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Abstract: The typically-used element torsional stiffness GJ/L (where G is the shear modulus, J the
St. Venant torsion constant, and L the element length) may severely underestimate the torsional
stiffness of thin-walled nanostructural members, due to neglecting element warping deformations.
In order to investigate the exact element torsional stiffness considering warping deformations, this
paper presents a matrix stiffness method for the torsion and warping analysis of beam-columns.
The equilibrium analysis of an axial-loaded torsion member is conducted, and the torsion-warping
problem is solved based on a general solution of the established governing differential equation for
the angle of twist. A dimensionless factor is defined to consider the effect of axial force and St. Venant
torsion. The exact element stiffness matrix governing the relationship between the element-end
torsion/warping deformations (angle and rate of twist) and the corresponding stress resultants
(torque and bimoment) is derived based on a matrix formulation. Based on the matrix stiffness
method, the exact element torsional stiffness considering the interaction of torsion and warping is
derived for three typical element-end warping conditions. Then, the exact element second-order
stiffness matrix of three-dimensional beam-columns is further assembled. Some classical torsion-
warping problems are analyzed to demonstrate the established matrix stiffness method.

Keywords: matrix stiffness method; element stiffness matrix; torsion; warping; equilibrium analysis;
elastic buckling analysis

1. Introduction

In recent decades, research on nanomaterials (i.e., materials with internal structure of
nanoscale dimension) has made great progress and is widely used in scientific research and
industrial production. Some formations of oxides, metals, ceramics, and other substances
have been discovered. These nanomaterials obey the fundamental laws of the classical
physics governing the macroworld [1]. Nanomaterials such as graphene may provide many
enhanced properties including high strength, stiffness, and light weight [2]. Researchers
also utilize nanomaterials in structures to improve the mechanical behavior and other
performance [3].

Although a number of computer programs such as Abaqus, OpenSees, Ansys, and
MSC.Marc are readily available for the structural analysis of thin-walled nanostructural
members, approaches to obtain the exact solutions [4–10] in closed form are helpful in
many situations. The matrix stiffness method (MSM) has been found to be a suitable
and systematic method for such purposes [11–20]. The basic idea of the matrix stiffness
method is to establish the equilibrium relationship between the element-end displacements
∆ = (u1, δ1, θ1, u2, δ2, θ2)

T and the element-end forces Fext = (F1, V1, M1, F2, V2, M2)
T of a

beam-column element (where ui, di, and qi are element-end axial displacement, translational
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displacement, and rotation angle, respectively; Fi, Vi, and Mi are element-end axial load,
shear force, and bending moment, respectively, as shown in Figure 1) as

[Ke]∆ = Fext (1)

where [Ke] is the element stiffness matrix for flexural-axial problems.

Figure 1. Axial-loaded beam–column with element-end displacements and forces.

For first-order (e.g., [21,22]) and second-order (e.g., [10,13–16,19]) analysis (i.e., without
and with considering the geometric nonlinearity), the element stiffness matrix of a beam-
column element can be formulated as Equations (2) and (3), respectively.

[Ke,1st-ord] =



EA
L − EA

L
12 EI

L3 6 EI
L2 −12 EI

L3 6 EI
L2

4 EI
L −6 EI

L2 2 EI
L

EA
L

12 EI
L3 −6 EI

L2

sym. 4 EI
L


(2)

[Ke,2nd-ord] =



EA
L − EA

L
Tc(λ)

EI
L3 Qc(λ)

EI
L2 −Tc(λ)

EI
L3 Qc(λ)

EI
L2

Sc(λ)
EI
L −Qc(λ)

EI
L2 Cc(λ)

EI
L

EA
L

Tc(λ)
EI
L3 −Qc(λ)

EI
L2

sym. Sc(λ)
EI
L


. (3)

where E denotes the elastic modulus; A denotes the cross-sectional area; I denotes the
cross-sectional moment of inertia; L denotes the element length; and Tc, Qc, Sc, and Cc are
coefficients in the element stiffness matrix as functions of factor λ, formulated as Equation
(4); λ (in a flexural-axial problem) denotes a dimensionless factor for the axial compression
force Pc, defined as Equation (5).

Tc(λ) = λ3 sin λ/φc(λ)
Qc(λ) = λ2(1− cos λ)/φc(λ)
Sc(λ) = λ(sin λ− λ cos λ)/φc(λ)
Cc(λ) = λ(λ− sin λ)/φc(λ)
φc(λ) = 2− 2 cos λ− λ sin λ

(4)

λ =

√
PcL2

EI
= π

√
Pc

PE
(5)
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Using the element stiffness matrix, many different types of analyses can be con-
ducted, including the traditional analysis for the element deformations and internal forces
(e.g., [21,22]), as well as elastic buckling and second-order stability analyses (e.g., [15–18]).

The matrix stiffness method can also be used for three-dimensional analysis of beam-
columns. For second-order analysis, Ekhande [23] presented an exact element stiffness
matrix associated with the 12 element-end deformations/rotation angles of 3D beam-
columns as Equation (6). The matrix has been used to conduct stability analysis of 3D
structures [19].



EA
L − EA

L
Tc(λz ) EIzz

L3 Qc(λz ) EIzz
L2 −Tc(λz ) EIzz

L3 Qc(λz ) EIzz
L2

Tc
(

λy
) EIyy

L3 −Qc
(

λy
) EIyy

L2 −Tc
(

λy
) EIyy

L3 −Qc
(

λy
) EIyy

L2
GJ
L − GJ

L
Sc
(

λy
) EIyy

L Qc
(

λy
) EIyy

L2 Cc
(

λy
) EIyy

L
Sc(λz ) EIzz

L −Qc(λz ) EIzz
L2 Cc(λz ) EIzz

L
EA
L

Tc(λz ) EIzz
L3 −Qc(λz ) EIzz

L2

Tc
(

λy
) EIyy

L3 Qc
(

λy
) EIyy

L2
GJ
L

sym. Sc
(

λy
) EIyy

L
Sc(λz ) EIzz

L





ux1
uy1
uz1
ϕ1
θy1
θz1
ux2
uy2
uz2
ϕ2
θy2
θz2



=



Fx1
Fy1
Fz1
T1

My1
Mz1
Fx2
Fy2
Fz2
T2

My2
Mz2



(6)

where G denotes the shear modulus; J denotes the St. Venant torsion constant; Iyy and
Izz denote the cross-sectional moments of inertia about y-axis and z-axis, respectively; λy
and λz denote axial force factors associated with the y-axis bending and z-axis bending,
respectively; uyi and uzi denote element-end translational displacements in y-direction
and z-direction, respectively; ϕi denotes the element-end angle of twist; θyi and θzi denote
element-end rotation angles in the X-Z plane and X-Y plane, respectively; Fyi and Fzi denote
element-end loads in the y-direction and z-direction, respectively; Ti denotes the element-
end torsional moment; and Myi and Mzi denote element-end bending moments about the
y-axis and z-axis, respectively, as shown in Figure 2.

Figure 2. Element-end displacements and forces of 3D beam elements for traditional matrix stiffness
method.

However, these researchers neglected the interaction between torsion and warping
and the axial force effect in torsional analysis. They directly used GJ/L as torsional stiffness
in engineering practices, which may severely underestimate the torsional stiffness of thin-
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walled nanostructural members without considering warping deformations. In order to
present the exact element stiffness matrix for the second-order analysis of three-dimensional
beam-columns considering torsion and warping, this paper investigates the interaction
of the axial force, torque, and bimoment of torsion members. The exact element torsional
stiffnesses are derived and shown to be significantly larger than the typically-used GJ/L.
The exact element stiffness matrix associated with the element-end torsion and warping
deformations can be obtained, and the exact three-dimensional element stiffness matrix
can be further assembled. Some application examples of the exact element stiffness matrix
for torsion and warping are also presented.

In addition, the temperature is non-negligible, which can also influence the bifurcation
buckling of thin-walled structures, and the thermoelastic analysis of structures has already
been presented in many papers. However, this paper is focused on solving the mechanical
buckling of thin-walled members. Therefore, we list some papers [24,25] on thermoelastic
analysis as a reference instead of presenting further research.

2. Equilibrium Analysis

To develop the matrix stiffness method, an equilibrium analysis of an axial-loaded
torsion member (especially for members with a thin-walled cross-section) is conducted, as
shown in Figure 3.

Figure 3. Equilibrium analysis of axial-loaded torsion member: (a) analyzed element with element-
end torsion/warping deformations and stress resultants; (b) equilibrium analysis of element short
segment side view; (c) cross-section elevation view.

Besides the usual assumptions of the linear theory of elasticity, the following assump-
tions [5,6,10,26–28] of classical theory for members with a thin-walled cross-section are
employed in the analysis:



Nanomaterials 2022, 12, 538 5 of 17

• The global cross-sectional deformation assumption, i.e., the cross-section is assumed
to be perfectly rigid in its own plane while free to warp out of its plane;

• The classical Kirchhoff–Love’s thin plate bending assumption, i.e., straight lines nor-
mal to the mid-surface of the thin-walled plates remain straight, inextensible, and
normal to the mid-surface after deformation;

• Each thin-walled plate is assumed to have null mid-surface membrane shear strains
(Vlasov’s hypothesis) and null transverse extensions.

Based on these assumptions, a compatibility equation relating the angle of twist ϕ and
the cross-sectional bimoment Bω is formulated as Equation (7). The St. Venant torque Ts is
formulated as Equation (8) [5,6,10,26].

Bω = −EIωω
d2 ϕ

dx2 (7)

Ts = GJ
dϕ

dx
(8)

where Iωω denotes the warping constant. The sign conventions of Bω and T are defined
in Figure 3b.

Since the total cross-sectional torque T is consisted of the Ts and the warping restraint
torque Tw, the Tw can then be derived as the total cross-sectional torque T subtracted by
the St. Venant torque

Tw = T − Ts = T − GJ
dϕ

dx
(9)

1. Equilibrium of torque for element short segment

For an equilibrium analysis, a short segment of the element with length dx is analyzed
in Figure 3b. The equilibrium of torque gives

dT
dx

= −τ (10)

where τ denotes the distributed torque.

2. Equilibrium of bimoment for element short segment

The equilibrium of bimoment is also analyzed. The warping restraint torques [Equa-
tion (9)] at the two cross-sections with distance x of the element short segment are in the
opposite direction, and they combine to a bimoment increment formulated as

Twdx =

(
T − GJ

dϕ

dx

)
dx = Tdx− GJdϕ (11)

In addition, due to the torsion of the short segment (cross-section elevation view
in Figure 3c), the uniformly distributed axial stress σn on the top section is inclined to
produce a shear stress σndAρsdϕ in the horizontal plane. Therefore, the Wagner effect can
be considered by taking moment of the shear stress about the shear center S, derived as
Equation (12). ∫

A

(σndA · ρSdϕ · ρS) = σndϕ
∫
A

ρS
2dA =

P
A

Ip,Sdϕ (12)

where σn = P/A denotes the assumed uniformly-distributed axial stress from the axial
force; ρS denotes the distance of a point in the cross-section to the shear center S; and Ip,S
denotes the polar moment of inertia about the shear center S.

Therefore, considering these two effects and an increment of the cross-sectional bimo-
ment along the element length, the equilibrium of bimoment is formulated as Equation (13).

Tdx− GJdϕ +
P
A

Ip,Sdϕ = dBω ⇒ T =
dBω

dx
−
(

PIp,S/A− GJ
)dϕ

dx
(13)
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Then, combining Equations (10) and (13) and considering Equation (7), the governing
differential equation of equilibrium for this torsion-warping problem can be established as
Equation (14), which can be derived to a dimensionless form as Equation (15).

EIωω
d4 ϕ

dx4 +
(

PIp,S/A− GJ
)d2 ϕ

dx2 = τ (14)

d4 ϕ

dx4 + λc
L2

2 d2 ϕ

dx2 = τ
EIωω

for PIp,S/A ≥ GJ

d4 ϕ

dx4 − λt
L2

2 d2 ϕ

dx2 = τ
EIωω

for PIp,S/A < GJ
(15)

where λc/t denotes a dimensionless factor for the effect of axial force and St. Venant torsion,
defined as Equation (16); the subscripts “c” and “t” are associated with conditions of
PIp,S/A ≥ GJ and PIp,S/A < GJ, which can be defined as generalized “axial compression”
and “axial tensile” situations, respectively.

λc =

√
PIp,S/A−GJ

EIωω/L2 for PIp,S/A ≥ GJ

λt =

√
GJ−PIp,S/A

EIωω/L2 for PIp,S/A < GJ
(16)

For null distributed torque (τ = 0), the general solution for the differential equation of
equilibrium is given by

ϕ =

{
Q1 cos(λcx/L) + Q2 sin(λcx/L) + Q3x + Q4 for PIp,S/A ≥ GJ
Q1t cosh(λtx/L) + Q2tsinh(λtx/L) + Q3tx + Q4t for PIp,S/A < GJ

(17)

where Q1, Q2, Q3, and Q4 (Q1t, Q2t, Q3t, Q4t) are deformation combination factors defining
the possible deformation curve.

In the following, the derivations will focus on the generalized “axial compression”
situation. It is noted that the derivations and the results for the generalized “axial tensile”
situation is very similar to the “axial compression” situation, and the main difference is the
use of hyperbolic trigonometric functions instead of trigonometric functions [as shown in
Equation (17)].

Based on Equations (7) and (13), the element stress resultants (bimoment and torque)
can be derived as Equations (18) and (19), respectively.

Bω

EIωω
= −d2 ϕ

dx2 = Q1

(
λc

L

)2
cos

λcx
L

+ Q2

(
λc

L

)2
sin

λcx
L

(18)

T
EIωω

=
d(Bω/EIωω)

dx
−
(

λc

L

)2 dϕ

dx
= −

(
λc

L

)2
Q3 (19)

Analysis associated with the element deformations and stress resultants of torsion
members can then be conducted using Equations (17)–(19).

3. Matrix Stiffness Method for Torsion and Warping

An element stiffness matrix, showing the relationship between the element-end de-
formations (angle and rate of twist) and the corresponding stress resultants (torque and
bimoment), is formulated based on the previous section. Then, a matrix stiffness method
for torsion and warping is established for the analysis of torsion members, including the
approximate element torsion-warping stiffness matrix for simpler applications and the
torsional stiffness analysis for three typical element-end warping conditions.

3.1. Element Stiffness Matrix for Torsion and Warping

Equations (17)–(19) can be used in the analysis associated with the element deforma-
tions and stress resultants of torsion members. In a matrix stiffness method, attentions are
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focused on the element-end torsion/warping deformations and the corresponding stress
resultants, formulated in matrix forms for simplified and systematic analysis.

The element-end deformations (angle and rate of twist) are formulated in a matrix
form as Equation (20) based on Equation (17).


ϕ1
ϕ2
ω1
ω2

 =


ϕ(0)
ϕ(L)
ω(0)
ω(L)

 =


1 0 0 1

cos λc sin λc L 1
0 λc/L 1 0

−λc sin λc/L λc cos λc/L 1 0




Q1
Q2
Q3
Q4

 (20)

The element-end stress resultants (torque and bimoment) are formulated in a matrix
form as Equation (21) based on Equations (18) and (19).


T1
T2

Bω1
Bω2

 =


−T(0)
T(L)
Bω(0)
−Bω(L)

 = EIωω


0 0 (λc/L)2 0
0 0 −(λc/L)2 0

(λc/L)2 0 0 0
−(λc/L)2 cos λc −(λc/L)2 sin λc 0 0




Q1
Q2
Q3
Q4

 (21)

The relationship between the element-end deformations (angle and rate of twist)
and the corresponding stress resultants (torque and bimoment) is then formulated as
Equation (22) by combining Equations (20) and (21).


T1
T2

Bω1
Bω2

 = EIωω


0 0 (λc/L)2 0
0 0 −(λc/L)2 0

(λc/L)2 0 0 0
−(λc/L)2 cos λc −(λc/L)2 sin λc 0 0




1−cos λc
φc

sin λc−λc cos λc
kφc

− 1−cos λc
φc

λc−sin λc
kφc

k sin λc
φc

1−cos λc
φc

− k sin λc
φc

1−cos λc
φc

− sin λc
φc

1−cos λc−λc sin λc
kφc

sin λc
φc

− 1−cos λc
kφc

1−cos λc−λc sin λc
φc

− sin λc−λc cos λc
kφc

1−cos λc
φc

− λc−sin λc
kφc




ϕ1
ϕ2
ω1
ω2



= [Ke]


ϕ1
ϕ2
ω1
ω2


(22)

where [Ke] is the element stiffness matrix for torsion and warping, which can be simplified as

[Ke] =


Tc(λc)

EIωω

L3 −Tc(λc)
EIωω

L3 Qc(λc)
EIωω

L2 Qc(λc)
EIωω

L2

Tc(λc)
EIωω

L3 −Qc(λc)
EIωω

L2 −Qc(λc)
EIωω

L2

Sc(λc)
EIωω

L Cc(λc)
EIωω

L
sym. Sc(λc)

EIωω
L


Tc(λc) = λc

3sin λc/φc(λc)
Qc(λc) = λc

2(1− cos λc)/φc(λc)
Sc(λc) = λc(sin λc − λc cos λc)/φc(λc)
Cc(λc) = λc(λc − sin λc)/φc(λc)
φc(λc) = 2− 2 cos λc − λc sin λc

(23)

where the expressions for the element stiffness coefficients Tc, Qc, Sc, and Cc are the same as
that in the element stiffness matrix for a flexural-axial problem, which are formulated in Equation (4).

Equation (23) gives the element stiffness matrix based on the axial (compression) force factor λc
(Equation (16)) in the case of PIp,S/A ≥ GJ.

In the case of PIp,S/A < GJ, the element stiffness matrix can also be derived from the general
solution in Equation (17) and is then formulated in the same form as Equation (23), with a change of
the subscript “c” to “t”. However, the element stiffness coefficients Tt, Qt, St, and Ct are expressed in
a form using hyperbolic trigonometric functions based on the axial (tension) force factor λt.

Tt(λt) = λt
3sinhλt/φt(λt)

Qt(λt) = λt
2(cosh λt − 1)/φt(λt)

St(λt) = λt(λt cosh λt − sinhλt)/φt(λt)
Ct(λt) = λt(sinhλt − λt)/φt(λt)
φt(λt) = 2− 2 cosh λt + λtsinhλt

(24)
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The element stiffness functions Tc, Qc, Sc, and Cc correspond to the element-end stress resultant
(torque or bimoment) for a unit element-end deformation (angle or rate of twist). These coefficients
are transcendental functions of the factor λc for St. Venant torsion and axial force. By noting

that λc =

√(
PIp,S/A− GJ

)
/(EIωω/L2), the influences of GJ−PIp,S/A on these element stiffness

functions are plotted in Figure 4. As shown in Figure 4, Tc, Qc, and Sc increase (while Cc decreases)
with the increase in GJ−PIp,S/A (which corresponds to either an increasing GJ or a decreasing axial
force P).

Figure 4. Influence of GJ-PIp,S/A on element stiffness functions Tc, Qc, Sc, Cc, and TF.

The linear approximations of the transcendental element stiffness functions Tc, Qc, Sc, and Cc
are given as Equation (25) based on the Taylor series of the functions at λc = 0. The approximations
are plotted as the dashed lines in Figure 4, which shows that these linear approximations have consid-
erably small differences from the exact transcendental element stiffness functions when GJ−PIp,S/A
is in a range between −π2EIωω/L2 and π2EIωω/L2.

Tc(λc) ≈ 12− 6
5 λc

2 = 12 + 6
5

GJ−PIp,S/A
EIωω/L2

Qc(λc) ≈ 6− 1
10 λc

2 = 6 + 1
10

GJ−PIp,S/A
EIωω /L2

Sc(λc) ≈ 4− 2
15 λc

2 = 4 + 2
15

GJ−PIp,S/A
EIωω /L2

Cc(λc) ≈ 2 + 1
30 λc

2 = 2− 1
30

GJ−PIp,S/A
EIωω/L2

(25)

Based on Equation (25), the element torsion-warping stiffness matrix [Ke] can be approximated
as Equation (26) for simpler applications, which shows the linear influences of the warping constant
Iωω , the St. Venant torsion constant J, and the axial force P on [Ke]. This approximated element
stiffness matrix can also be derived by using an energy approach and assuming a cubic deformation
shape function [11].

[Ke] =
EIωω

L3


12 −12 6L 6L

12 −6L −6L
4L2 2L2

sym. 4L2

+
GJ − PIp,S/A

L


6
5 − 6

5
L
10

L
10

6
5 − L

10 − L
10

2L2

15 − L2

30

sym. 2L2

15

 (26)

3.2. Torsional Stiffnesses for Three Typical Element-End Warping Conditions
In engineering practices, the element torsional stiffness has drawn most of the attentions, but

the warping stiffness and the influence of element-end warping restraint on the torsional stiffness
have not been sufficiently investigated.

The element torsional stiffness is usually expressed using the St. Venant torsion constant as
GJ/L. However, because of the interaction between torsion and warping, the element-end torsion
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stiffness may vary for different warping conditions. Therefore, an element-end torsional stiffness
matrix considering different warping conditions is required.

By using the element torsion-warping stiffness matrix [Ke], we can derive the torsional stiff-
nesses of members with typical element-end warping conditions.

For members with restrained warping at the ends (ω1 = ω2 = 0), the rows and columns in [Ke]
related to the rate of twist and bimoment can be deleted to obtain a torsion stiffness matrix.

[Ke,tor] = Tc(λc)
EIωω

L3

[
1 −1
−1 1

]
(27)

where the torsional stiffness ktor for this restrained-restrained warping condition can be expressed as

ktor = Tc(λc)
EIωω

L3 (28)

For members with no restraint of warping at the ends (Bω1 = Bω2 =0), the torsion stiffness
matrix that relates the element-end twisting angles and torques can be derived as follows.

 Tc(λc)
EIωω

L3

[
1 −1
−1 1

]
Qc(λc)

EIωω

L2

[
1 1
−1 −1

]
sym. EIωω

L

[
Sc(λc) Cc(λc)
Cc(λc) Sc(λc)

]


(

ϕ1
ϕ2

)
(

ω1
ω2

)
 =


(

T1
T2

)
(

0
0

)


⇒
{

Tc(λc)
EIωω

L3

[
1 −1
−1 1

]
− [Qc(λc)]

2 EIωω

L3

[
1 1
−1 −1

][
Sc(λc) Cc(λc)
Cc(λc) Sc(λc)

]−1[ 1 1
−1 −1

]T
}(

ϕ1
ϕ2

)
=

(
T1
T2

)

⇒
(

Tc(λc)− 2[Qc(λc)]
2

Sc(λc)+Cc(λc)

)
EIωω

L3

[
1 −1
−1 1

](
ϕ1
ϕ2

)
=

(
T1
T2

)
(29)

By using the element stiffness functions in Equation (23), the torsional stiffness ktor for this
free-free warping condition is derived as

ktor =

(
Tc(λc)−

2[Qc(λc)]
2

Sc(λc) + Cc(λc)

)
EIωω

L3 = −λc
2 EIωω

L3 =
GJ
L
−

PIp,S

AL
(30)

For members with restrained warping at one end (ω1 = 0) and free warping at the other end
(Bω2 = 0), the torsion stiffness matrix can be derived as follows. Tc(λc)

EIωω

L3 −Tc(λc)
EIωω

L3 Qc(λc)
EIωω

L2

Tc(λc)
EIωω

L3 −Qc(λc)
EIωω

L2

sym. Sc(λc)
EIωω

L


 ϕ1

ϕ2
ω2

 =

 T1
T2

Bω2 = 0


⇒
{

Tc(λc)
EIωω

L3

[
1 −1
−1 1

]
− [Qc(λc)]

2 EIωω

L3

[
1
−1

]
[Sc(λc)]

−1
[

1
−1

]T
}(

ϕ1
ϕ2

)
=

(
T1
T2

)

⇒
(

Tc(λc)− [Qc(λc)]
2

Sc(λc)

)
EIωω

L3

[
1 −1
−1 1

](
ϕ1
ϕ2

)
=

(
T1
T2

)
(31)

By using the element stiffness functions in Equation (23), the torsional stiffness ktor for this
restrained-free warping condition is derived as

ktor = TF(λc)
EIωω

L3 =

(
Tc(λc)−

[Qc(λc)]
2

Sc(λc)

)
EIωω

L3 =
−λc

2

1− tan λc/λc

EIωω

L3 (32)

where TF is a stiffness function associated with this restrained-free-warping condition, and its linear
approximation is derived as Equation (33). The stiffness function TF and its approximation are also
plotted in Figure 4.

TF(λc) ≈ 3 +
6
5

GJ − PIp,S/A
EIωω/L2 (33)
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In summary, the torsional stiffnesses of members with three typical element-end warping
conditions can be formulated as

ktor =


Tc(λc)

EIωω

L3 ≈ 6
5

(
GJ
L −

PIp,S
AL

)
+ 12 EIωω

L3 restrained− restrained warping

−λc
2 EIωω

L3 = GJ
L −

PIp,S
AL free− free warping

TF(λc)
EIωω

L3 ≈ 6
5

(
GJ
L −

PIp,S
AL

)
+ 3 EIωω

L3 restrained− free warping

(34)

where the linear approximations are based on Section 3.1. Equation (34) shows that the commonly-
used expression GJ/L for the torsional stiffness is only valid for members with the free-warping
condition and negligible axial force effect. Figure 5 compares the torsional stiffnesses for these three
typical warping conditions. The effect of St. Venant torsion and axial force is varied along the
horizontal axis. As shown in Figure 5, the torsional stiffness associated with the restrained-restrained
warping condition may be significantly larger than the commonly-used value GJ/L. Therefore, in
structural analysis, the torsional stiffness value should be carefully selected based on the element-end
warping conditions.

Figure 5. Comparisons of torsional stiffnesses for the three typical warping conditions.

4. Applications of Torsion-Warping Stiffness Matrix
In this section, some classical torsion-warping problems will be analyzed as application exam-

ples to demonstrate the established matrix stiffness method.

4.1. Elastic Buckling Analysis for Typical Torsion-Warping-Axial Stability Problems
The elastic bifurcation buckling analysis can be directly conducted using the assembled struc-

tural stiffness matrix [Ks]. The eigenproblem for an elastic buckling analysis tries to solve a nontrivial
solution for the global load deformation equation [Ks]∆ = 0. Therefore, an elastic buckling analysis
can be conducted by setting the determinant of the assembled structural stiffness matrix [Ks] to zero
(Equation (35)). The factor λc,cr at the buckling state can be solved, corresponding to a buckling axial
force Pcr formulated as Equation (36).

det[Ks(λc,cr)] = 0 (35)√
Pcr Ip,S/A− GJ

EIωω/L2 = λc,cr ⇒ Pcr =
(

GJ + λc,cr
2EIωω/L2

)
A/Ip,S (36)

For torsion-warping-axial stability problems with typical element-end boundary conditions,
the elastic bifurcation buckling analysis can be conveniently conducted using the matrix stiffness
method, as listed in Table 1.
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Table 1. Analysis of torsion-warping-axial stability problems with typical element-end boundary
conditions.

Case.
Boundary

Condition at
Node 1

Boundary
Condition at

Node 2

Condition for
Buckling

Dimensionless
Factor at Buckling

State
(λc,cr)

Buckling Axial Force
(Pcr)

1 ϕ1 = 0 ϕ2 = 0 Sc−Cc = 0 λc,cr = π Pcr =
(
GJ + π2EIωω/L2)A/Ip,S

2 ϕ1 = 0, ω1= 0 / TcSc−Qc
2 = 0 λc,cr = π/2 Pcr =

(
GJ + π2EIωω/4L2)A/Ip,S

3 ϕ1 = 0, ω1= 0 ω2=0 Tc = 0 λc,cr = π Pcr =
(
GJ + π2EIωω/L2)A/Ip,S

4 ϕ1 = 0, ω1= 0 ϕ2 = 0 Sc = 0 λc,cr ≈ π/0.7 Pcr ≈
(
GJ + 2.05π2EIωω/L2)A/Ip,S

5 ϕ1 = 0, ω1= 0 ϕ2 = 0, ω2= 0 ϕc = 0 λc,cr = 2π Pcr =
(
GJ + 4π2EIωω/L2)A/Ip,S

For a torsion restrained column (ϕ1 = 0, ϕ2 = 0) with free of warping at the two element ends
(case 1), the unrestrained element-end deformations are the warping deformations. Therefore, the
buckling state corresponds to the condition that the determinant of the submatrix for warping (third
and fourth row/column of the element stiffness matrix [Ke]) equals zero, and the buckling condition
in this case can be solved as

det
[

Sc(λc) Cc(λc)
Cc(λc) Sc(λc)

]
= 0⇔ Sc(λc)− Cc(λc) = 0⇒ λc,cr = π (37)

For a column with torsion and warping restraints only at one node (ϕ1 = 0, ω1= 0) (case 2), the
unrestrained element-end deformations are the torsion and warping deformations at the other node.
Therefore, the buckling state corresponds to the condition that the determinant of the stiffness matrix
at the unrestrained node (second and fourth row/column of the element stiffness matrix [Ke]) equals
zero, and the buckling condition in this case can be solved as

det
[

Tc(λc) −Qc(λc)
−Qc(λc) Sc(λc)

]
= 0⇔ Tc(λc)Sc(λc)−Qc(λc)

2 = 0⇒ λc,cr = π/2 (38)

For a column with torsion and warping restraints at one node (ϕ1 = 0, ω1= 0) and a warping
restraint at the other node (ω2 = 0) (case 3), the only unrestrained element-end deformation is
the torsion deformation at the other node. The relationship between this unrestrained torsion
deformation and the corresponding element-end torque is defined by Tc(λc). Therefore, the buckling
state corresponds to the condition that Tc(λc) = 0. Based on Figure 4, Tc decreases to 0 as λc increases
to π. Therefore, the buckling condition in this case can be solved as

Tc(λc) = 0⇒ λc,cr = π (39)

For a column with torsion and warping restraints at one node (ϕ1 = 0, ω1= 0) and a torsion
restraint at the other node (ϕ2 = 0) (case 4), the only unrestrained element-end deformation is
the warping deformation at the other node. The relationship between this unrestrained warping
deformation and the corresponding element-end bimoment can be defined by Sc(λc). Therefore, the
buckling state is corresponding to the condition that Sc(λc) = 0. Based on Figure 4, Sc decreases to 0
as λc increases to 1.43π (π/0.7). Therefore, the buckling condition in this case can be solved as

Sc(λc) = 0⇒ λc,cr ≈ π/0.7 (40)

In addition, for a column with torsion and warping restraints at both nodes (case 5), the buckling
state is corresponding to the condition that the denominator Φc in Tc, Qc, Sc, and Cc equals zero [15].
It can be solved that Φc decreases to 0 as λc increases to 2π. Therefore, the buckling condition in this
case can be solved as

Φc(λc) = 0⇒ λc,cr = 2π (41)

It is noted that this section gives the same results as that from classical analyses of these
torsion-warping-axial buckling problems [4,5,7,8], but the matrix analysis procedure is considerably
simplified and is more systematic.
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4.2. Analysis of Torsion and Warping of a Torsion Member with a Midspan Torque
This example analyzes a classical torsion-warping problem [4,5], the torsion and warping of a

torsion member with a midspan torque, as shown in Figure 6. In nanostructures, torsion members may
also be used. Therefore, the matrix stiffness method could be relevant to structural nanomechanics
and suitable for nanostructures. In this analysis, the different torque components of the total torque
(including the St. Venant torque and the warping restraint torque) are discussed.

Figure 6. Analysis of torsion and warping of a torsion member with a midspan torque.

The governing equation is formulated as Equation (42), where [Ks] is the structural stiffness
matrix associated with the unconstrained deformations ϕ2, ω1, ω2, and ω3. The torsion member
is considered to consist of two elements with length L (elements I and II in Figure 6). For the two
elements, the relationships between their element end deformations (ϕ1, ϕ2, ω1, and ω2) (or (ϕ2, ϕ3,
ω2, and ω3)) and the corresponding element end stress resultants (TI1, TI2, Bω I1, and Bω I2) (or (TII1,
TII2, Bω II1, and Bω II2)) are both governed by the element stiffness matrix [Ke] [Equation (23)]. By
combining the stability stiffness matrices of element I (row/column 2 to 4 of [Ke] associated with the
unconstrained element end deformations, ϕ2, ω1, and ω2) and element II (row/column 1, 3, and 4 of
[Ke] associated with the unconstrained element end deformations, ϕ2, ω2, and ω3), the structural
stiffness matrix [Ks] is formulated as Equation (43).

[Ks]


ϕ2
ω1
ω2
ω3

 =


Tmid

0
0
0

 (42)

[Ke,I]{2, 3, 4} → [Ks]{1, 2, 3}
[Ke,II]{1, 3, 4} → [Ks]{1, 3, 4}

}
⇒ [Ks] =


2Tt(λt)

EIωω

L3 −Qt(λt)
EIωω

L2 Qt(λt)
EIωω

L2

St(λt)
EIωω

L Ct(λt)
EIωω

L
2St(λt)

EIωω
L Ct(λt)

EIωω
L

sym. St(λt)
EIωω

L

 (43)

Then, the element-end torsion/warping deformations can be solved based on the relationship
in Equation (42). The angle of twist at midspan is

ϕ2 =
(1− tanhλt/λt)Tmid

2λt2EIωω/L3 (44)

For this problem particularly, the element analysis can be conducted for the element I or II.
The integration of different torque components (St. Venant torque and warping restraint torque) is
analyzed [4,5]. The integration of the St. Venant torque Ts from the element end to the midspan can
be derived (based on Equation (8)) as the product of the St. Venant torsion rigidity GJ and the angle of
twist at midspan ϕ2, as shown in Equation (45). The integration of warping restraint torque Tw from
the element end to the midspan gives the bimoment at midspan Bω ,mid [based on Equation (13)], as
shown in Equation (46). The integration of cross-sectional total torque (T = Tmid) from the element
end to the midspan can be formulated as Equation (47).∫ L

0
Tsdx =

∫ L

0

(
GJ

dϕ

dx

)
dx = GJϕ2 (45)
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∫ L

0
Twdx =

∫ L

0
(T − Ts)dx = Bω,mid (46)∫ L

0
Tdx =

∫ L

0
Tmid/2dx = TmidL/2 (47)

Then, the ratios of Equation (45) to Equation (47) and Equation (46) to Equation (47) are formu-
lated as Equations (48) and (49), respectively. Equation (48) represents the ratio of the accumulation
of St. Venant torque along the element length to the accumulation of total torque, and Equation (49)
represents the ratio of the accumulation of warping restraint torque to the accumulation of total
torque. The two ratios are plotted in relationships with the factor for St. Venant torsion. As shown
in Figure 7, with the increase in the factor for St. Venant torsion (i.e., increase in GJ/EIωω), the ratio
of the accumulation of warping restraint torque decreases, while the ratio of the accumulation of St.
Venant torque increases. Therefore, for thin-walled cross-sections with relatively large St. Venant
torsion rigidity GJ (e.g., closed cross-sections), the St. Venant torque could be dominant in the total
torque; in contrast, for cross-sections with relatively small St. Venant torsion rigidity GJ (e.g., open
cross-sections), the warping restraint torque could be dominant in the total torque.∫ L

0 Tsdx∫ L
0 Tdx

=
GJϕ2

TmidL/2
=

GJ (1−tanhλt/λt)Tmid
2λt

2EIωω /L3

TmidL/2
= 1− tanhλt/λt (48)

∫ L
0 Twdx∫ L
0 Tdx

=
Bω,mid

TmidL/2
= 1− GJϕ2

TmidL/2
= tanhλt/λt (49)

Figure 7. Effect of the factor for St. Venant torsion on the ratio of the accumulation of warping
restraint torque/St. Venant torque to the accumulation of total torque.

It is noted that this section gives the same results as that from the analysis in Trahair et al. [4]
and Chen [5], but the matrix analysis procedure is considerably simplified and is more systematic.

4.3. Second-Order Stiffness Matrix of 3D Beam Considering Exact Torsional Stiffness
Based on the torsion-warping stiffness matrix, this section establishes the element stiffness

matrix of axial-loaded three-dimensional beam-columns with a symmetric cross-section.
The element-end displacement vector of a three-dimensional beam-column with a symmetric

cross-section is considered in Equation (50) to include the displacements, the torsional and rotational
angles, as well as the rates of twist, as defined in Figure 8.

∆ =
(
ux1, uy1, uz1, ϕ1, θy1, θz1, ω1, ux2, uy2, uz2, ϕ2, θy2, θz2, ω2

)T (50)

where (x, y, z) denote the local coordinate systems for the three-dimensional element.
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Figure 8. Element-end displacements and forces of 3D beam elements for matrix stiffness method
considering warping deformations and bimoments.

The associated element-end stress resultant vector is considered in Equation (51) to include the
forces, bending moments and torques, as well as the bimoments.

Fext =
(

Fx1, Fy1, Fz1, T1, My1, Mz1, Bω1, Fx2, Fy2, Fz2, T2, My2, Mz2, Bω2
)T (51)

The element stiffness matrix of three-dimensional beam-columns relates the element-end dis-
placement vector in Equation (50) to the element-end stress resultant vector in Equation (51), and it
is, therefore, a 14-degree-of-freedom stiffness matrix. McGuire et al. [11] noted that the difference
between the analyses of planar system and three-dimensional system is essentially quantitative. By
considering (1) the stiffness matrix [Equation (6)] associated with the member bending in both the x-y
and x-z planes and (2) the torsion-warping stiffness matrix (Equation (23))established in this paper,
the element stiffness matrix of three-dimensional beam-columns can be obtained:



EA
L − EA

L

Tc (λz )
EIzz
L3 Qc (λz )

EIzz
L2 −Tc (λz )

EIzz
L3 Qc (λz )

EIzz
L2

Tc
(
λy
) EIyy

L3 −Qc
(
λy
) EIyy

L2 −Tc
(
λy
) EIyy

L3 −Qc
(
λy
) EIyy

L2

Tc (λc )
EIωω

L3 Qc (λc )
EIωω

L3 −Tc (λc )
EIωω

L3 Qc (λc )
EIωω

L3

Sc
(
λy
) EIyy

L Qc
(
λy
) EIyy

L2 Cc
(
λy
) EIyy

L

Sc (λz )
EIzz

L −Qc (λz )
EIzz
L2 Cc (λz )

EIzz
L

Sc (λc )
EIωω

L3 −Qc (λc )
EIωω

L3 Cc (λc )
EIωω

L3

EA
L

Tc (λz )
EIzz
L3 −Qc (λz )

EIzz
L2

Tc
(
λy
) EIyy

L3 Qc
(
λy
) EIyy

L2

Tc (λc )
EIωω

L3 −Qc (λc )
EIωω

L3

Sc
(
λy
) EIyy

L

sym. Sc (λz )
EIzz

L

Sc (λc )
EIωω

L3



(52)

In view of Equation (52), the stiffnesses associated with the y-axis bending, the z-axis bending,
and the torsion and warping are uncoupled. Therefore, row/column 2, 6, 8, 12 of Equation (52)
represents the z-axis bending of the element, row/column 3, 5, 9, 11 of Equation (52) represents the
y-axis bending, and row/column 4, 10, 13, 14 of Equation (52) represents the torsion and warping.

For beam-columns with the three typical element-end warping conditions discussed in Section 3.2,
the 14-degree-of-freedom element stiffness matrix of three-dimensional beam-columns can be reduced
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to a 12-degree-of-freedom element stiffness matrix. This 12-degree-of-freedom element stiffness ma-
trix is more typically used in a systematic analysis of three-dimensional frame systems [11,15,23]
because it can be easily transformed to the element global stiffness matrix by using a transformation
matrix relating the local and global coordinate systems.



EA
L − EA

L

Tc(λz )
EIzz
L3 Qc(λz )

EIzz
L2 −Tc(λz )

EIzz
L3 Qc(λz )

EIzz
L2

Tc
(
λy
) EIyy

L3 −Qc
(
λy
) EIyy

L2 −Tc
(
λy
) EIyy

L3 −Qc
(
λy
) EIyy

L2

ktor −ktor

Sc
(
λy
) EIyy

L Qc
(
λy
) EIyy

L2 Cc
(
λy
) EIyy

L

Sc(λz )
EIzz

L −Qc(λz )
EIzz
L2 Cc(λz )

EIzz
L

EA
L

Tc(λz )
EIzz
L3 −Qc(λz )

EIzz
L2

Tc
(
λy
) EIyy

L3 Qc
(
λy
) EIyy

L2

ktor

sym. Sc
(
λy
) EIyy

L

Sc(λz )
EIzz

L





ux1

uy1

uz1

ϕ1

θy1

θz1

ux2

uy2

uz2

ϕ2

θy2

θz2



=



Fx1

Fy1

Fz1

T1

My1

Mz1

Fx2

Fy2

Fz2

T2

My2

Mz2



(53)

In view of Equation (53), the torsional stiffness ktor in the 4 and 10 rows/columns should be
determined using Section 3.2 based on the element-end warping conditions (instead of directly using
the value GJ/L).

This 3D element stiffness matrix can be readily used to solve the exact solutions of the bifurcation
buckling problem of 3D frames as well as the out-of-plane buckling of funicular arches.

5. Conclusions
This paper presented a matrix stiffness method for the analysis of torsion and warping that is par-

ticularly important in beam-columns with torsional deformations. The main works and conclusions
are summarized as follows:

1. Equilibrium analysis of an axial-loaded torsion member was conducted based on the equi-
librium conditions of torque and bimoment of an element short segment, and a governing
differential equation of equilibrium for the angle of twist along the member was established. The
solution of the governing differential equation can be used to analyze the element deformations
(angle and rate of twist) and stress resultants (torque and bimoment).

2. The exact element stiffness matrix of the torsion member was formulated, showing the re-
lationship between the element-end torsion/warping deformations and the corresponding
stress resultants. A dimensionless factor for the effect of St. Venant torsion and axial force was
defined. The element stiffness matrix for torsion and warping was readily used for the bifurca-
tion buckling and second-order analysis of axial-loaded torsion members. The exact element
second-order stiffness matrix of three-dimensional beam-columns was further assembled.

3. Based on the element torsion-warping stiffness matrix, the exact element torsional stiffnesses
considering the interaction of torsion and warping were derived for three typical element-end
warping conditions. The commonly-used expression GJ/L for the torsional stiffness is only valid
for members with the free-warping condition and negligible axial force effect. For members
with restrained warping at the ends, the torsional stiffness can be significantly larger. For a
notable axial force effect, the torsional stiffness may be reduced. Therefore, in the analysis of
thin-walled nanostructural structures, the torsional stiffness value should be carefully selected
based on the element-end warping conditions and the axial force level.
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Nomenclature

A Cross-sectional area
E Elastic modulus
Fx1/2 Axial load at the two element ends
Fy1/2, Fz1/2 Load in y-direction and z-directions, respectively
G Shear modulus
I Moment of inertia
Ip,S =

∫
ρS

2dA Polar moment of inertia about the shear center
Iyy, Izz Moments of inertia about the y-axis and z-axis, respectively
Iωω Warping constant
J St. Venant torsion constant
[Ke] Element stiffness matrix
[Ks] Structural stiffness matrix
ktor Torsional stiffness
L Element length
My1/2, Mz1/2 Bending moments about the y-axis and z-axis, respectively
P Axial compressive force
Pcr Buckling axial force
Q1, Q2, Q3, Q4 (Q1t, Q2t, Q3t, Q4t) Deformation combination factors defining the possible

deformation curve
Tc/t, Qc/t, Sc/t, Cc/t, TF, ϕc/t Coefficients in the element stiffness matrix as functions of λc/t
Tmid Applied midspan torque
Ts, Tw St. Venant torque and warping restraint torque, respectively
T(x), Bω(x) Torque and bimoment at the cross-section considered, respectively
T1/2, Bω1/2 Torques and bimoments at the two element ends, respectively
uy1/2, uz1/2 Translational displacements in y-direction and z-direction,

respectively
∆, Fext Element-end deformation vector and corresponding stress

resultant vector
θy1/2, θz1/2 Rotation angles in the X-Z plane and X-Y plane, respectively
λc/t Factor for the effect of axial force and St. Venant torsion
λc,cr Factor for axial force and St. Venant torsion at the buckling state
λy, λz Factors for axial force associated with the y-axis bending and

z-axis bending, respectively
ρS Distance of a point in the cross-section to the shear center
σn Assumed uniformly-distributed axial stress from the axial force
τ Distributed torque
ϕ,ω Angle and rate of twist, respectively
ϕ1/2,ω1/2 Angles and rates of twist at the two element ends, respectively
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