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Though widely used in modelling nano- and micro- structures, Eringen’s differ-
ential model shows some inconsistencies and recent study has demonstrated its
differences between the integral model, which then implies the necessity of using
the latter model. In this paper, an analytical study is taken to analyze static bend-
ing of nonlocal Euler-Bernoulli beams using Eringen’s two-phase local/nonlocal
model. Firstly, a reduction method is proved rigorously, with which the integral
equation in consideration can be reduced to a differential equation with mixed
boundary value conditions. Then, the static bending problem is formulated and
four types of boundary conditions with various loadings are considered. By solving
the corresponding differential equations, exact solutions are obtained explicitly in
all of the cases, especially for the paradoxical cantilever beam problem. Finally,
asymptotic analysis of the exact solutions reveals clearly that, unlike the differ-
ential model, the integral model adopted herein has a consistent softening effect.
Comparisons are also made with existing analytical and numerical results, which
further shows the advantages of the analytical results obtained. Additionally, it
seems that the once controversial nonlocal bar problem in the literature is well
resolved by the reduction method. C 2016 Author(s). All article content, except where
otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4961695]

I. INTRODUCTION

The nonlocal elasticity advanced by Eringen and his co-workers1–4 is based on the hypothesis
that the nonlocal stress at a reference point depends not only on the strain at that point but also on all
other points of the body. Consequently, in the constitutive equation of nonlocal elasticity Hooke’s
law (for the classical elasticity) is replaced by an integration. Such integral form constitutive rela-
tions account for the forces between atoms and internal length scale, and have been applied to many
problems including wave propagation, fracture mechanics, dislocations, etc.

In recent years, with the growing need in designing or analysing size-dependent materials
and structures, Eringen’s nonlocal elasticity received much attention as reviewed by Arash and
Wang.5 Since it is usually difficult to deal with integro-differential equations, in the literature
an approximate differential model once proposed in Eringen6 for a specific integral kernel is
widely used to incorporate nonlocal effects. However, it is recognized that, except some ad hoc
approaches, there are some inconsistences regarding this differential model.5,7–11 To be specific,
for all boundary conditions except the cantilever, the model has a softening effect (i.e., large
deflections and lower fundamental frequencies) as the nonlocal parameter increases. While for
a cantilever beam with concentrated load, there is no nonlocal effect. As far as the authors are
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2158-3226/2016/6(8)/085114/22 6, 085114-1 ©Author(s) 2016.

http://dx.doi.org/10.1063/1.4961695
http://dx.doi.org/10.1063/1.4961695
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1063/1.4961695
http://dx.doi.org/10.1063/1.4961695
http://dx.doi.org/10.1063/1.4961695
http://dx.doi.org/10.1063/1.4961695
http://dx.doi.org/10.1063/1.4961695
http://dx.doi.org/10.1063/1.4961695
http://dx.doi.org/10.1063/1.4961695
http://dx.doi.org/10.1063/1.4961695
mailto:xiaowuzhu1026@znufe.edu.cn
mailto:xiaowuzhu1026@znufe.edu.cn
mailto:xiaowuzhu1026@znufe.edu.cn
mailto:xiaowuzhu1026@znufe.edu.cn
mailto:xiaowuzhu1026@znufe.edu.cn
mailto:xiaowuzhu1026@znufe.edu.cn
mailto:xiaowuzhu1026@znufe.edu.cn
mailto:xiaowuzhu1026@znufe.edu.cn
mailto:xiaowuzhu1026@znufe.edu.cn
mailto:xiaowuzhu1026@znufe.edu.cn
mailto:xiaowuzhu1026@znufe.edu.cn
mailto:xiaowuzhu1026@znufe.edu.cn
mailto:xiaowuzhu1026@znufe.edu.cn
mailto:xiaowuzhu1026@znufe.edu.cn
mailto:xiaowuzhu1026@znufe.edu.cn
mailto:xiaowuzhu1026@znufe.edu.cn
mailto:xiaowuzhu1026@znufe.edu.cn
mailto:xiaowuzhu1026@znufe.edu.cn
mailto:xiaowuzhu1026@znufe.edu.cn
mailto:xiaowuzhu1026@znufe.edu.cn
mailto:xiaowuzhu1026@znufe.edu.cn
mailto:xiaowuzhu1026@znufe.edu.cn
mailto:xiaowuzhu1026@znufe.edu.cn
mailto:xiaowuzhu1026@znufe.edu.cn
mailto:xiaowuzhu1026@znufe.edu.cn
mailto:xiaowuzhu1026@znufe.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4961695&domain=pdf&date_stamp=2016-08-23


085114-2 Wang, Zhu, and Dai AIP Advances 6, 085114 (2016)

aware of, such inconsistences were further clarified most recently in three important pieces of
work12–14 which resorted to Eringen’s integral models. In the literature, the integral models mainly
include the pure nonlocal model6 and the two-phase local/nonlocal model,15 and the former (with
a specific kernel ) can be viewed as the original integral model of the aforementioned differen-
tial model.6 In Khodabakhshi and Reddy,12 a unified integro-differential nonlocal model, which
resembles the two-phase local/nonlocal model, was presented. Numerical study of the nonlocal
Euler-Bernoulli beam showed that, other than the simply supported case which showed a stiffening
effect, the nonlocal beam has a softening effect for most boundary conditions. More importantly,
with this model the paradoxical cantilever beam problem was resolved. Further, it was shown
in Fernández-Sáez et al.13 that, in general, the differential model is not equivalent to its original
integral model (i.e., the corresponding pure nonlocal model): the solution of the original integral
model actually is obtained by adding those of the differential model and of other two integral
equations. The contrasts were illustrated through the static bending analysis of Euler-Bernoulli
beam, and the paradox that appears when solving the cantilever beam problem with differential
model was also resolved numerically. In Tuna and Kirca,14 using the pure nonlocal model as in
Fernández-Sáez et al.,13 by Laplace transformation exact solutions were claimed to be obtained for
both Euler-Bernoulli and Timoshenko beams, and the analytical results showed that the integral
model has a consistent softening effect.

Because of the inconsistences in the differential model and some promising results reported by
the integral models, especially for the cantilever beam problem which would have many applica-
tions in science, there is a great need to investigate the integral models. For structures with Eringen’s
integral models, numerical methods are usually applied in the literature to deal with the resulting
integro-differential equations,12,13,16–18 which are shown to be time consuming and the numerical
errors are sometimes hard to detect for some specific nonlocal kernels.12 As to analytical results, the
existence and uniqueness of the field equations in nonlocal elasticity (boundary-value problem and
initial-boundary-value problem) were established almost decades ago.19–21 Due to the difficulties in
dealing with integro-differential equations, analytical solutions of problems in nonlocal elasticity
are very few. Most of the analytical solutions were concerned with a nonlocal bar problem firstly
proposed in Pisano and Fuschi.22 The closed form solution there were shown to have considerable
error, and more accurate analytical solutions were then presented for this problem.23,24 It should
be noted that, before any progress can be made in this direction, the aforementioned analytical
solutions are only valid for some specific loadings, and thus can not be applied to more complicated
cases (say, boundary conditions and loadings). The exact solutions for the pure nonlocal model
in Tuna and Kirca14 as they claimed, however, would incur some unknown errors, and we shall
discuss it in Section V. To summarize, there are very few exact solutions neither for the two-phase
local/nonlocal model, nor for the pure nonlocal model. So, more comprehensive analytical studies
of Eringen’s integral models as applied to nano- and micro- structures would be desirable. These
have become the motivations of the work.

In this paper, we adopt the two-phase local/nonlocal model15,25 and aim at searching for the
analytical solutions to the bending problem of nonlocal Euler-Bernoulli beams. By reducing the
integral equation to a differential equation with mixed boundary conditions, we manage to obtain
exact solutions of the beam problem under several typical boundary conditions, especially for the
paradoxical cantilever case. Analysis of the solutions shows that, as far as the examples examined,
the two-phase local/nonlocal model has a consistent softening effect. Also, with the analytical re-
sults obtained, we find that the numerical solutions in Khodabakhshi and Reddy12 encountered some
numerical errors for simply supported beam, the solutions in Tuna and Kirca14 can be viewed as
“limit solutions” of our exact solutions and the possible error in those solutions can be discussed,
and as a byproduct, the once controversial nonlocal bar problem22 is well resolved by the reduction
method proved here. The layout of the remaining part is as follows. In Section II, we review briefly
Eringen’s nonlocal theory and provide the key method in our latter derivations. In Section III, we
set up the governing equations for static bending of nonlocal Euler-Bernoulli beam using Eringen’s
two-phase local/nonlocal model and discuss the applicability of the method. Exact solutions are
obtained for various types of boundary conditions and loadings in Section IV. In Section V, some
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analysis will be taken to the exact solutions obtained, and comparisons will be made with existing
analytical and numerical results. In Section VI, we draw conclusions and discuss the future work.

II. ERINGEN’S NONLOCAL ELASTICITY AND METHOD DESCRIPTION

According to Eringen,25 the long rang force in a linear homogeneous and isotropic elastic
material as a consequence of a strain field, is expressed by the following constitutive relation

t(x) =

V

α(|x-x′|, τ)σkl(x ′)dx′, (1)

where t(x) is the nonlocal stress tensor, σkl is the classical stress tensor at x′, V is the region occu-
pied by the body. The constant τ = e0a/l, where a is an internal characteristic length (e.g., lattice
parameter, C-C bond length), l is an external characteristic length (e.g., crack length, wave length),
and e0 is a material constant which can be determined experimentally or approximated by matching
some reliable results. The scalar function α(|x-x′|, τ) is called kernel function or influence function,
which is positive and decays rapidly with the increase of |x-x′|. One additional constraint on the
kernel function is that for τ → 0 we obtain Dirac delta function. Due to this property, nonlocal
elasticity reverts to classical elasticity in the limit τ → 0. The former constitutive equation is usually
referred to as pure nonlocal model. Another constitutive model in the literature15,20,21,25 takes the
following form

t(x) = ξ1σkl(x) + ξ2


V

α(|x-x′|, τ)σkl(x′)dx′, (2)

where ξ1 > 0, ξ2 > 0 and satisfy ξ1 + ξ2 = 1. Equation (2) can be viewed as a constitutive relation of
a two-phase elastic material, in which phase 1 (of volume fraction ξ1) complies with local elasticity,
phase 2 (of volume fraction ξ2) complies with nonlocal elasticity. It is usually typed as two-phase
local/nonlocal model.

As a first attempt, in this paper we adopt the two-phase local/nonlocal model (2) and devote to
deriving analytical solutions to bending problems of nonlocal Euler-Bernoulli beam. We consider
a beam of length L, with uniform cross section S, Young modulus E and subjected to distributed
transverse load q(x) at the top. The coordinate system is introduced as: x coordinate is taken along
the length of the beam and z coordinate is taken along the height of the beam, while w denotes
the transverse displacement of the middle plane (i.e., z = 0). For a beam problem, we make the
assumptions that the nonlocal behavior in the thickness direction is negligible. As commonly used
in the literature, by taking the normalized bi-exponential kernel in Eringen,6 the nonlocal stress
along x direction then can be expressed by its local counterpart as

txx(x) = ξ1σ(x) + ξ2

2τ

 L

0
e−

|x−s |
τ σ(s)ds, (3)

where L denotes the length of the beam.

Remark 2.1. In the literature, both of the models (1)(2) have been investigated either numeri-
cally12,13,16–18,21 or analytically for a nonlocal bar problem22–24 and for nonlocal beam problems.14

It should be noted that for the bi-exponential kernel adopted here, by choosing ξ1 = 0 constitutive
equation (3) then reduces to the corresponding pure nonlocal model

t(x) = 1
2τ

 L

0
e−

|x−s |
τ σ(s)ds. (4)

It has been demonstrated (for the case of axial behavior of bars24 and bending of Euler-Bernoulli
beams13) that in the literature there is an improper transformation from this pure nonlocal model
into the following differential model

(1 − τ2 d2

dx2 )t(x) = σ(x). (5)
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From a mathematical point of view, models (4)(3) (also generally for (1)(2)) can be typed as
Fredholm integral equations of the first kind and the second kind respectively, whose solutions are
usually very different. In our latter derivations, it will be further shown that the exact solutions in
Tuna and Kirca14 with model (4) can actually be viewed as “limit solution” (i.e., ξ1 → 0) from our
exact solutions. Unfortunately, such solutions may not be the exact solutions to model (4).

To begin with, we present the following proposition, which is the key in our method.

Proposition 2.1. Consider the following linear integral equation of the second kind

y(x) + A
 b

a

eλ |x−s |y(s)ds = f (x). (6)

If f (x) ∈ C2[a,b] (i.e., twice differentiable) and the parameters λ < 0, A > 0, then the solution y(x)
to the integral equation also belongs to C2[a,b] and can be uniquely determined by the following
differential equation

y ′′(x) + λ(2A − λ)y(x) = f ′′(x) − λ2 f (x) (7)

with mixed boundary value conditions

y ′(a) + λ y(a) = f ′(a) + λ f (a), y ′(b) − λ y(b) = f ′(b) − λ f (b). (8)

The proof is reported in Appendix A. With this “reduction method”, for any given initial data
that satisfy the assumptions, one can solve the differential equation instead of the integral equation.
It should be noted that the method is brought from Polyanin and Manzhirov,26 and suits for the prob-
lem in consideration. Such a procedure was also applied to get the analytical solution of a nonlocal
bar problem previously,24 while without further justifications of its applicability. Regarding the
proposition, we make the following comments according to nonlocal elasticity problems.

1. The reduction method requires f (x) ∈ C2[a,b]. So, for cases in which f (x) are not C2[a,b],
it seems that the method can not be applied directly, and some related numerical studies have been
done.17 As it is reported in the appendix, f (x) ∈ C2[a,b] would imply y(x) ∈ C2[a,b], and one can
even deduce that y(x) shares the same regularity with f (x). This is true for the adopted kernel, but it
is not always the case in nonlocal elasticity, especially for the pure nonlocal model (1). For instance,
the constitutive equation with Gaussian kernel

t(x) = 1
2τ

 b

a

e−
(x−s)2

τ σ(s)ds. (9)

As the integral kernel has the effect of mollification, then for any integrable function σ(x), the
nonlocal stress is smooth. Consequently, for any given function t(x) which is smooth, we can not
claim that σ(x) is smooth. Or, for the problem in which t(x) is not smooth enough, there would be
no solution for σ(x). This issue is also addressed before.21

2. The result that y(x) is unique depends on the choice of the parameters. Though it is sufficient
for the problem in hand, the condition λ < 0, A > 0 can be made stronger mathematically. As it
had been investigated for general theory of well-posedness in nonlocal theory,19,20 the uniqueness
of y(x) here essentially relies on the relations between λ < 0, A > 0 and eigenvalues κ of the
corresponding integral operator  b

a

eλ |x−s |y(s)ds = κ y(x). (10)

3. In some of the cases as considered in the literature numerically,12,16,17,22 the differential
equation can be solved explicitly for given functions f (x). Thus, we can get the analytical solutions,
which once is a very difficult task. As to the mixed boundary conditions (8), we can consider
it as consistent requirements. While from another point of view, by constructing Green function
(Tricomi27 can be consulted) of the differential operator in equation (7) with boundary conditions
(8), integral equation (6) can be recovered. Thus, the boundary conditions can be viewed as an
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intrinsic condition in the integral equation, and which, in turn tells us that boundary conditions (8)
are requisites for the unknown solution y(x) in the problem.

III. GOVERNING EQUATIONS

In this section, we adopt constitutive equation (3) and set up the governing equation for the
nonlocal Euler-Bernoulli beam. Also, we make some discussions about the applicability of the
method described in last section.

The strain-displacement relation of Euler-Bernoulli beam can be given as

εxx(x) = −z
d2w(x)

dx2 . (11)

By constitutive equation (3), nonlocal stress txx can be expressed by

txx(x) = E
(
ξ1εxx(x) + ξ2

2τ

 L

0
e−

|x−s |
τ εxx(s)ds

)
, (12)

and the corresponding bending moment is

M(x) =

S

txx(x)zdS = −EI
(
ξ1

d2w(x)
dx2 +

ξ2

2τ

 L

0
e−

|x−s |
τ

d2w(s)
ds2 ds

)
, (13)

where I =

S z2dS.

Note that the principle of virtual displacements28,29 is independent of constitutive models, the
equations expressed in terms of stress resultants are valid for local or nonlocal models. So, we
can apply it to derive the governing equation and boundary conditions for the unknown transverse
displacement w(x).

The internal virtual work due to δw(x) is

δWI =

 L

0


S

σxx(x)δεxx(x)dxdS = −
 L

0
M(x)d2δw(x)

dx2 dx. (14)

The external virtual work is

δWE = −
 L

0
q(x)δw(x)dx. (15)

The principle of virtual displacements then gives

δWI + δWE = 0, (16)

which can be expressed as

−
 L

0
M(x)d2δw(x)

dx2 dx −
 L

0
q(x)δw(x)dx = 0. (17)

Integrating the first term twice by parts, we arrive at

− M(x) δdw(x)
dx

����
L

0
+

dM(x)
dx

δw(x)����
L

0
−
 L

0

( d2

dx2 M(x) + q(x)
)
δw(x)dx = 0. (18)

By the Fundamental Lemma of Variational Calculus, the Euler equation is

d2M(x)
dx2 + q(x) = 0, (19)

or, in terms of displacement (cf. (13))

− EI
d2

dx2


ξ1

d2w(x)
dx2 +

ξ2

2τ

 L

0
e−

|x−s |
τ

d2w(s)
ds2 ds


+ q(x) = 0. (20)
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The boundary conditions involve specifying one element of each of the following two pairs at x = 0
and x = L:

w or
dM(x)

dx
, (21)

dw(x)
dx

or M(x). (22)

For given external load q(x), after integrating both sides of governing equation (20), we can get the
following integral equation for y(x)(y(x) = w ′′(x)) as

y(x) + ξ2

2τξ1

 L

0
e−

|x−x′|
τ y(s)ds =

−1
EIξ1

(
C1 + C2x −

 x

0
(x − s)q(s)ds

)
, (23)

where C1, C2 are integration constants to be determined. Once y(x) is obtained, the unknown
displacement w(x) can be obtained as

w(x) = C3 + C4x +
 x

0
(x − s)y(s)ds, (24)

where C3,C4 are actually the values for w(0), w ′(0) respectively.
Now, we examine the applicability of the reduction method to our problem. Comparing equa-

tion (23) with integral equation (6), we have in our case λ = − 1
τ
< 0, A = ξ2

2τξ1
> 0. Thus, it only

requires the right hand side function

f (x) = −1
EIξ1

(
C1 + C2x −

 x

0
(x − s)q(s)ds

)
(25)

to be in C2[0,L], and hence q(x) should belong to C[0,L] (i.e., continuous), which can be generally
satisfied. So, if q(x) is continuous, then according to proposition 2.1 equation (23) can be uniquely
solved by the corresponding differential equation

y ′′(x) − k2y(x) = f ′′(x) − 1
τ2 f (x), (26)

with the mixed boundary value conditions

y ′(0) − 1
τ
y(0) = f ′(0) − 1

τ
f (0), y ′(L) + 1

τ
y(L) = f ′(L) + 1

τ
f (L), (27)

where k = 1√
ξ1τ

. The general solution to equation (26) can be expressed as

y(x) = C5 cosh(k x) + C6 sinh(k x) + f (x) + k(1 − 1
k2τ2 )

 x

0
sinh(k(x − s)) f (s)ds, (28)

with C5,C6 being uniquely determined from boundary value conditions (27). That is, if C1,C2 are
known from the boundary conditions, then we can get a unique pair C5,C6, or vise versa. So, we
actually have four unknowns C1,C2,C3,C4 as usual, and all of which can be determined from the
prescribed boundary conditions.

Remark 3.1. Note that in nonlocal beam theory we usually have integral (nonlocal) boundary
conditions (e.g., for clamped-clamped and clamped-pinned ends), however, as the solution to the
integral equation can be expressed explicitly, the unknown coefficients can be uniquely determined
by solving a linear system as before. The lengthy calculations can be performed with the help of
mathematical tools, such as Mathematica.30

IV. BENDING SOLUTIONS

In this section, we shall derive analytical solutions for static bending problem of nonlocal
Euler-Bernoulli beam with various boundary conditions. In all of the examples, the external loads
q(x) ∈ C[0,L].
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(1). (S-S) Simply supported beam with uniformly distributed load q0
For a beam simply supported at x = 0 and x = L, the boundary conditions are

w(0) = w(L) = 0, M(0) = M(L) = 0. (29)

Using the boundary conditions on the moment, we firstly obtain

C1 = 0, C2 =
q0L
2

. (30)

On substitution of the values for C1,C2 into equation (25) and using equations (26)(27), we can get
C5,C6 as

C5 =

q0(ξ1 − 1)τ
(
−L cosh( L

2
√

ξ1τ
) + 2τ

√
ξ1 sinh( L

2
√

ξ1τ
)
)

2EI
(
ξ1 cosh( L

2
√

ξ1τ
) + √ξ1 sinh( L

2
√

ξ1τ
)
) , C6 =


ξ1C5. (31)

With the obtained solution for y(x) = w ′′(x) and the boundary conditions on the displacement, we
can get

C3 = 0,

C4 =

q0

(
cosh( L

2
√

ξ1τ
) + √ξ1 sinh( L

2
√

ξ1τ
)
)

(
2
√
ξ1 cosh( L√

ξ1τ
) + (1 + ξ1) sinh( L√

ξ1τ
)
) (32)

(
L
√
ξ1
�
L2 − 12(ξ1 − 1)τ2� cosh( L

2
√

ξ1τ
) + �L3 + 24(ξ1 − 1)ξ1τ

3� sinh( L

2
√

ξ1τ
)
)

12EI
.

By equation (24), the exact solution for transverse displacement w(x) can be expressed as

w(x) = q0x4

24EI
− q0Lx3

12EI
+

q0(ξ1 − 1)τ2x2

2EI
+

q0L
�
L2 − 12(ξ1 − 1)τ2� x

24EI

+

q0τ
3√ξ1(ξ1 − 1)(L + 2ξ1τ) sinh( L−x

2
√

ξ1τ
) sinh( x

2
√

ξ1τ
)

EI
(√

ξ1 cosh( L

2
√

ξ1τ
) + sinh( L

2
√

ξ1τ
)
) . (33)

By differentiating with respect to x (or symmetry of the solution), we can find that the maximum
deflection occurs at x = L/2, and it is given by

wmax =
q0L4


5 + 48(1 − ξ1)� τL

�2

384EI

−
q0L4(1 − ξ1)√ξ1

�
τ
L

�3
+ 2ξ1

�
τ
L

�4 sinh2( L

4
√

ξ1τ
)

EI
(√

ξ1 cosh( L

2
√

ξ1τ
) + sinh( L

2
√

ξ1τ
)
) . (34)

In order to reveal the nonlocal effect more clearly, we can take some asymptotic analysis to the exact
solutions for w(x), wmax. Since L/τ is relatively large and 0 < ξ1 < 1, the O(e−L/(

√
ξ1τ)) terms can

be neglected. Asymptotic analysis then gives

w(x) = q0x4

24EI
− q0Lx3

12EI
+

q0(ξ1 − 1)τ2x2

2EI
+

q0L
�
L2 − 12(ξ1 − 1)τ2� x

24EI

− q0
√
ξ1(1 − √ξ1)(L + 2ξ1τ)τ3

2EI
(1 − e

− x√
ξ1τ − e

− L−x√
ξ1τ )

+ E.S.T., (35)
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wmax =
q0L4


5 + 48(1 − ξ1)� τL

�2 − 384
√
ξ1(1 − √ξ1)

(�
τ
L

�3
+ 2ξ1

�
τ
L

�4)
384EI

+ E.S.T. (36)

Hereafter, “E.S.T.” denotes the O(e−L/(
√

ξ1τ)) terms. It can be easily checked by setting ξ1 = 1 in
the exact solution that the classical solution can be fully recovered.

(2). (C-C) Clamped beam with uniformly distributed load q0

For a beam with clamped ends at x = 0 and x = L, the boundary conditions are

w(0) = w ′(0) = 0; w(L) = w ′(L) = 0. (37)

The determination of the unknown coefficients are omitted for brevity, expressions for these coef-
ficients will not be presented hereafter and we just give the solutions. The exact solution for
transverse displacement w(x) is expressed as

w(x) = q0x4

24EI
− q0Lx3

12EI

+

q0x2
(�

L3 + 12L(ξ1 − 1)τ2 + 24(ξ1 − 1)τ3� sinh( L

2
√

ξ1τ
) + L3√ξ1 cosh( L

2
√

ξ1τ
)
)

24EI
(
(L − 2(ξ1 − 1)τ) sinh( L

2
√

ξ1τ
) + L

√
ξ1 cosh( L

2
√

ξ1τ
)
)

−
q0L(ξ1 − 1)τ �L2 + 6Lτ + 12τ2� sinh( L

2
√

ξ1τ
)x

12EI
(
(L − 2(ξ1 − 1)τ) sinh( L

2
√

ξ1τ
) + L

√
ξ1 cosh( L

2
√

ξ1τ
)
)

+

q0L(ξ1 − 1)√ξ1τ
2 �L2 + 6Lτ + 12τ2� sinh( x

2
√

ξ1τ
) sinh( L−x

2
√

ξ1τ
)

6EI
(
(L − 2(ξ1 − 1)τ) sinh( L

2
√

ξ1τ
) + L

√
ξ1 cosh( L

2
√

ξ1τ
)
) . (38)

The maximum deflection occurs at x = L/2, which can be expressed as

wmax =

q0L
(
L4


ξ1 cosh( L

2
√
ξ1τ

) + 64(ξ1 − 1)ξ1τ
2 �L2 + 6Lτ + 12τ2� sinh2( L

4
√
ξ1τ

)

+L
�
L3 − 10L2(ξ1 − 1)τ − 48L(ξ1 − 1)τ2 − 96(ξ1 − 1)τ3� sinh( L

2
√
ξ1τ

)
) 

384EI
(
(L − 2(ξ1 − 1)τ) sinh( L

2
√
ξ1τ

) + L

ξ1 cosh( L

2
√
ξ1τ

)
)
. (39)

After taking some asymptotic analysis to w(x) and wmax, we get

w(x) = q0x4

24EI
− q0Lx3

12EI

+
q0x2 �L3 + 12L(√ξ1 − 1)τ2 + 24(√ξ1 − 1)τ3�

24EI
�
L + 2(1 − √ξ1)τ�

+
q0L(1 − √ξ1) �L2 + 6Lτ + 12τ2� τx

12EI
�
L + 2(1 − √ξ1)τ�

−
q0L
√
ξ1(1 − √ξ1) �L2 + 6Lτ + 12τ2� τ2

12EI
�
L + 2(1 − √ξ1)τ� (1 − e

− x√
ξ1τ − e

− L−x√
ξ1τ ) + E.S.T., (40)
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wmax =

q0L4
(
1 + 10

�
1 −
√
ξ1
�
τ
L
+ 16

�
2ξ1 − 5

√
ξ1 + 3

� ( τ
L
)2
)

384EI
�
1 − 2

�√
ξ1 − 1

�
τ
L

�

+

q0L4
(
96

�
2ξ1 − 3

√
ξ1 + 1

� ( τ
L
)3 + 384

�
ξ1 −
√
ξ1
� ( τ

L
)4
)

384EI
�
1 − 2

�√
ξ1 − 1

�
τ
L

� + E.S.T. (41)

(3). (C-P) Clamped-Pinned beam with uniformly distributed load q0

For this case, the boundary conditions are

w(0) = w ′(0) = 0, w(L) = M(L) = 0. (42)

The lengthy expression for the exact solution of w(x) is reported in Appendix B, and the asymptotic
solution can be expressed as

w(x) = q0x4

24EI

+
q0L

�
−5L3 + 12L2 �√ξ1 − 1

�
τ + 12L

�√
ξ1 − 1

�
τ2 − 24 (ξ1 − 1)√ξ1τ

3� x3

48EI
�
L3 − 3L2

�√
ξ1 − 1

�
τ + 3L

�√
ξ1 − 1

�
2τ2 + 6

�
ξ1 −
√
ξ1
�
τ3
�

+q0

(
L5 − 4L3

(
ξ1 − 3


ξ1 + 2

)
τ2 + 24L2

(
ξ1 − 1

)
τ3

+24L
(

ξ1 − 1
)3 (

ξ1 + 1
)
τ4 + 48

(
ξ1 − 1

)
2
(
ξ1 +


ξ1

)
τ5

)
x2


16EI

(
L3 − 3L2

(
ξ1 − 1

)
τ + 3L

(
ξ1 − 1

)
2τ2 + 6

(
ξ1 −


ξ1

)
τ3

)
−q0τ

(
ξ1 − 1

) (
L5 + 5L4τ − 4L3 (ξ1 − 3) τ2 − 12L2

(
ξ1 − 1

)
τ3

+24L
(

ξ1 − 1
) 

ξ1 (ξ1 + 1) τ4 + 48
(

ξ1 − 1
)
ξ1

3/2τ5
)

x


8EI
(
L3 − 3L2

(
ξ1 − 1

)
τ + 3L

(
ξ1 − 1

)
2τ2 + 6

(
ξ1 −


ξ1

)
τ3

)
+q0τ

2 (ξ1 − 1)ξ1

(
L2 �L3 + 5L2τ − 4L (ξ1 − 3) τ2 − 12 (ξ1 − 1) τ3�

+

ξ1
�
L5 + 5L4τ − 4L3 (ξ1 − 3) τ2 + 24L

�
ξ1

2 − 1
�
τ4 + 48 (ξ1 − 1) ξ1τ

5�

−
�
L2 �L3 + 5L2τ − 4L (ξ1 − 3) τ2 − 12 (ξ1 − 1) τ3�

+

ξ1
�
L5 + 5L4τ − 4L3 (ξ1 − 3) τ2 + 24L

�
ξ1

2 − 1
�
τ4 + 48 (ξ1 − 1) ξ1τ

5�) e
−x√
ξ1τ

+
�
Lτ

�
−3L3 + 4L2 (ξ1 − 3) τ + 12L (ξ1 − 1) (2ξ1 + 1) τ2 + 48 (ξ1 − 1) ξ1τ

3�

+

ξ1τ

�
−3L4 − 8L3ξ1τ − 24L2 (ξ1 − 1) τ2

−24L
�
ξ1

2 − 1
�
τ3 − 48 (ξ1 − 1) ξ1τ

4�� e
x−L√
ξ1τ

)
/(

8EI
(

ξ1
�
2L3 − 3L2 (ξ1 − 1) τ + 6 (ξ1 − 1) τ3�

+
�
L3 (ξ1 + 1) − 3L2 (ξ1 − 1) τ + 3L (ξ1 − 1) 2τ2 + 6 (ξ1 − 1) ξ1τ

3��
)
+ E.S.T. (43)

The deflection of wm at x = (15 −
√

33)L/16 (which is the maximum position in local theory) can
be expressed by

wm =
q0L4(

65536EI
(
1 − 3

�√
ξ1 − 1

�
τ
L
+ 3

�√
ξ1 − 1

�2� τ
L

�2
+ 6

�
ξ1 −
√
ξ1
� �

τ
L

�3))( (
39 + 55

√
33

)
+ 2484.67

(
1 −


ξ1

) τ

L

−
(

ξ1 − 1
) ((
−3626.83


ξ1 + 10474.91

) (
τ

L

)2
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+
(

ξ1 − 1
) (

12612.34ξ1 + 36451.74

ξ1 − 23970.76

) (
τ

L

)3

−
(

ξ1 − 1
) (
−126.64ξ1

3/2 + 32894.64ξ1 − 122274.77

ξ1 + 23970.77

) (
τ

L

)4

+
(

ξ1 − 1
)

2

ξ1

(
−113730.81ξ1 + 65789.28


ξ1 − 146245.54

) (
τ

L

)5

+
(

ξ1 − 1
)

2ξ1

(
196608ξ1 − 227461.63ξ1


ξ1 + 196608

) (
τ

L

)6

+ 393216ξ1
2
(

ξ1 − 1
)

2
(
τ

L

)7
)
+ E.S.T., (44)

where the fractional representation is used.
(4). (C-F) Cantilever beam with concentrated load or distributed load

Case A (CFP): For a cantilever beam with concentrated load P at the free end, the boundary
conditions are

w(0) = w ′(0) = 0; M(L) = 0,
dM(x)

dx
����x=L
= P. (45)

The exact solution for transverse displacement is

w(x) = − Px3

6EI
+

PLx2

2EI

+

(1 − ξ1)Pτ
(
(L + τ)

(
sinh( L√

ξ1τ
) + √ξ1 cosh( L√

ξ1τ
)
)
+
√
ξ1τ

)
x

EI
(
(ξ1 + 1) sinh( L√

ξ1τ
) + 2
√
ξ1 cosh( L√

ξ1τ
)
)

−
2(1 − ξ1)√ξ1Pτ2 sinh( x

2
√

ξ1τ
)

EI
(
(ξ1 + 1) sinh( L√

ξ1τ
) + 2
√
ξ1 cosh( L√

ξ1τ
)
)

(
(L + τ) cosh(2L − x

2
√
ξ1τ

) + τ sinh( x
2
√
ξ1τ

) + 
ξ1τ cosh( x

2
√
ξ1τ

)
)
. (46)

The maximum deflection occurs at x = L, which can be expressed as

wmax = P
(

ξ1
�
2L3 − 3L2 (ξ1 − 1) τ + 6 (ξ1 − 1) τ3� cosh( L

√
ξ1τ

)

−6 (ξ1 − 1)ξ1τ
2(L + τ) + �L3 (ξ1 + 1) − 3L2 (ξ1 − 1) τ

+3L(ξ1 − 1)2τ2 + 6 (ξ1 − 1) ξ1τ
3
)

sinh( L
√
ξ1τ

)
) 

3EI
(
(ξ1 + 1) sinh( L

√
ξ1τ

) + 2

ξ1 cosh( L

√
ξ1τ

)
)
. (47)

The asymptotic solutions for w(x) and wmax are

w(x) = − Px3

6EI
+

PLx2

2EI
+

P(1 − √ξ1)(L + τ)τx
EI

−P(1 − √ξ1)√ξ1τ
2

EI(1 + √ξ1)
(
L + τ − (L + τ)e−

x√
ξ1τ + (1 + 

ξ1)τe
− L−x√

ξ1τ

)
+E.S.T., (48)

wmax =
PL3

(
1 + 3

�
1 −
√
ξ1
�
τ
L
+ 3

�√
ξ1 − 1

� 2� τ
L

�2
+ 6

�
ξ1 −
√
ξ1
� �

τ
L

�3)
3EI

+E.S.T. (49)
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To the best of our knowledge, it is the first time that exact solutions to a cantilever beam problem is
obtained with Eringen’s integral model.

Case B (CFT): A cantilever beam with triangularly distributed load (1 − x/L)q0. The load is
obviously nonuniform,12 but its second derivative is zero (for the purpose of comparing with Case
C). The boundary conditions are

w(0) = w ′(0) = 0; M(L) = 0,
dM(x)

dx
����x=L
= 0. (50)

The exact solution for the transverse displacement is

w(x) = − q0x5

120EIL
+

q0x4

24EI

−
q0
�
L2 + 2 (ξ1 − 1) τ2� x3

12EIL
+

q0
�
L2 + 6 (ξ1 − 1) τ2� x2

12EI

+

q0τ (ξ1 − 1)
(
−c

(
sinh( L√

ξ1τ
) + √ξ1 cosh( L√

ξ1τ
)
)
− 6ξ1

3/2τ3
)

x

6EIL
(
(ξ1 + 1) sinh( L√

ξ1τ
) + 2
√
ξ1 cosh( L√

ξ1τ
)
)

+
q0 (ξ1 − 1)√ξ1τ

2

6EIL
(
(ξ1 + 1) sinh( L√

ξ1τ
) + 2
√
ξ1 cosh( L√

ξ1τ
)
)

(
−c sinh( L

√
ξ1τ

)
(

ξ1

(
cosh( x

√
ξ1τ

) − 1
)
− sinh( x

√
ξ1τ

)
)

+c cosh( L
√
ξ1τ

)
(

ξ1 sinh( x
√
ξ1τ

) − cosh( x
√
ξ1τ

) + 1
)

+6ξ1τ
3
(

ξ1 sinh( x
√
ξ1τ

) + cosh( x
√
ξ1τ

) − 1
))

, (51)

Hereafter, c denotes L3 + 3L2τ + 6Lξ1τ
2 + 6ξ1τ

3.
The maximum deflection occurs at x = L, which can be expressed as

wmax =
q0
�
L4 + 10L2 (ξ1 − 1) τ2�

30EI

+

q0 (ξ1 − 1) τ
(
−c

(
sinh

(
L√
ξ1τ

)
+
√
ξ1 cosh

(
L√
ξ1τ

))
− 6ξ1

3/2τ3
)

6HT
(
(ξ1 + 1) sinh

(
L√
ξ1τ

)
+ 2
√
ξ1 cosh

(
L√
ξ1τ

))

+

q0 (ξ1 − 1)√ξ1τ
2c sinh

(
L

2
√

ξ1τ

)
6EIL

(√
ξ1 sinh

(
L

2
√

ξ1τ

)
+ cosh

(
L

2
√

ξ1τ

)) . (52)

After taking some asymptotic analysis to w(x) and wmax, we get

w(x) = − q0x5

120EIL
+

q0x4

24EI
−

q0
�
L2 + 2 (ξ1 − 1) τ2� x3

12EIL

+
q0
�
L2 + 6 (ξ1 − 1) τ2� x2

12EI
+

q0
�
1 −
√
ξ1
�

c τx
6EIL

−
q0
�
1 −
√
ξ1
�√

ξ1τ
2

6EIL

(
c − ce

− x√
ξ1τ + 12ξ1τ

3
(

ξ1 + 1
)

e
− L−x√

ξ1τ

)
+ E.S.T., (53)
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wmax =
q0L4

30EI

(
1 + 5

(
1 −


ξ1

) τ

L
+ 5L3

(
3ξ1 − 4


ξ1 + 1

) (
τ

L

)2

−15L2
(
2ξ3/2

1 − 3ξ1 +

ξ1

) (
τ

L

)3
+ 30L

(
ξ1 − 1

)2
ξ1

(
τ

L

)4

+60
(

ξ1 − 1
)
ξ3/2

1

(
τ

L

)5
)
+ E.S.T. (54)

Case C (CFE): A cantilever beam with exponentially distributed load q0ex/L. The load is
nonuniform, and its second derivative is nonzero.11 The boundary conditions are the same with
those in Case B.

The exact solution for transverse displacement can be obtained and the lengthy expressions are
listed in Appendix B. The asymptotic expressions can be expressed as

w(x) = −q0Lex3

6EI
+

q0L
�
−L3 + L2τ − eL

�√
ξ1 − 1

�
τ2 + e

�
ξ1 −
√
ξ1
�
τ3� x

EI
�
L −
√
ξ1τ

�

+
q0L

EI (L2 − ξ1τ2) �1 + √ξ1
�2

( �
L5 (ξ1 + 1) �ex/L − 1

�

+L3τ2 �− (ξ1 + 1) ex/L + ξ1
2 + 1

�
+ (e − 1)L2 (ξ1 − 1) ξ1τ

3

−e (ξ1 − 1) ξ1
2τ5� +


ξ1
�
2L5 �ex/L − 1

�
− L3τ2 �2ex/L − ξ1 − 1

�

+(e − 1)L2 (ξ1 − 1) τ3 − e (ξ1 − 1) ξ1τ
5�

− (ξ1 − 1) ξ1

ξ1eτ4e(L + τ) (1 + 

ξ1

)
e

x−L√
ξ1τ

− (ξ1 − 1)ξ1τ
2 �L3 + (e − 1)L2τ − eξ1τ

3� (1 + 
ξ1

)
e
−x√
ξ1τ

)
+ E.S.T., (55)

and the maximum deflection occurs at x = L, which can be expressed as

wmax =
q0L4

6EI
(
1 − ξ1

�
τ
L

�2) (
(5e − 12) + 6

(
1 −


ξ1

) τ

L

+
((6 + e)ξ1 − 6e


ξ1 + 6

) (
τ

L

)2
+ 6(e − 1) (

ξ1 −

ξ1

) (
τ

L

)3

−6e
(

ξ1 − 1
)

2ξ1

(
τ

L

)4
− 12e

(
ξ1 − 1

)
ξ3/2

1

(
τ

L

)5)
+ E.S.T. (56)

V. ANALYSIS AND COMPARISONS OF SOLUTIONS

In this section, we shall examine the exact solutions obtained in last section more closely,
which mainly includes nonlocal effect of the model, the effect of the boundary conditions, the
relations with existing numerical and analytical solutions. The normalized deflections w (with
respect to the maximum deflection of the local beam) of the beam for τ/L = 0.01,0.03,0.05 with
ξ1 = 0.1 in each case are shown in Figures 1,2,3,4,5,6, respectively (denoted by Group I). The
normalized maximum deflections wmax (with respect to the maximum deflection of the local beam)
for different values of τ/L and ξ1 in each case are shown in Figures 7,8,9,10,11,12, respectively
(denoted by Group II). Note that the maximum deflection of the local beam in each case is as
follows10–12

S-S: wmax =
5q0L4

384EI
; C-C: wmax =

q0L4

384EI
;

C-P: wmax =
q0L4

65536EI

(
39 + 55

√
33

)
; CFP: wmax =

PL3

3EI
;

CFT: wmax =
q0L4

30EI
; CFE: wmax =

(5e − 12)q0L4

6EI
. (57)
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FIG. 1. w of a simply supported beam with uniformly distributed load for different values of τ/L.

FIG. 2. w of a clamped beam with uniformly distributed load for different values of τ/L.

FIG. 3. w of a clamped-pinned beam with uniformly distributed load for different values of τ/L.

FIG. 4. w of a cantilever beam with a concentrated load for different values of τ/L.

1. nonlocal effects and boundary conditions. From the figures in Group I, it is clear that in
all of the cases the deflection of the nonlocal beam is larger than that of the local one, and an
increase in τ/L would increase the deflection of the beam, i.e., a softening effect. This can be also
found from the solutions, especially the asymptotic one: the additional terms incorporated with
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FIG. 5. w of a cantilever beam with triangularly distributed load for different values of τ/L.

FIG. 6. w of a cantilever beam with exponentially distributed load for different values of τ/L.

FIG. 7. wmax of a simply supported beam with uniformly distributed load for different values of ξ1 and τ/L.

FIG. 8. wmax of a clamped beam with uniformly distributed load for different values of ξ1 and τ/L.

parameter τ/L contribute to nonlocal effect, especially the positive leading order term concerned
with O((τ/L)2) in the maximum deflection strongly shows the softening effect. The corresponding
curve for τ/L = 0.01 for S-S case is very close to the local one, and we provide a partial enlarged
view to show the behavior near the mid-span. It should be pointed out that the softening effect
predicted by the analytical solutions in this case is opposite to that in Khodabakhshi and Reddy.12
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FIG. 9. wmax of a clamped-pinned beam with uniformly distributed load for different values of ξ1 and τ/L.

FIG. 10. wmax of a cantilever beam with a concentrated load for different values of ξ1 and τ/L.

FIG. 11. wmax of a cantilever beam with triangularly distributed load for different values of ξ1 and τ/L.

FIG. 12. wmax of a cantilever beam with exponentially distributed load for different values of ξ1 and τ/L.

In that paper, a FEM analysis is taken and the nonlocal beam is found to be slightly stiffer than the
local one. This may due to the numerical error (some other comparisons can also be made13,14). A
comparison among figures in Group I then tells that nonlocal effect for each boundary condition
from largest to least generally would be: C-C, C-P, C-F, S-S. From the figures in Group II, it is
clear that a decrease in ξ1 would lead to an increase in the deflection of the beam. Moreover, the
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dependence of the maximum deflection on ξ1 for S-S is nearly linear, while for the other cases it is
nonlinear. This can also be seen from the leading order terms in the maximum deflections. Thus, in
general, higher τ/L and lower ξ1 both denote stronger softening effect in the nonlocal beam for all
of the boundary conditions.

2. Cantilever beam: effect of loadings. Of interest here we have considered the cantilever beam
with three types of loadings: concentrated load at the free end, nonuniformly distributed load whose
second derivative is either zero or nonzero. In all of the cases, the model shows a consistent soft-
ening effect. It should be mentioned that, though the results are not presented here, for a cantilever
beam with uniformly distributed load there is also a softening effect. The nonlocal effects in the
cases CFP and CFT are consistent with the numerical results in Khodabakhshi and Reddy,12 where
a similar model is adopted. The nonlocal effect for CFE is opposite to that in Cheng et al.11 (latter
discussed by Preethi et al.31 combined with surface stress effects), where the differential model (5)
is used and a stiffening effect is found. It may be partially due to the integral kernel chosen here.

3. Limit solutions when ξ1 = 1, ξ1 → 0. By setting ξ1 = 1 in the nonlocal solutions obtained in
last section, it can be easily checked that local solutions can be recovered in all of the cases. By
letting ξ1 → 0 in the solutions, we can get a set of “limit solutions”. For example, for cases S-S and
CFP, if we let ξ1 → 0 in the solutions (cf. equations (35)(48)), then we obtain

w0(x) = q0x4

24EI
− q0Lx3

12EI
− q0τ

2x2

2EI
+

q0L
�
L2 + 12τ2� x
24EI

,

w0(x) = − Px3

6EI
+

PLx2

2EI
+

P(L + τ)τx
EI

. (58)

The above “limit solutions” coincide with the solutions in Tuna and Kirca14 (equations (29) and (34)
in that paper). For S-S case, equation (58a) also coincides with the solution by Reddy and Pang10

using differential model (5). In order to check whether such “limit solutions” w0(x) are exact ones
for pure nonlocal model (4), we can simply calculate the resulting nonlocal bending moment. That
is, we need to check whether the corresponding version for pure nonlocal model (4) of equation (23)
(i.e., by setting ξ1 = 0)

1
2τ

 L

0
e−

|x−x′|
τ y(s)ds =

−1
EI

(
C1 + C2x −

 x

0
(x − s)q(s)ds

)
, (59)

is satisfied by y(x) = w ′′0 (x). We can take the S-S case as an example. Note that, from equation
(29), the right handside of (23)(59) should be the same, i.e., the bending moment calculated directly
from the boundary conditions are both M(x) = q0(Lx − x2)/2. After substituting y(x) = w ′′0 (x) (i.e.,
equation (58a)) into the left handside of equation (59), the resulting nonlocal bending moment
M0(x) can be expressed as

M0(x) = −EI
1

2τ

 L

0
e−

|x−s |
τ

d2w0(s)
ds2 ds =

q0

2
(Lx − x2) + q0Lτ

4

(
e−

x
τ + e−

L−x
τ

)
. (60)

Obviously, M0(x) , M(x), especially at the boundaries x = 0,L, and the non-dimensional error is
O(τ/L). That is, the boundary conditions are not exactly satisfied, hence the exact solutions for pure
nonlocal model (4) can not be recovered by the “limit solutions”. As w ′′0 (x) = limξ1→0 w

′′(x, ξ1) and
w ′′(x, ξ1) satisfies equation (23) for any ξ1 > 0, using equations (60) and (23) we can finally express
“M0(x) , M(x)” as L

0
e−

|x−s |
τ

d2w0(s)
ds2 ds =

 L

0
lim
ξ1→0

e−
|x−s |
τ

d2w(s, ξ1)
ds2 ds , lim

ξ1→0

 L

0
e−

|x−s |
τ

d2w(s, ξ1)
ds2 ds, (61)

which implies the underlying reason is that the bi-exponential integral kernel here does not allow an
exchange between the limit (of ξ1) and the integration. From an integral equation point of view, it
means that the limit of the solution to the second kind integral equation (23) is not the solution to its
first kind version (59), a phenomenon usually encountered in the field of integral equations. It is the
same situation for CFP case (probably for all of the other cases).
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As the analytical solutions by Tuna and Kirca14 share the same expressions with the “limit
solutions”, they are not exact solutions to pure nonlocal model (4), neither. For example, for S-S
case in that paper, although the expression in equation (25) for the bending moment meets the
boundary conditions, however, if one substitutes equation (29) into equation (7) to compute the
resulting bending moment at either x = 0 or x = L, the values are then nonzero and the error
is O(τ/L) (κ in that paper has the same meaning as τ). Hence the boundary conditions are not
exactly satisfied. Actually, as the numerical solution in Fernández-Sáez et al.13 showed that, for S-S
case, the relative error of such analytical solution at x = L/4 is about 0.1 percent. Moreover, we
think some exponential-like terms, which would affect the behavior near the boundaries, may be
neglected in such analytical solutions. Thus, the relative error near the boundaries would be even
larger. To summarize, we conclude that the “limit solutions” (or the solutions in Tuna and Kirca14)
are not exact solutions for pure nonlocal model (4). However, for relatively small τ/L, they may be
good approximations to the inner part of the beam, and it has been shown in Tuna and Kirca.14

VI. CONCLUSIONS AND FUTURE WORK

In this work, a reduction method in the literature is proved rigorously and applied to study
bending problem of nonlocal Euler-Bernoulli beam with various boundary conditions. Eringen’s
two-phase local/nonlocal model is adopted. As far the examples examined, the following conclu-
sions can be made:

1. Exact solutions are obtained for nonlocal beams with the integral model, especially for the
paradoxical cantilever beam problem.

2. For the local/nonlocal model adopted here, through examining several typical boundary
conditions and loadings, there is a consistent softening effect.

The analytical solutions are validated through comparisons with existing analytical and numer-
ical solutions. It appears that the integral model considered here has some advantages as compared
with differential model (5). That is, it has a consistent softening effect for bending, and there is
no paradox when solving a cantilever beam problem. So, it would be interesting to investigate
the buckling and vibration response of the model. Also, the reduction method proved here can be
applied to related analytical studies of this model.
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APPENDIX A

Consider the integral equation

y(x) + A
 b

a

eλ |x−s |y(s)ds = f (x), (A1)

where f (x) ∈ C2[a,b], A > 0, λ < 0.
In nonlocal theory, for given loadings, the unknown local stress field is not necessarily to

be smooth enough (say, twice differentiable). So, an assumption is made on the loadings (i.e.,
f (x) ∈ C2[a,b]), then we can deduce the smoothness of the unknown local stress and differentiate
the two sides of the integral equation. The method is mainly based on the fact that for a twice
differentiable function Y (x) = y(x) + A

 b

a eλ |x−s |y(s)ds (or, we can view it as a functional of the
unknown function y(x)), the equation

Y (x) = f (x), x ∈ [a,b] (A2)



085114-18 Wang, Zhu, and Dai AIP Advances 6, 085114 (2016)

can be transformed to an equivalent one

Y ′′(x) = f ′′(x), Y (a) = f (a), Y (b) = f (b), (A3)

as long as the latter equation can be satisfied for given function f (x). As to the existence and
uniqueness of the solutions in nonlocal theory, though its general conditions has been well estab-
lished,19–21 for specific problems we still need to check such issues. Since it is usually difficult
to determine the eigenvalues of the integral operator (crucial for the existence and uniqueness of
the solutions), we prove the uniqueness of its equivalent differential equation instead, and it can
serve as a theoretic basis for the unique determination of the related constants (c.f. (28)) in a beam
theory. Here, we assume the existence of the solution in L2[a,b] (i.e., square integrable) and one
can refer to Tricomi27 for the Fredholm theory for integral equation of the second kind. Base on the
above-mentioned issues, the proof is divided into three parts.

Firstly, we show that y(x) ∈ C2[a,b]. In order to show this, we can express y(x) as

y(x) = f (x) − A
 b

a

eλ |x−s |y(s)ds

= f (x) − A
(
eλx

 x

a

e−λsy(s)ds + e−λx
 b

x

eλsy(s)ds
)
. (A4)

Note that f (x) ∈ C2[a,b] and the two integrals at the right hand side both belong to C[a,b], it then
implies that y(x) ∈ C[a,b]. Once we have y(x) ∈ C[a,b], the aforementioned integrals then belong
to C1[a,b], which then implies that y(x) ∈ C1[a,b]. With the same deduction, we can finally get
y(x) ∈ C2[a,b]. Actually, it can be shown that y(x) shares the same regularity with f (x) for this
specialized integral equation.

Secondly, we get the differential equation by differentiating both sides of the integral equation.
As all terms of equation (A1) are now C2[a,b], we can differentiate both sides term by term twice.
The proof in this step just follows those provided in Polyanin and Manzhirov.26

Differentiate both sides of (A1), we have

y ′(x) + λAeλx
 x

a

e−λsy(s)ds − λAe−λx
 b

x

eλsy(s)ds = f ′(x). (A5)

Differentiate the resulting equation one more time, we then have

y ′′(x) + λ2Aeλx
 x

a

e−λsy(s)ds + λ2Ae−λx
 b

x

eλsy(s)ds + 2λAy(x) = f ′′(x), (A6)

by (A1) the above equation can be rewritten as

y ′′(x) + λ(2A − λ)y(x) = f ′′(x) − λ2 f (x). (A7)

Equation (A1) at x = a,b can be expressed as

A
 b

a

eλ(s−a)y(s)ds = f (a) − y(a)

A
 b

a

eλ(b−s)y(s)ds = f (b) − y(b). (A8)

That is, the solution to equation (A7) should also satisfy equation (A8), if it is supposed to be a
solution of equation (A1). This can be done by expressing λAy(x) from (A7) via y ′′(x), f ′′(x) and
substitute the results into (A8). Integration by parts then yields the conditions

eλb(φ′(b) − λφ(b)) − eλa(φ′(a) + λφ(a)) = 0,

e−λb(φ′(b) − λφ(b)) − e−λa(φ′(a) + λφ(a)) = 0, (A9)

where φ(x) = y(x) − f (x). It then requires that

φ′(b) − λφ(b) = 0, φ′(a) + λφ(a) = 0, (A10)
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which can be rewritten as the boundary conditions for y(x)
y ′(a) + λ y(a) = f ′(a) + λ f (a), y ′(b) − λ y(b) = f ′(b) − λ f (b). (A11)

Equations (A7), (A11) together constitute the boundary value problem of a differential equation
which the solution y(x) of integral equation (A1) should satisfy.

Thirdly, we prove that equations (A7), (A11) admit a unique solution. To prove this, it is
equivalent to demonstrate that the corresponding homogeneous equation

y ′′(x) + λ(2A − λ)y(x) = 0, (A12)
y ′(a) + λ y(a) = 0, y ′(b) − λ y(b) = 0 (A13)

has trivial solution only. Since we assume that A > 0, λ < 0, it implies that µ = λ(2A − λ) < 0. So,
it is suffice to demonstrate that µ < 0 is not an eigenvalue of the above differential operator with the
boundary conditions. We can prove it by contradiction as follows.

If µ < 0 is an eigenvalue of the above problem, then there exists constants l1, l2(l1l2 , 0) such
that

y(x) = l1e−
√−µx + l2e

√−µx (A14)

is a solution of the problem. To determine l1, l2, we substitute it into the boundary conditions to get

(λ − √−µ)e−√−µal1 + (λ + √−µ)e
√−µal2 = 0,

(−λ − √−µ)e−√−µal1 + (−λ + √−µ)e
√−µal2 = 0. (A15)

For the linear system to have nonzero solutions, its determinant D should be zero

D = −(λ − √−µ)2e
√−µ(b−a) + (λ + √−µ)2e

√−µ(a−b) = 0, (A16)

which then requires that

e2
√−µ(a−b) =

(λ − √−µ)2
(λ + √−µ)2 . (A17)

As a < b, the left handside is always less than one. However, since λ < 0,
√−µ > 0, the right hand-

side is larger than one. Thus, there is a contradiction. So, our assumption l1, l2(l1l2 , 0) is untrue.
That is, equations (A7),(A11) have a unique solution. We have completed our proof.

APPENDIX B

1. Exact solution for the transverse displacement w(x) of a clamped-pinned beam with trans-
verse distributed load q0.

w(x) = q0x4

24EI
− q0Lx3

(
2

ξ1
�
5L3 − 6L2 (ξ1 − 1) τ − 6L (ξ1 − 1) τ2

+12
�
ξ1

2 − 1
�
τ3� cosh

(
L
√
ξ1τ

)
+
�
5L3 (ξ1 + 1) − 12L2 (ξ1 − 1) τ − 12L (ξ1 − 1) τ2

+48 (ξ1 − 1) ξ1τ
3� sinh

(
L
√
ξ1τ

)
− 12 (ξ1 − 1)ξ1τ

2 (3L + 2 (ξ1 + 1) τ)
) 

48EI
(

ξ1
�
2L3 − 3L2 (ξ1 − 1) τ + 6 (ξ1 − 1) τ3� cosh

(
L
√
ξ1τ

)
+
�
L3 (ξ1 + 1) − 3L2 (ξ1 − 1) τ + 3L (ξ1 − 1) 2τ2 + 6 (ξ1 − 1) ξ1τ

3� sinh
(

L
√
ξ1τ

)
−6 (ξ1 − 1)ξ1τ

2(L + τ))
+q0x2

(
−6 (ξ1 − 1) ξ1τ

2 �L3 + 2L2ξ1τ + 4L (ξ1 − 1) τ2 + 4 (ξ1 − 1) τ3�
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+ξ1
�
L2 + 2 (ξ1 − 1) τ2� �L3 + 12 (ξ1 − 1) τ3� cosh

(
L
√
ξ1τ

)
+

1
2


ξ1
�
L5 (ξ1 + 1) − 4L3 (ξ1 − 2) (ξ1 − 1) τ2 + 24L2 (ξ1 − 1) τ3 + 24L (ξ1 − 1) 3τ4

+48 (ξ1 − 1) 2ξ1τ
5� sinh

(
L
√
ξ1τ

)) 
8EI


ξ1

(
ξ1
�
2L3 − 3L2 (ξ1 − 1) τ + 6 (ξ1 − 1) τ3� cosh

(
L
√
ξ1τ

)
+
�
L3 (ξ1 + 1) − 3L2 (ξ1 − 1) τ + 3L (ξ1 − 1) 2τ2 + 6 (ξ1 − 1) ξ1τ

3� sinh
(

L
√
ξ1τ

)
− 6 (ξ1 − 1)ξ1τ

2(L + τ)
)

+q0 (ξ1 − 1) τx
(
L2 �−

�
L3 + 5L2τ − 4L (ξ1 − 3) τ2 − 12 (ξ1 − 1) τ3�� sinh

(
L
√
ξ1τ

)
−

ξ1
�
L5 + 5L4τ − 4L3 (ξ1 − 3) τ2 + 24L

�
ξ1

2 − 1
�
τ4 + 48 (ξ1 − 1) ξ1τ

5� cosh
(

L
√
ξ1τ

)
+


ξ1τ

�
3L4 + 8L3ξ1τ + 24L2 (ξ1 − 1) τ2 + 24L

�
ξ1

2 − 1
�
τ3 + 48 (ξ1 − 1) ξ1τ

4�
) 

8EI
(

ξ1
�
2L3 − 3L2 (ξ1 − 1) τ + 6 (ξ1 − 1) τ3� cosh

(
L
√
ξ1τ

)
+
�
L3 (ξ1 + 1) − 3L2 (ξ1 − 1) τ + 3L (ξ1 − 1) 2τ2 + 6 (ξ1 − 1) ξ1τ

3� sinh
(

L
√
ξ1τ

)
− 6 (ξ1 − 1)ξ1τ

2(L + τ)
)

+
((ξ1 − 1)ξ1q0τ

2 �Lτ
�
3L3 − 4L2 (ξ1 − 3) τ + 12L

�
−2ξ1

2 + ξ1 + 1
�
τ2

−48 (ξ1 − 1) ξ1τ
3� − L2 �L3 + 5L2τ − 4L (ξ1 − 3) τ2 − 12 (ξ1 − 1) τ3� cosh

(
L − x
√
ξ1τ

)
+L2 �L3 + 5L2τ − 4L (ξ1 − 3) τ2 − 12 (ξ1 − 1) τ3� cosh

(
L
√
ξ1τ

)
+

ξ1
�
L5 + 5L4τ − 4L3 (ξ1 − 3) τ2 + 24L

�
ξ1

2 − 1
�
τ4 + 48 (ξ1 − 1) ξ1τ

5� sinh
(

L
√
ξ1τ

)
+
�
Lτ

�
−3L3 + 4L2 (ξ1 − 3) τ + 12L (ξ1 − 1) (2ξ1 + 1) τ2 + 48 (ξ1 − 1) ξ1τ

3�

−

ξ1
�
L5 + 5L4τ − 4L3 (ξ1 − 3) τ2 + 24L

�
ξ1

2 − 1
�
τ4

+48 (ξ1 − 1) ξ1τ
5� sinh

(
L
√
ξ1τ

))
cosh

(
x
√
ξ1τ

)
+


ξ1
��

L5 + 5L4τ − 4L3 (ξ1 − 3) τ2

+24L
�
ξ1

2 − 1
�
τ4 + 48 (ξ1 − 1) ξ1τ

5� cosh
(

L
√
ξ1τ

)
+ τ

�
−3L4 − 8L3ξ1τ

−24L2 (ξ1 − 1) τ2 − 24L
�
ξ1

2 − 1
�
τ3 − 48 (ξ1 − 1) ξ1τ

4�� sinh
(

x
√
ξ1τ

))) 
(
8EI

(
ξ1
�
2L3 − 3L2 (ξ1 − 1) τ + 6 (ξ1 − 1) τ3� cosh

(
L
√
ξ1τ

)
+
�
L3 (ξ1 + 1) − 3L2 (ξ1 − 1) τ + 3L (ξ1 − 1) 2τ2 + 6 (ξ1 − 1) ξ1τ

3� sinh
(

L
√
ξ1τ

)
− 6 (ξ1 − 1)ξ1τ

2(L + τ)
))

. (B1)
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2. Exact solution for the transverse displacement w(x) of a cantilever beam with transverse
distributed load q0ex/L.

w(x) = −q0eLx3

6EI

− q0Lx(
EI (L2 − ξ1τ2)

(
(ξ1 + 1) sinh

(
L√
ξ1τ

)
+ 2
√
ξ1 cosh

(
L√
ξ1τ

)))
((
−e (ξ1 − 1) ξ1

3/2τ3(L + τ) + �L4 (ξ1 + 1) + L3 (ξ1 − 1) τ

+L2 ((e − 2)ξ1 − e) τ2 − e (ξ1 − 1) ξ1τ
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(
L
√
ξ1τ

)
−

ξ1
�
−2L4 + L3 (τ − ξ1τ) + L2 (−eξ1 + ξ1 + e + 1) τ2

+e (ξ1 − 1) ξ1τ
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(
L
√
ξ1τ
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+

q0L
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x
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x
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x
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. (B2)

The maximum deflection occurs at x = L, which can be expressed as

wmax =
q0L
6EI
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(
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−6
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�
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5� sinh
(

L
2
√
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(
L

2
√
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)
+
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(
L

2
√
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−

(
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(
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�
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(
L
√
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)
+
�
L4 (1 + ξ1) + L3 (−1 + ξ1) τ + L2 (−e + (−2 + e)ξ1) τ2
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−e (−1 + ξ1) ξ1τ
4� sinh

(
L
√
ξ1τ

))) 
(�

L2 − ξ1τ
2�

(
2

ξ1 cosh

(
L
√
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)
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√
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. (B3)
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