 ,  1 . . . . .  2n - 1). (3.31) 

Note  that (3.30) is consistent with calculation of  E(1) from (3.28), using the 

equation (3.29) for G(z). The mass distribution (3.24) with n = 1 is a limiting case 

of  the distribution of  section 3.1. The equation for G(z)  can be obtained from the 

equations (3.7) for the coefficients Ck in the limit m ~ 0 ,  k-~ov such that 

z = 2 k x / ~  remains fixed, if one identifies G ( z ) =  Ck. 

Eqs. (3.29) has been solved numerically for obtaining 7(aJ 2) and 

p(~o) = dH(to2)/dto for the case n = l, 2, 3, 4, 5; the results are presented in figs. 

2a, b. This was facilitated by the fact that the asymptotic  solutions G, . . . . .  G, of  

(3.29) (with e - Z =  0) are proport ional  to modified Bessel functions; 

Gl(z) = 2 K, 2 , 

(3.32) 
Gt+l(Z)=Zt+tOt~+2Gl(Z) ( l = 1 , 2  . . . . .  n - l ) .  

For  ¢ ~ - c o  2 + i0 the function K1 changes into a Hankel  function of  the first kind. 

The solution was performed in three steps: 

i) assume a Taylor  expansion of  G(z)  at z = 0 - t h i s  introduces n free 

p a r a m e t e r s - a n d  integrate up to Zl; 

ii) write for z >> 1 ("z = oo") as a linear combinat ion of  the asymptotic 

solutions (3.32) and integrate up to zl; 

iii) require that both values for G(z) and its first 2n - 1 derivatives match at 

z = zl. These 2n constraints fix the n free parameters  introduced at z = 0 and the 

n parameters introduced at z = oo. 
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Fig. 2. Spectral density p and exponential growth rate ), as function o f  the frequency co. For  to ~0: 

p ~ l/n, y -~ (1/8n)~o 2. For  a ~ o c ,  p ~(2n)"+le~-z'-'/n!, y _~ logto2 + @(n)--  logn.  
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The method becomes ineffective for small ~o 2 and large n, because the function 

G(z) will oscillate rapidly; in these cases we could determine ~, and H with enough 

accuracy from the Taylor expansion of the characteristic function f2 in powers of 

the frequency, as evaluated in 8). From the definition 2) 

(( , , )) f2(¢)= log 2+m1~ 2 + m 2 ~ - - 2 + m : ~ - - " "  

one can show that for ~ :  f2(~) = log 4(1 - (-2n/~)"/n! +...) + power series 

in 1/4. This yields the expression for the spectral density for large frequencies, as 

mentioned in the caption of fig. 2. From the results for the spectral density p(~o) 

the specific heat can be calculated; this has also been reported in ref. 8. The 

equations for no, R~ and R2 which determine the Green's function fg(q, ¢) also lead 

to ordinary inhomogeneous differential equations of order 2n, that can be solved 

easily for the simplest case n = 1. We will not further elaborate on this, however. 

3.3. Expansion in cumulants 

In this section we introduce a scheme for a cumulant expansion of  the Green's 

function, valid for arbitrary mass distributions. This expansion will turn out to 

be an expansion in powers of  the frequency or, rather, in powers of x/~ = ~ .  

A related expansion for the characteristic function ~2 (4) in powers of the variable 

x / (m)4 / (1  + (m)4 /4 )  was discussed in an earlier publicationS), where the first 

nine Taylor coefficients were given explicitly. For the Green's function an 

expansion in cumulants is more appropriate. The starting point is eq. (2.26b--e). 

We introduce new variables and functions by 

coshkt = 1 + ½ ( m ) ¢ ,  

1 - z  
U = 

e" -- e-Uz ' 

e u _ e-Uz ( _ e  ~ 
n0(u ) = ~ - 

s l n n # 2  

R , ( u )  = 

& ( u )  = 

_ _  _ e-2,(e ~ _ e-,z)To(z e-2U)}, 

e~'--e-Uz {--e ~ } 
2 sinh #(e "-~q - 1) + Tl(z e-2U) ' 

e ~ _ e-~z { - e ~ } 
2 sinh #(e u+iq - 1) z + 2~l(z e-Zu) ' 

1 { - e U ( e " z  e-"z) + Tz(ze_2~)}" 
R2(u) = 2 s i n h / 2 ( e  u - i q -  1)(e ~'+iq - 1) " 

(3.33) 
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For the case ~.j = 1 they satisfy the equations 

( 1  To(Z + flf'~+ fl l (3.34a) 
e-:"To(z e -2")= ( l + f l f ) 2  \ l + f l f ]  z(z + fl() ' 

(z+tf  e7¢_ \ 
rl(z e -2") = \ 1 - - - ~  T, \ 1 + t f  ) -~ z(z + f l f) l  

+ (e" - eiq)(z - 1) e-Z"To(z e-2"), (3.34b) 

2_ _\ 
T2(z e-Z") = -/2 ~ T ~ - ~ )  Z(Z q- tiff)/  "{- r2(e-2") 

+ (1 -- z)(e" -- e-iq)Tl(z e -2") q- (1 -- z)(e" -- eiq) 7~l(z e -2") 

"1- (Z --  1)2(e "+iq --  1)(e "- iq  --  1) e-2"To(2 e - 2 " ) ,  (3.34c) 

where f = z - 1 and the random quantity t is equal to 

•/ ~ (3.34d) fl = (m,-- (m,) )  4 ( m )  + (m)2~" 

The equation for ~r 1 is similar to that for T~, with, however, q ~ - q. The solutions 

to these equations are equal to zero if fl = 0, i.e. if there is no randomness. They 

can be solved sequentially in (averages of) powers of  ft. Before doing so we give 

the expression for eq. (2.35) in terms of  the functions To, T1 and 7~1: 

f dz { zl_5 ( ! ) } {  ZTl(Ze -2") 
f~(q, ¢) = ~ 1 + (z -- 1) To f~O(q, ~) _ 2 sinh/~ (e" - e iq) 

zTl(z e -2") z(z -- 1) e -2" To(z e-2")}, 
- 2 sinh #(e" - e -iq) I- 2 sinh # 

(3.35) 

where fg°(q, 4) is the Green's function in the ordered model with mj = (rn):  

1 1 ~(q, 4) (3.36) 
2 cosh/~ - 2 cos q 2 + ( m ) ~  - 2 cos q" 

In order to explain the method we calculate f¢(q, 4) up to fourth order in ft. 

We expand 

To(Z) = rg2)(z) + Tg3)(z) + Tg')(z) + . . . ,  (3.37) 

where the superscripts indicate the order of  ft. Inserting this into (2.34a) and also 

expanding the argument of  To in the r.h.s., we obtain 
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T(o2)(z) _ -f12 + f12 

(e2U_ 1)z 2 (e 4~-  1)z 2' 

T(03)(z) = (e2U _ 1)z2 + (5 , (3.38) 

1)1;  
T(04)(z) = --  3fl2 ~ + e4----~_ 1 t-(9 , 

where fl~ = ( i lk) .  Making a similar expansion for TI and using these results we 

find 

B C 

-- + (9 , (3.39) 
z 

• ( 5 )  e'q - d- f 1 4 -  d- (9 , T~4)(z )  - e u Z eiq fl2(A --  2B + C) zl Az 

where 

- e - 2 "  1 

A - - -  
2 sinh/a e ~ --  e w'  

l I ' { e2U e4# x~ 1 
B - e4" --e~+i q (e ~ - e lq) \e2~ _ 1 + e 4~ -- 1] + 2eiq ' (3.40) 

_ e - #  
C =  

e 4~ - -  1 

With these results the leading order terms of  (~(q, ¢) are found from (3.35) 

(9(q, ¢) = frO(q, ¢) + 2 sinh/~ffO(q, ¢)2{fl 2 _/ /3 + (J~4 - -  3fl2)} 

+ f122ff0(q, ¢)2 {2 cosh/~ + 4 sinh 2 #(q0(q, ¢) 

e'q 
+ 4 sinh # sinh 3/a (e3, _ elq)( elq _ e_3U)] + (9(fl5) .  (3.41) 

They determine long time tails of  correlation functions in random relaxation 

models, see section 4.2. Higher order terms can be found in a similar fashion, but  

the method  soon becomes cumbersome. This is related to the fact that  for 

obtaining cS three equations have to be solved sequentially. 

In another  approach Denteneer and Ernst 2°) start from the definition of  (#(q, ¢) 

and make an expansion in powers of  the fluctuations m j -  (mj) .  This leads them 
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to multiple integrals of a special structure, which are performed analytically. In 

our method, however, there appear no integrals. Our equation (3.41) agrees with 

their results. 
Finally, we mention that fa(q, ~) obeys a strange symmetry property: if we make 

the change p-~ -/~ (or x / ~ - '  - x / ~ ,  or co-~ -~o) and replace the cumulants of the 

mass distribution ( ( ink))  by (--1)k-1((mk)),  the Green's function remains 

invariant. In a previous publication 8) we found that the characteristic function 

f2 - given by (2.25) as an integral over fa - changes sign under this transformation. 

4. Related models 

4.1. Random masses and spring constants 

In this section we consider the problem of finding the characteristic function and 

Green's function for the more general equations of motion 

m A u  j = - Ljuj + Kj(uj + , - u A + Kj_ ,(uj_ , - u 3 . (4. l) 

Here Kj is the strength of the spring between the j + l'st and j th  particle and Lj 

the strength of the spring between the j th  particle and its equilibrium position. 

In the model with Lj = 0 Stephen and Kariotisl6), using the replica method, have 

obtained the leading behaviour of 7 and H (and thus of Q) as o~2~0, for several 

classes of distributions of mj and Kj. 

In the case with constant ~ (= 1) the equations of section 2.1 are valid with 

2+mj~  + L j  replacing 2+mj~.  In particular, if mj=constant  = m  and 

Lj = L + axj with r(xj) = e-XJ, the exact solutions of section (3. l) also hold for this 

case, with cosh p = 1 + ½m~ + ½L and r /=  a/2 sinh ¢t. Ifmj is distributed like in 3.1 

and Lj is constant the solution can also be extended, replacing cosh/~ by the 

expression mentioned above and leaving r/ unchanged. If both mj and Lj are 

random and have an exponential distribution, the model is of type 2 7) and the 

equations for f2(~) and C~(q, ~) can be cast in the form of4-step recursion relations 

for the coefficients ck, dk, aTk and ek. 

The method for deriving the equations for the characteristic function and 

Green's function are similar to those of section 2.1; here we will only derive the 

equation for D(u)  and state without proof the resulting equations for the other 

functions. We define the quantity 

Y/=Kj(UJ-\uj . l  1) ,  (4.2) 

which satisfies 

yj= 
Kj + c r j -  y j_ l  ' 

(4.3) 
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where 

~j= Lj+mj~. 

The function D~U)(u) will be defined by 

D~m(u) = (log(yN -- u ) ) .  

The limit function satisfies 

D ( u ) =  D | ~ j + - - - - - = . | + l o g  1 + 
\ u+~j/ 

Here we used the equalities 
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(4.4) 

(4.5) 

(4.6) 

(D~U-~)(au+ KN)) = ( I°g(  - K N u u + l ~ - - - ~ ( l ° g ( - K j ) )  +12 / /  N~  , (4.7) 

the first one follows from (4.1) and in the second we used an equality for 

f2(~)-defined by (2 ,23)-deduced in 2). The functions R0, R1, /~1 and R2 are 

defined similarly as in (2.22), with the same definition for U and 0, but YN 

replacing zn. They obey the equations 

~ ( u )  = ~ + ' + , 

Rl(u) = e 'q (Rl(u') + 2jRo(u')) , (4.8a) 

R2(u) = (R2(u') + 2?R,(u') + 2j/~,(u ) + 2: 2:R0(u ))  - G(q, ~) ; 

there is a similar equation f o r / ~  and 

u'  = aj + K~__..___uu. (4.8b) 
u+Kj 

The expressions for f2'(~) and G(q, ~), corresponding to (2.34), (2.35), take the 

forms 

i Ro(u)(mjRo(aj - u)) du 
~ s g ( i m  ~) 

f2'(~) = 2rd 

(4.9) 

- -  s g ( I m  ~) 
f (~(,~- u){,t*R~(u) + ;~j~(u) + ) ~ % R o ( u ) } ) .  G(q, ~) = 2rd 

Next we try to construct solutions of  these equations for the ease 2j = 1 and 

appropriate choices of  the distributions of  the random variables. Dyson 3) already 



GREEN'S FUNCTIONS IN RANDOM ONE-DIMENSIONAL SYSTEMS 221 

noticed that, if Lj = 0, the case with equal masses m i = m and random spring 

constants Kj is equivalent to that with equal springs Kj = c/m and random masses 

mj = c/Kj. In order to show this in some detail we note that if 1/Kj has an 

exponential distribution, 

1 1 1 
K + ~ X j ,  r(xj)=e -xj, (4.10) 

the equation for D can be cast in the form 

1 z K u  u 1 
( l + ~ u  O , ) D ( u ) = ( D ( L j + m j ~ + - g - ~ u ) l + l o g ( l + ~ ) + - ~ u - f 2 .  

(4.11) 

If  both mj and Lj are constant this equation has a similar structure as eq. (3.3) 

and there will exist explicit expressions for [2 and ft. Making the transformation 

D(u)~D(1/(1 - cr/u)) + log u, where ~r = L + rn~, and comparing with (3.3) we 

see that/~ and r /are now given by cosh # = 1 + cr/2k and r / =  ~r/2k sinh #. In the 

case L = 0 and K = 1 they are indeed the same if we identify k with m/a. In case 

K - -  oo eq. (4.1 l) becomes simpler and we can define 

D(u) i 1 - e - ~  = -- Eo(z ) + D(O). (4.12) 
Z 

0 

This form is consistent with the analytic properties of  D(u) for the case ~ > 0, 

because then yj < 0 and D has no singularities in the half  plane Re u > 0. It solves 

the equation provided E satisfies the ordinary differential equation 

E'o'(Z) 1 - (e-*°,3 
- " " E o ( z )  

kz 
(4.13a) 

E0(0 ) =  1, Eo(z)~O, i f z ~ o o  ; 

the characteristic function is found as 

f2 (~) = - Er(0) • (4.13b) 

Note that this equation has a similar form as (3.29), (3.30) if rnj and Lj are 

non-random, in agreement with the similarity between the random mass and the 

random spring case, mentioned above. We go one step further, put Lj = 0 and take 

as distribution of  the rnj 

r(mj) = pbe -b,,j + qb2mj e-brnj + r~ +(mj) , (0 ~< mj < o0), (4.14) 

where p, q and r are non-negative numbers, satisfying p + q + r = 1. The equation 
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for E0 takes the form 

[ (p + q)k qbk 1 
EX(z) - L-6 j E0(z). (4.15) 

A similar equation was encountered before 7) in a liquid alloy model. The solution 

of this equation, which satisfies the appropriate boundary conditions, is propor- 

tional to a modified Bessel function 21) 

/b + z¢ Kv(x/4k(p + q)(z + b/¢)) 
G(z) (4.16) q b Kv(x/4k(p + q)b/~) ' 

where v = x/1 + 4gb/k~. The characteristic function 12 then follows from (4.13b). 

In particular for the case p = 1, q = r = 0, where both the masses of the inverse 

of the spring constants Kj have exponential distributions?, it is given by, with 

m =- l/b = (mj) ,  

m~--~ K ° ( 2 ~ )  (4.17) 
E2(¢)-- / k K~(2x/k/m~ )" 

The expression for 7 and H take the form 

m ~  Jo(z)Jt(z) + ro(z)Y,(z ) 
7(o)  2) 

q k + 

moj  2 

H(°92) = kTt2(J~(z) + Y~(z))" 

2 k 

(4.18) 

For o )~0  they have the asymptotic behaviour 

mfo 2 H ( o ) 2 )  = _°9 ~ . (4.19) 
7(092)= 4k ' rc 

The equation for H agrees with the general expression ( o 9 / n ) ~ ) ;  the 

expression for ? has a term (1 /8 ) ( ( (m~) ) / (mj ) ) ( l /K  s)oo 2 from the randomness of 

the masses ~3) and a similar contribution (1/8)(((KfZ))/(Kf~))(mj)~o 2 from the 

randomness of the springs. This shows that the localization length of the 

e igenfunct ions-a  measure for which is given by 1/?, see 1)-is decreased by 

introducing more randomness in the system. 

If Kj is distributed according to (4.10) with K = 0% the equations for RL,/~ and 

R 2 c a n  be cast in the form of second order differential equations too. We define 

? Note that the function K~(z) also showed up in section 3.2 as asymptotic solution of  the differential 

equation in the case of  exponentially distributed mj and fixed K 1. 
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o 0  . o o  oO 

R l ( u ) =  e-~"Elz z ,  /~tu = e - ~ E  l z  dz ,  R2u = -  z z 

o 0 0 

(4.20) 

and obtain for E~ and E2, which are analytic at z = 0, 

zE'((z ) + E'~(z ) = k{l  - eiq(e-Z"i ) } El(Z ) - k eiq(e-~"J ) Eo(z ) , 
(4.21) 

E'2'(z) = k E2(Z) + k (e-Z"J ) { ~ z l  Ez(z) + E'(Z) ff~,(z) + E0(z)}. 

The boundary conditions are E2(O) = O, E~, E2~0 as z ~ oo. The Green's function 

is given by f f ( q , ¢ ) = - (1 /k )E~(O) .  The problem is now reduced to solving 

ordinary differential equations. We could not find, however, the exact solution for 

E~(z) in the case where Eo(z) was proportional to a modified Bessel function. A 

similar situation seems to occur 9) in the problem of  an electron in a Gaussian 

white-noise potential, where the solution corresponding to Eo(z) is proportional 

to an Airy function. 

4.2. Random relaxation models 

Another  application of  the results of  the preceding sections lies in models of  

hopping classical particles described by Master equations of  the form 

pb = Wk(pb+l _ pb) + Wk_ ~(pb __ pb) ,  (4.22a) 

o r  

P~ = Wk + lPJk + l + Wk- IPik- I -- 2WkPJk . (4.22b) 

In the first case - " random barrier model",  denoted by the superscript "b"  - Wk is 

the random frequency for hopping across a barrier between site k and k + 1; in 

the second one - " random jump model",  denoted by the superscript " j"  - wk is the 

frequency for jumping from site k to k __+ 1. An extensive discussion of  the barrier 

model was given in a review by Alexander et a1.15). In a particular case this model 

was used for the explanation of  the temperature dependence of  the exponent of  

the low frequency conductivity in the one-dimensional superionic conductor 

hollandite2Z). A recent discussion of  the transparent properties of  both models 

(4.22) is given by Denteneer and Ernst2°). Here we follow these authors and shortly 

rederive the formulas for the Green's functions. 

The solution of (4.22) follows by introducing the conditional probability 

P(j ,  t I/, 0) - which is a Green's function - i.e. the probability that the walker is 

at sitej  at time t if he/she started at site I at t = 0. It also satisfies (4.22) with initial 

condition P ( j ,  0I/ ,  0 ) =  6j, t. The solution follows by Laplace transform with 
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respect to time: 
00  

f (1 ,4. 3a) p b ( j l l ; z ) =  e-Z 'pb( j ' t ] l 'O)= E -  l z l + ~  t '  

0 

PJ(J I l; z) = z I + ~ N  t" (4.23b) 

Here 1 is the unit matrix, N the diagonal matrix with elements N o = ~owj; E and 

E-1 matrices with elements E0 = 6~.j+ 1 and E,}-I = i~i, j -  l, respectively; 

4~ = 2 . 1 -  E -  E -1 is similar to the force matrix in section 2. The moment 

generating function is defined as 

F(q, t )=  (e-iq~nu)-n~°))) =_ l ~  P(j ,  t l l, O)Pt(O)e-iqU-t~) , (4.24) 

where n(t) is the (discrete) position of  the particle at time t. For  describing 

diffusion in a stationary ensemble the distribution Pj(0) of  the starting points of  

the random walks has to be chosen as the stationary solution of  (4.22) (similarly 

as for the van Hove G(r, t) function). Thus we have 

1 
Pb(0) = ~ ,  (4.25) 

mk ( 1 )  
- -  ; ml ------- , (4.26) 

P~(O) - ELI  m, 

we will see in a moment that the parameter 1/wj indeed plays the role of the mass 

rnj in the problem of  the harmonic chain. Using this result and defining 

M = N-I(M~j = 6urn j = tSq(1/wj)) we can express the Laplace transform 

G(q, z) = (.~ e-~'F(q, t), as N--, ~ ,  in the Green's function 

C~(q, z) = ( l / ( M z  + ~))qq, known from the preceding sections: 

Gb(q, z) = 1 (1 -- ~(q)C~(q, z)) ,  (4.27a) 
Z 

GJ(q, z) 1 ~(q)  (1 - ~(q)Cg(q, z)) (4.27b) 
(m)z 

where ~ ( q ) = 2 ( 1 - c o s q ) .  From the knowledge of  G(q,z)  one can obtain 

information about the non-equilibrium properties of  the system, like correlation 

functions of the form ( ( n ( t ) - n ( 0 ) )  2k) and the frequency dependent hopping 

conductivity a(~o). This is described by the theory of  generalized hydrodyna- 

mics:3). The generalized diffusion coefficient U(q, z) is defined as 

1 
G(q, z) = z + q2U(q, z) ' (4.28a) 
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where 

U ( q ,  z )  = Uo(z ) - q2U2(z  ) "4- q4U4(z  ) n t - ' ' "  . (4.28b) 

The functions Uo(z) and Udz) are equal to 

Z 2 
Uo(z ) = -~ ( n2(z ) ) , 

(4.29) 
Z 2 Z 3 

U2(Z ) = ~ <n4(Z)> --  ~- ( n 2 ( z ) )  2 , 

where (n~'(z)) is the Laplace transform of ((n(t) - n(0))~'). The function Uo(z) 

is the Laplace transform of½(d2/dt2)((n(t) -n(0))2) ,  which is the analogon of the 

velocity autocorrelation ~02(t)= (v(t)v(O)) in ordinary hydrodynamics; U2(z) is 

related to the Burnett function. The frequency dependent hopping conductivity 

a(og) is related to Uo(z) by a generalized Einstein relation/4): 

ne 2 
a(w) = ~-~ U0(i~o), (4.30) 

where e is the charge and n the density of the charged particles and k the 

Boltzmann constant and T the absolute temperature. Furthermore, since our 

underlying lattice is discrete, we write (4.28) in the form 

1 
G(q, z) = (4.31a) 

z + ~(q)V(q,  z ) '  

where 

V(q, z) = Vo(z) cb(q)V2(z) + q~(q)2V4(z ) + . . . .  (4.31b) 

This is equivalent to a generalized diffusion equation for (P, ( t ) )  of the form 

~,(P,(t))  = D(t)A (P, ( t ) )  + B(t)A 2(P,(t)) + . . - ,  (4.31c) 

where D(t) and B(t) are the inverse Laplace transforms of Vo(z) and V:(x), 

respectively and A = E + E-~ -- 2 is the discrete Laplace operator. The function 

V can be obtained from (4.27); 

Vb(q, Z) = g ~ ( q ,  Z) 
1 - cb(q)~(q, z) (4.32a) 

for the barrier model and 

z(1 - ¢b(q)@(q, z)) 
VJ(q, z) = <m )z + ¢b2(q)q~(q, z) - #(q)  (4.32b) 

for the jump model. 
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From this it follows 

V~(z) = z~¢(o, z). ,  V~(z) = - z ~ 2 ( o ,  z )  - ~z~:¢(o; 2 z ) ,  
(4.33) 

VJo(z)= D ; VJz(z)= D ~ ( O , z ) -  D 21- , 
Z 

where D - 1 / ( m )  = 1 / ( 1 / w )  is the diffusion constant in the lattice. The fact that 

in the random jump model the diffusion coefficients Uo(z) = Vo(z) simply equals 

a constant, was found before by Haws et al.25). 

From the results of section 3 it follows that all these quantities are known 

explicitly for the exactly solved models where the "masses" mj= 1/wj have 

exponential distributions. For arbitrary distributions we can obtain the small 

z-behaviour (or long time behaviour) of the functions Uo(z) and Uz(z) from the 

results of section 3.3, 

U b ( z ) =  D I + ½~2 z~/~ + -- ~3 + 

U~(z) = D ~ + i - ~  x~ + x2x/~-/D + other terms of order ~ + . . .  , 

(4.34) 
U~(z) = D ,  

US(z) = D + ½ x 2 x / ~  - ¼r3 + ~-~ ~2(9(x/z)  , 

where Xk= ( m ) - k ( ( m k ) )  is proportional to the kth  cumulant. From this one 

finds, using Tauberian theorems, long time tails for the correlation functions 

~ok + 2(t) = ~ - ~ ( U k ( z ) ) ( t )  

- -  K 2 

~ob(t) 4w/~(Dt)3/2 , (4.35a) 

48w/~ ( Dt  )3/2 , (4.35b) 

q~J2(t) = D f  +(t) ,  (4.35c) 

2w/~_ ~ (4.35d) 

The t -3/2 tail of q~b agrees with long time tails ~ t-(d/2+~) found for the velocity 

autocorrelation function in d-dimensional Lorentz modelsZ6). The fact that q~2 has 

no tail at all in the random jump model is compensated by a large t -~/2 tail 

of ~ .  

Alley and Alder 27) introduce a modified Barnett coefficient, given by U2(0). In 
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these discrete models its role is played by V2(0). This function is equal to (D/IO8)x 2 

in the random barrier model, but diverges in the random jump model. We further 

note that eq. (4.35b) also has other contributions of order t -3/2, involving products 

ofcumulants.  These as well as l/t-corrections to these results, have been discussed 

by Denteneer and Ernst2°). 

Finally we consider the probability Po(t) that, at time t, the particle is still at 

or back at its initial position. Its Laplace transform is equal to 

rio(Z) = ~ e-Ztpo(t ) dt = S~_~ G(q, z)/2n) dq, as follows from (4.24). For the ran- 

dom barrier model, where G is given by (4.27a), we recover eq. (2.25) for the 

derivative of the characteristic function, I2'(z), in the harmonic chain with random 

masses. This again illustrates the close connection between these models, which, 

however, describe very different physical systems. Since the first nine coefficients 

of the expansion of f2(z) in powers of x//z are known8), we can compute the long 

time behaviour of Po(t) 

½ 1 - x3 + (15/16)xz z 
Po(t) = ~ + 32w/-~(Dt)3/2 + (~(t -5/2). (4.36) 

For most distributions of the variables mj = 1/wj, in particular for symmetric ones, 

the term - x3 + (15/16)x 2 is positive. For gamma distributions (mj = m + axj, with 

r(xj) given by (3.24)) this term is negative, however. For the exponential 

distribution r(mj) = e-mj the whole term of order t-3/2 in (4.36) is negative. This 

shows that the particle diffuses relatively fast from its starting point, caused by 

the asymmetry in the distribution of  the jump frequencies. A similar behaviour 

is found in the problem of harmonic chains with random massesS), where the 

derivative of the specific heat increases or decreases for small temperatures, 

according to the same condition. 

4.3. X - Y  spins and tight binding electron models 

The one-dimensional X - Y  model for S =½ spins is described by the Ham- 

iltonian 

N 

= ~ {2Jj(S)'S~_, + SYSf_,) + hiSS} (Jl - 0). (4.37) 
j = l  

It was considered first by Ruijgrok and Rodriguez28). The model where the Jj are 

random and h s fixed was studied by Smith/9). He showed that as in the ordered 

case 3°) the Hamiltonian can be transformed in the following one: 

N N 

Jg=½ ~ by+ Z {4(c}ey -, +c]_~Cy)-hjctCy}, (4.38) 
j = l  j = l  

where the cj and cJ are fermion creation and annihilation operators. The constant 
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term yields a shift to the internal energy and may further be omitted. Thus the 

problem is reduced to finding the eigenvalues of  the equations 

Jjuj_ 1 + Jj+luj+~- hjuj= Euj. (4.39) 

These equations also occur in tight binding electron models, where J: is the 

hopping energy and the parameter - h J  the site energy, as was noticed by Lieb et 

al.3°). We define the characteristic function in a similar way as in the case where 

Jj = 1, see ref. 2, 

Q(E) = lira I log sg(S2J3... Js+ 1)uN+ I(E) 

-- f d H ( x ) l o g ( g  - x)  - (iogl~l), (4.40a) 

where us+ I(E) is the solution of(4.39) with starting values u0 = 0, ul = 1 and H(E) 

is the accumulated density of  states. For real values of  Ef2(E) has the 
decomposition 2) 

f2(E + i0) = 7(E) __+ in(l - H(E)), (4.40b) 

where ),(E) is the exponential growth rate or inverse localization length. For 

arbitrary complex values of  E the Green's function is defined as 

fa(q, E) = (1/(E - ~))qq. It determines the density of  states at given values of  q 

and ( rea l )E  as p(q, E ) =  ( I / n ) Im  f~(q, E -  i0); the total density of  states equals 

H'(E) = S~ (dq/2n)p(q, E). Following the lines of  section 2.1 we derive a set of  

equations for f2 and f#. Hereto we introduce the quantities, with Uo = 0, u~ = 1, 

zj(E) = u1 , U:(q, E) = 
uk eiq(j + l - k )  

Jj+tuj+l k=~ ~+~uj+~ ~ . ( q , E ) =  ~)(--q,E) 

(4 .41)  

and define functions D(u), Ro(u), Rl(U),/~l(u) and R2(u) by eq. (2.22). They satisfy 

the equations 

o,u,_-(o,u,+,o+ !)) 
Ro(u)= 1 Ro(u') + - ,  

U 

• (4.42) 

R t ( u ) =  eq 1 Rt(u)+ Ro(u) 
u J ]  ' 

R2(u) = R2(u') + ~ R,(u') + . l~t(u') + ~ Ro(u') + Rz(O), 
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where u' = (E + hj 

function is given by 

f2(E) = D(oo; E) - (loglJjl) ; 

similar to eq. (2.34) its derivative equal to 

f 2 " ( E ) : - s g ( I m E ) i d u R o ( ! ) { R o ( u ) - ! }  
2hi 

- c t )  

The expression for f9 in terms of R0 and R~ has the form 

C~(q'E)--sg(ImE)idUR°(1){e-iqRl(U)+eiqR'(u)-uR°(u)+l}'2ni u 

- 1/u)/J 2 and /~l(u; q; E) = R~(u; - q ;  E). The characteristic 

(4.43) 

(4.44) 

(4.45) 

With the identity 

N 

JN + l(u's + 1(E)uN(E) -- uN + I(E)u'N(E)) = ~ u2(E) , (4.46) 
k = l  

it can be shown, similarly to (2.15)-(2.18), from the definition of R2(u) that f# is 

equal to 

CS(q, E) = - R2(0, q, E) .  (4.47) 

The signs of the Jj have no influence on the eigenvalues of the energy; this can 

be seen, for instance, from the equation for D(u), where only the square of Jj 

enters. The Green's function, however, does depend on them. If  the Jj have a 

distribution which is symmetric around ~ = 0, the Green's function does not 

depend on q: if(q, E ) =  t2'(E). This is seen immediately from the eq. for R2(u) 

(4.42), where the q-dependent factors R~ and K~ vanish. It can also be found using 

(4.42), (4.45). 

4.3.1. Diagonal disorder: random magnetic fields 

First we consider the case of constant Jj (=  1), in which case the equations have 

the same form as those of the harmonic chain with random masses (section 2.1), 

with E + hj replacing 2 + mj~. Exact solutions, like those discussed in section 3.1, 

exist for exponential distributions of the hj (hi = / 7  + hxj with /7, h <> 0 and 

r(xj) = e-XJ (0 ~< x j<  ~)) .  The parameters # (Re # >/0) and r/ are defined by 

cosh # = ½(E + /7 ) ,  2r/sinh # = h. The boundaries of the spectrum in the ordered 

case h = 0 occur for E = - / 7  + 2 ( -  1) t (l = 0, 1), implying # = - l n i .  The values 

of f2 at these energies can be calculated from (3.9) by expanding the factors e-2k~ 
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in powers of p. --/zci. The first three terms are given by 

£2(--fl + 2(--1)') = - l ~ i  + x//~-- 1)'h - ~ ( - 1 ) ' h  (l = 0, 1). (4.48) 

Thus this is an expansion in powers of ~ ) l h ,  similar to an expansion in powers 

of the frequency for the disordered harmonic chainS). In case h > 0 (the other case 

is similar) the spectrum lies between - ~ < E < - / 7  + 2. Combining (4.40b) and 

(4.48) we see that, for small h, H ( - / 7 -  2 )=  (1/rr)x/~ , 7 ( - / 7 -  2 ) = h / 8  and 

H ( - / 7  + 2) = 1 (as should be, because all eigenvalues of the energy have values 

~< -IZI + 2) and 7(-/-7 + 2 )=  x / ~ -  h/8. Similar properties were found in a 

random alloy modelT). In the expression for f2, eq. (3.9), the density of states shows 

up i) for - 2  ~< E + / 7  ~< 2 because p is imaginary; ii) for (E + / 7 )  sg(h) ~< - 2  

because the continued fraction does not converge for these values of E: see 7) for 

a similar case. 

We note that if the ~ are random too, and take values _+ 1 with probabilities 

p and 1 - p, respectively, the solutions for f2 and c~ take similar forms; if they have 

power law distributions, such as described in the following section, and the hj 

exponential distributions, the model is of "type 2" and the equations for ck and 

dk become four-step recurrence relations7). 

4.3.2. Off-diagonal disorder: random exchange constants 

The model where the h i are constant and the ~ are random was considered by 

Smith29). He noticed that in this model the density of states is equal to the one 

in a harmonic chain, introduced by Dyson, where the ratios of the spring constants 

and the masses, 2j, are independent identically distributed random variables. In 

the X - Y  model their role is played by the parameters J~. Dyson found exact 

solutions for the case of gamma distributions (eq. (3.24)) for the 2j. Smith 

considered them in great detail in order to show that the phase transition in the 

ordered X -  Y model at T = 0 and h = _+ 2J is smeared out by the randomness. The 

model also has other exact solutions. In order to show this we choose the density 
of the ~ as 

= 

1 1 

1 Ig, , 
(l - p )  

(4.49) 

where ~ is positive and p is fraction of positive ~'s (0 ~< p ~< 1). The absolute values 

of ~ range between 0 ~< ~< 1. In the limit ~ ]0 the distribution reduces to 6 

functions at Jj = + 1. For the distributions (4.49) the equation for D(u) can be 

cast in the form of a complicated differential equation (we absorb h into E): 
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2~ - D ( m ) .  

(4.50) 

We introduce new variables, with Re / t  >/0, 

E e ~-~ - 1 
c o s h / ~ = ~ ,  u e z - 2 u _ e  ~, 

(4.51) 
ct 2 sinh/~ 

D(u) = log + G(z), 
q - s i n h # '  1 - - e  -z+~ 

implying G ( / ~ ) =  0. This funct ion is subject to the equat ion  

{1 + 2r/(cosh z - cosh/~)0z}G(z) = G(z + 2/~) + # - f2 + r/(cosh # - e - 0 ,  

(4.52) 

which is slightly more  complicated than eq. (3.5), but  can be solved in the same 

way. We substitute G(z)= E~=~ck(e -ku --e-kO/k and obtain  for the coefficients Ck 
the equat ions 

( 1 -- e-2k,'~ 
Ck + 1 + Ck-- 1 = 2 cosh # -~ ok /] ck =- pkCk ' 

(4.53) 
t2 = # + r/(cosh p - cO,  

where we again defined Co = 1. F r o m  the definition o f  G it can be shown that  ck 

must  go like e x p ( - k # )  for k ~ .  The corresponding  differential equat ion  for 

Rl(u) is given by 

[ 1 -  ~s~_ 2(E_~)Oulu{e_iqR~(u)_uRo(u)+l}=rRl(E_~ ) ,  (4.54) 

where r = (2p - 1)/(1 - ct) = (sg(J j ) ) / (1  - ~). Substi tut ion o f  a Taylor  series o f  

the form (3.12) for Rt(u) would yield here three-step recurrence relations; we 

therefore define 

e z - 2 , u  _ e u ~o 
e-iqRl(u) - uRo(u) + 1 - 2 ~lnh ~ k~=l dk e-kS" (4.55) 

The equat ions for  the coefficients d~ are two step recurrence relations, with 

= ~/(1 - ~) sinh #, 

--kdk+t--(k --1)dk_i + {k e" + (k --1)e-V + ~ (1--r eiq+"-2kv)}dk 

r 
= ~ e i q + v - 2 k # ( C k _ l  e ~ - -  ck)  (k = 1, 2 . . . .  ) .  (4.56) 

rl 
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They are very close to eq. (3.13) and their solution also runs along the lines 

(3.14)-(3.17). I f  we insert the expressions for R0(u)= D ' ( u ) +  1/u and Rl(U) into 

(4.45) we obtain for the Green 's  function the closed expression 

1 
CX3 

~ e-4kU(Ck e -u -- Ck+, e-4U)(dk + 1 + a~k+l q- Ck+l -- eUck), 
CS(q, E) -- 2 s inh~ k 

(4.57) 

where aTk(q, E ) =  d~,(-q, E). The equivalent of  this expression in the random 

harmonic chain is given by (3.23). 

We conclude this section with some remarks: 

- i n  case ct = 0 and ~ are equal to +1  or - 1  with probabilities p and 1 - p ,  

respectively. The characteristic function and Green 's  function can be found simply 

from (4.42), 

f2(E) = #(E), 

sinh(/~ - loglr l) (4.58) 
f#(q, E) - 

2 sinh/~(cosh(# - loglr]) - sg(r) cos q ) '  

where r = 2p - 1 = ( ~  >. The expression for 12 is the same as in the ordered case 

(all Jj equal), because the signs of  Jj have no influence on it. The expression for 

the average one-particle Green 's  function fg(q, E)  has a similar structure as in the 

ordered case (Ir] = 1), but it has no singularities; they have vanished due to the 

randomness. 

- an argument  of  Lloyd 6) states that if the Jj are constant and the hj have Cauchy 

distributions (hi = 3zj ,  r(z j )  = 1/(Tr(l + z})), - oo < zj < oo), the solution for the 

Green 's  function - and also the characteristic function - can be obtained from the 

one in the case 6 = 0 .  Hereto one has to make the simple replacement 

E ~ E  + i6 sg(Im E). We have observed that the argument  is valid for a related 

liquid alloy model 7) as well for the case where the equivalents of  hj and/or ~ are 

randomly distributed already and the (independent) Cauchy randomness is added 

to the hj; this property also holds for the systems discussed in this section. Thus 

the solutions discussed in section 4.3.1 and given in (4.53), (4.57), (4.58) can be 

generalized to include this Cauchy distributed part  of  the hi; the only difference 

is the above mentioned replacement in the definition of  the parameter  #. 

- t h i s  argument  also holds for the exact solutions obtained by Dyson 3) for I2 for 

the case of  gamma distributed j2 (eq. (3.24)). The expression for f2 was also 

discussed in ref. 2t  and is given by 

f The function D(u), defined there, is equal to D(1/E(u + 1)) - D(1/E) -- log(--u) and ¢ = --E 2 for 
the models discussed here. We could not find the solution for c~ in these models. 



GREEN'S FUNCTIONS IN RANDOM ONE-DIMENSIONAL SYSTEMS 233 

l 

f2(E) = 0 -- ~b(n) + logn,  (4.59) 

e-nV~ 

0 

where now ~ (E) = - ( E  + i8 sg(Im E)) 2 and 0 (n) is the logarithmic derivative of 

the gamma function. In particular it is seen that the divergency of H'(E) at E = 0 

has vanished since ~(0) = 8 2 > 0. From the result in Dyson's paper we find for 

small 3: H'(O)~ 1/6(log 8) 2, which indeed is finite. 

5. Summary 

In this paper we considered the problem of calculating the average one-particle 

Green's function in random one-dimensional systems. We start with a chain of 

harmonic oscillators with random masses (section 2.1). The method results in a 

recursively soluble set of equations for certain functions R0, R~, R1 and R2; the 

Green's function follows from R2. The function R0 is related to the derivative of 

a function D, which we introduced before 2) for obtaining the characteristic 

function (the analytic continuation of the accumulated spectral density into the 

complex frequency plane). Our set of equations is the generalization for complex 

frequencies of similar equations, obtained by Halpering). They were deduced for 

obtaining the spectral density for given frequency and wavenumber, which is 

proportional to the imaginary part of the Green's function. The relation with his 

work is discussed. Whereas in his approach some "miracles" seem to happen, we 

derive the equations in a straightforward manner from the definition of the 

Green's function. In section 2.2 it is shown that knowledge of the function R2 is 

not needed, in fact, for calculating the Green's function. A related property was 

observed by Halperin. Further we give a simple argument for the boundedness of 

the spectral density for mass distributions which have bounded densities (they are 

also allowed to have some power divergencies). It is made clear where the 

problems arise for binary distributions, where it is believed that the density of 

states does not exist as a smooth, bounded function. 

In section 3.1 we show that for the case of exponential mass distributions exact 

solutions can be found, both for the characteristic function and the more 

complicated Green's function. Hereto we extend a method developed before for 

random Kronig-Penney modelsT). First the integral equations for the relevant 

functions are reduced in a number of steps to two-step difference equations. These 

equations have a similar structure as the original equation of motion, but there 

appear no random variables. Consequently, they can be solved with known 
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methods. In section 3.2 we consider gamma distributions of  the masses with 

integer parameter n. Here the above mentioned difference equations become 

ordinary differential equations of  order 2n. As for the model of section 3.1, 

numerical calculations are presented for the density of  states and the exponential 

growth rate or inverse localization length y. In section 3.3 we discuss a scheme 

for obtaining an expansion of  the Green's function in cumulants of  the mass 

distribution. The method only requires algebraic manipulations. For  the related 

problem of  calculating the low frequency expansion of  the characteristic function s ) 

we have used a computer program for performing the algebraic manipulations and 

obtained the first twelve Taylor  coefficients. They were used for calculating the 

specific heat as function of temperature. 

In section 4.1 we extend the method to the more complicated case, where also 

the spring constants are random. We also allow for springs, that couple the 

particles to their equilibrium position. Since the problem of  random masses and 

fixed springs is equivalent to the case where the masses are fixed and the springs 

are random, we also find an explicit solution if the inverse spring constants have 

exponential distributions. If both the masses and the inverse spring constants 

assume all positive values with exponential (or slightly more general) distributions, 

the characteristic function can be expressed in terms of  modified Bessel functions. 

The equations for the Green's function then take the form of  second order 

differential equations. 

In section 4.2 we consider two models for random walks on a line, where the 

particle can jump to neighbouring sites i) across barriers with random height; ii) 

with jump frequencies, which differ from site to site. This problem is closely related 

to the harmonic chain with random masses or springs. We discuss some 

implications of  the results obtained in previous sections, e.g. for the long time tails 

of  certain correlation functions. 

In section 4.3 we finally consider X - Y  and tight binding electron models. The 

case of  diagonal disorder (random magnetic fields) is equivalent to the harmonic 

chain with random masses. In case of  off-diagonal disorder (random exchange 

constants ~ )  new solutions for the characteristic function and Green's function 

are deduced for power law distributions of  the ~.. If they only take the values + 1 

the solution has a simple form. If they have distributions, which are symmetric 

around ~ = 0, the Green's function does not depend on q. Finally, an argument 

of Lloyd 6) is applied to extend these solutions to the case where the magnetic fields 

(also) have Cauchy distributed parts; this has also been discussed for the solutions 

found by Dyson3). 

It can be proven easily that in the harmonic chain with random masses the 

Green's function remains invariant under the transformation co-~ - co, 
((mk))--'--~(--1)k--l((mk)). 

We note that the equations occurring in the problem of  random harmonic 
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chains also show up in models for electric lines with random capacitors and 

resistors 3,15) and low lying excitations in Heisenberg magnets15). 

There are several other approaches to the calculation of the Green's function. 

Stephen and Kariotis 16) use replica methods and obtain a set of integral equations, 

which are used for studying the low frequency behaviour of random diffusion 

models, of the type considered in section 4.2. They verify scaling assumptions 

made by Alexander et al.15). The relation between the replica method and the work 

of Dyson 3) has been discussed by Lin32). The functions D(u) and Ro(u) (eq. (2.22)) 

and the function Q (V) considered by Stephen and Kariotis are different extensions 

of Dyson's functions (see ref. 2) and for a similar case 32), respectively). In a similar 

way, eq. (4.5) of Stephen and Kariotis is related to our eqs. (2.26c, d). Because 

in their equations an additional integral occurs (related to the transformation 

u--*const- 1/u in (2.26)), their method seems to be more complicated than ours; 

it is not clear, e.g., how the exact solutions, discussed in this paper, can be obtained 

from their formalism. Tao and Luttinger 3~) consider random Kronig-Penney 

models and use a modified version of the replica method. They assume that the 

potential has zero range and reduce the problem to that of linear partial 

differential equations. After spatial Fourier transformation they become ordinary- 

differential equations. These equations are equivalent to eq. (4.13), (4.21) of the 

harmonic chain with exponentially distributed inverse spring constants. The 

method of this paper can also be applied to these models and, more generally, to 

all Kronig-Penney models discussed in ref. 7. There will also be exact solutions 

for the Green's function, for the model for which in that paper the characteristic 

function has been solved explicitly. The solution follows by solving a slightly more 

general form of the difference equations discussed in section 3.1. In limiting cases 

these difference equations become ordinary differential equations (see sections 3.2, 

4.1) and it turns out that these are just the cases treated by Tao and Luttinger. 

Denteneer and Ernst 2°) study transport properties of random hopping models and 

make a cumulant expansion for the Green's function, starting from its definition. 

This method, as well as the scheme discussed in section 3.3, is straightforward, 

but soon becomes cumbersome, because many different terms arise. 
We have not considered the calculation of two-particle Green's functions. They 

were discussed by Halperin 9) and Tao and Luttinger3~). From our experience with 

one-particle Green's functions and the structure of their equations we expect that 

a similar scheme can be developed for functions in two variables and that for 

exponential distributions these equations can be cast in difference equations in two 

discrete variables. In limiting cases these will become partial differential equations. 

We conclude remarking that interesting physical properties, like diffusion of 

momentum in random harmonic chains, are determined by the Green's function 

and known, in principle, in the exactly solved models. 
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