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Theunsteady free flowof aCassonfluid past an oscillating vertical platewith constantwall temperature has been studied.TheCasson
fluidmodel is used to distinguish the non-Newtonian fluid behaviour.The governing partial differential equations corresponding to
themomentumand energy equations are transformed into linear ordinary differential equations by using nondimensional variables.
Laplace transformmethod is used to find the exact solutions of these equations. Expressions for shear stress in terms of skin friction
and the rate of heat transfer in terms of Nusselt number are also obtained. Numerical results of velocity and temperature profiles
with various values of embedded flow parameters are shown graphically and their effects are discussed in detail.

1. Introduction

Newtonian fluids described by Navier-Stokes equations are
extensively studied in the literature for the past few decades.
Largely, this is due to the fact that they are relatively simple
and their solutions are convenient [1–10]. However, Newto-
nian fluids which have a linear relationship between the stress
and the rate of strain are limited in view of their applications.
They do not explain several phenomena observed for the
fluids in industry and other technological applications. For
example, many complex fluids such as blood, soap, clay
coating, certain oils and greases, elastomers, suspensions, and
many emulsions are noteworthy due to their various applica-
tions in industry. Unfortunately, Navier-Stokes equations are
no more convincing to describe such fluids. In the literature,
they are known as non-Newtonian fluids. These fluids are
described by a nonlinear relationship between the stress and
the rate of strain.The understanding of flow characteristics of
non-Newtonian fluids is very important because they play a
significant role in industry and engineering. Such interest is
motivated because of extensive applications in diverse areas

of biorheology, geophysics, and chemical and petroleum
industries [11, 12]. In view of these particular applications, the
study and understanding of non-Newtonian fluids have now
become an increasingly appealing topic of current research in
this field.

Rheological properties of non-Newtonian fluids are
described by their so-called constitutive equations. Due to
complexity of fluids, several non-Newtonian fluid mod-
els/constitutive equations based on their empirical obser-
vations have been proposed. Amongst the different non-
Newtonian fluids there is one known as Casson fluid which
was originally introduced by Casson for the prediction of the
flow behavior of pigment-oil suspensions [13]. The Casson
model is based on a structure model of the interactive behav-
ior of solid and liquid phases of a two-phase suspension.
Casson fluid exhibits yield stress. It is a shear thinning liquid
which has an infinite viscosity at zero rates of shear, a yield
stress below which no flow occurs, and a zero viscosity at
an infinite rate of shear [14]. More exactly, if a shear stress
less than the yield stress is applied to the fluid, it behaves
like a solid, whereas if a shear stress greater than yield
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stress is applied, it starts to move. Some famous examples
of Casson fluid include jelly, tomato sauce, honey, soup, and
concentrated fruit juices. Human blood can also be treated as
Casson fluid due to the presence of several substances such as
protein, fibrinogen, and globulin in aqueous base plasma and
human red blood cells [15, 16].

In the earlier studies on Casson fluid, Fredrickson [17]
investigated its steady flow in a tube whereas Boyd et al.
[18] described the steady and oscillatory flow of blood flow
by taking into account Casson fluid. Mernone et al. [19]
discussed the peristaltic flow of a Casson fluid in a two-
dimensional channel. Mustafa et al. [20] studied the unsteady
boundary layer flow and heat transfer of a Casson fluid over a
moving flat plate with a parallel free stream using homotopy
analysis method (HAM). Mixed convection stagnation-point
flow of Casson fluid with convective boundary conditions is
examined by Hayat et al. [21]. Mukhopadhyay [22] described
the effects of thermal radiation on Casson fluid flow and
heat transfer over an unsteady stretching surface subjected to
suction/blowing. Mukhopadhyay et al. [23] also analyzed the
Casson fluid flow over an unsteady stretching surface. Bhat-
tacharyya [24] investigated the boundary layer stagnation-
point flow of Casson fluid and heat transfer towards a
shrinking/stretching sheet and Pramanik [25] studied the
Casson fluid flow and heat transfer past an exponentially
porous stretching surface in presence of thermal radiation.

In all of the above studies the solutions of Casson fluid
are obtained by using either approximate method or any
numerical scheme. There are very few cases in which the
exact analytical solutions of Casson fluid are obtained. These
solutions are even rare when Casson fluid in free convection
flow with constant wall temperature is considered. On the
other hand, the flow of Casson fluids (such as drilling muds,
clay coatings and other suspensions, certain oils and greases,
polymer melts, blood, and many emulsions), in the presence
of heat transfer, is an important research area due to its
relevance to the optimized processing of chocolate, toffee, and
other foodstuffs [26].

Motivated by the above investigations, the present anal-
ysis is focused on the study of unsteady boundary layer
flow of a Casson fluid past an oscillating vertical plate with
constant wall temperature. Exact solutions are obtained by
using the Laplace transform technique. Analytical as well
as numerical results for skin friction and Nusselt number
are provided. Graphical results are presented and discussed
for various physical parameters. Exact solutions obtained in
this paper are important; not only do they correspond to
some fundamental flow situations, but also they are useful for
explaining the flow physics in detail as well as for being used
as a benchmark for validation of other solutions obtained via
approximate or numerical schemes.

2. Formulation of the Problem
Let us consider the effect of heat transfer on unsteady
boundary layer flowof an incompressible Casson fluid past an
infinite vertical flat plate situated at the flow being confined
to 𝑦 > 0, where 𝑦 is the coordinate measured in the normal
direction to the surface. It is assumed that, at the initial
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Figure 1: Physical model and coordinate system.

moment 𝑡 = 0, both the plate and fluid are at rest with
constant temperature 𝑇

∞
. At time 𝑡 = 0

+ the plate begins to
oscillate in its plane (𝑦 = 0) according to

V = 𝑈𝐻 (𝑡) cos (𝜔𝑡) i; or V = 𝑈 sin (𝜔𝑡) i; 𝑡 > 0, (1)

where the constant𝑈 is the amplitude of the plate oscillations,
𝐻(𝑡) is the unit step function, i is the unit vector in the vertical
flow direction, and 𝜔 is the frequency of oscillation of the
plate. At the same time, the plate temperature is raised to 𝑇

𝑤

which is thereafter maintained constant (Figure 1).
We assume that the rheological equation of state for an

isotropic and incompressible flow of a Casson fluid can be
written as (see the study by Mukhopadhyay [22])

𝜏 = 𝜏
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where 𝜋 = 𝑒
𝑖𝑗
𝑒
𝑖𝑗
and 𝑒

𝑖𝑗
is the (𝑖, 𝑗)

𝑖ℎ component of the
deformation rate, 𝜋 is the product of the component of
deformation rate with itself, 𝜋

𝑐
is a critical value of this

product based on the non-Newtonian model, 𝜇
𝐵
is plastic

dynamic viscosity of the non-Newtonian fluid, and 𝑝
𝑦
is

yield stress of fluid. Under these conditions along with the
assumption that the viscous dissipation term in the energy
equation is neglected, we get the following set of partial
differential equations:
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together with initial and boundary conditions

𝑡 < 0 : 𝑢 = 0, 𝑇 = 𝑇
∞

∀𝑦 > 0,

𝑡 ≥ 0 : 𝑢 = 𝑈𝐻 (𝑡) cos (𝜔𝑡) or 𝑢 = 𝑈 sin (𝜔𝑡) ,

𝑇 = 𝑇
𝑤

at 𝑦 = 0,

𝑢 → 0, 𝑇 → 𝑇
∞

as 𝑦 → ∞.

(5)

We introduce the dimensionless variables

𝑢
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(6)

into (4)-(5), andwe get (∗ symbols are dropped for simplicity)
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, (8)

with associated initial and boundary conditions

𝑡 < 0 : 𝑢 = 0, 𝜃 = 0 ∀𝑦 > 0,

𝑡 ≥ 0 : 𝑢 = 𝐻 (𝑡) cos (𝜔𝑡) or 𝑢 = sin (𝜔𝑡) ,

𝜃 = 1 at 𝑦 = 0,

𝑢 → 0, 𝜃 → 0 as 𝑦 → ∞,

(9)

where

Pr =
𝜇𝑐
𝑝

𝑘
, Gr =

]𝑔𝛽 (𝑇
𝑤

− 𝑇
∞

)

𝑈3
, 𝛾 =

𝜇
𝐵
√2𝜋
𝑐

𝑝
𝑦

(10)

are the Prandtl, Grashof numbers, and the Casson parameter.

3. Solution of the Problem

Applying Laplace transforms to (7) and (8), using initial and
boundary conditions (9), we get the following solutions in the
transformed (𝑦, 𝑞) plane:

𝜃 (𝑦, 𝑞) =
1
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, (11)
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. (12)

The inverse Laplace transforms of (11) and (12) are obtained
as follows:
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The subscript “𝑐” on the left side of (14) stands for the cosine
oscillations of the plate. Similarly, the velocity corresponding
to the sine oscillations of the plate is given by
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where

𝑎 =
𝛾

1 + 𝛾
, 𝑏 =

𝑎Gr
Pr−1

. (16)

Note that the above solutions for velocity are only valid
for Pr ̸= 1. Moreover the solution for Pr = 1 can be easily
obtained by putting Pr = 1 into (8) and can follow a similar
procedure as discussed above. The obtained solutions for
cosine and sine oscillations of the plate when Pr = 1 are
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Note that, in (14) and (15), the first two terms in each equation
account for the contribution frommechanical parts while the
last two terms show the thermal effects. On the other hand
in (17) and (18), the last term in each equation shows the
contribution from the thermal part.

The nondimensional skin friction is calculated from the
velocity field (14), using the relation

𝜏 = − 𝜇(1 +
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(19)

The expression of Nusselt number is given by

Nu = −
]

𝑈
0
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∞
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4. Limiting Cases

The following solutions from the literature appear as the
limiting cases of our general solutions.

(i) By taking 𝛾 → ∞ into (14) and (15), the correspond-
ing solutions for viscous fluid can be obtained as a
special case:
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2
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𝑢
𝑠
(𝑦, 𝑡)

= −
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𝑦√𝑖𝜔 erf 𝑐 (

𝑦

2
√

1

𝑡
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] .

(21)

(ii) By taking 𝜔 = 0, which corresponds to impulsive
motion of the plate, then (14) and (17) yield

𝑢
𝑐
(𝑦, 𝑡)

= 𝐻 (𝑡) [erf 𝑐 (
𝑦

2
√

𝑎
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+ 𝑎𝑏 [(𝑡 +
𝑎𝑦
2

2
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𝑎

𝑡
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𝑡

𝜋
𝑒
−𝑎𝑦
2
/4𝑡

]

+ 𝑎𝑏 [(𝑡 +
Pr𝑦2

2
) erf 𝑐 (

𝑦

2
√
Pr
𝑡
)

−𝑦√Pr√ 𝑡

𝜋
𝑒
−Pr𝑦2/4𝑡

] ; Pr ̸= 1,

(22)

𝑢
𝑐
(𝑦, 𝑡)

= 𝐻 (𝑡) [erf 𝑐 (1

2
√

𝑎1

𝑡
𝑦)]

+
𝑎Gr𝑦

2
[2√

𝑡

𝜋
𝑒
−𝑦
2
/4𝑡

− 𝑦 erf 𝑐 (
𝑦

2√𝑡
)] ; Pr = 1,

(23)

respectively, and (22) and (23) describe the corre-
sponding solution of Stokes’ first problem for Casson
fluid. It is important to note that exact solutions of
Stokes’ first problem for Casson fluid (22) and (23) are
also not reported in the literature and hence are new.

(iii) In this last case, we assume that the flow is induced
only due to bounding plate and the corresponding
buoyancy forces are zero equivalently; it shows the
absence of free convection (Gr = 0) due to the
differences in temperature gradient. This shows that
the thermal parts of velocities in (14) and (15) are zero.
Hence the flow is only governed by the corresponding
mechanical parts given by

𝑢
𝑐
(𝑦, 𝑡)

=
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4
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(24)

Note that (24) are identical to those obtained by
Fetecau et al. [9]; see (9) and (11). This fact is also
shown in Figure 8.

5. Graphical Results and Discussion

In this section, the obtained exact solutions are studied
numerically in order to determine the effects of several
involved parameters such as Prandtl number Pr, Grashof
number Gr, Casson parameter 𝛾, phase angle 𝜔𝑡, and time
𝑡. Numerical values of skin friction and Nusselt number
are computed and presented in tables for different param-
eters. For the sake of correctness and verification, we have
compared our results with those of Fetecau et al. [9]. This
comparison is shown in Figure 2. It is found that our limiting
solutions (24) are identical to (9) and (11) obtained by Fetecau
et al. [9]. This confirms the accuracy of our obtained results.

The velocity profiles for different values of Prandtl
number Pr are shown in Figure 3, when the other param-
eters are fixed. It is observed that velocity of the fluid
decreaseswith increasing Prandtl number. Figure 4 illustrates
the profiles of velocity for different values of Gr. It is
observed that velocity increases with increasing values of Gr.
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Figure 2: Comparison of the present results (see (24)) with those
obtained by Fetecau et al. [9] (see (9) and (11)), when 𝑡 = 0.2, 𝜔 = 0,
𝑎 = 1, 𝑈 = 1, and V = 1.
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Figure 3: Profiles of velocity for different values of Pr, when 𝜔 =

𝜋/4, 𝑡 = 0.2, and Gr = 3.
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Figure 4: Profiles of velocity for different values of Gr, when Pr =

0.3, 𝛾 = 0.6, 𝑡 = 0.3, and 𝜔 = 𝜋/4.
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Figure 5: Profiles of velocity for different values of 𝛾, when Pr =

0.3, Gr = 0, 𝑡 = 0.3, and 𝜔 = 𝜋/4.
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Figure 6: Profiles of velocity for different values of𝜔𝑡, when Gr = 3,
Pr = 0.3, 𝑡 = 1, and 𝛾 = 0.5.

The influence of Casson fluid parameter on velocity profiles
is shown in Figure 5. It is found that velocity decreases
with increasing values of 𝛾. It is important to note that an
increase in Casson parameter makes the velocity boundary
layer thickness shorter. It is further observed from this graph
that when the Casson parameter 𝛾 is large enough, that is,
𝛾 → ∞, the non-Newtonian behaviours disappear and the
fluid purely behaves like a Newtonian fluid.Thus, the velocity
boundary layer thickness for Casson fluid is larger than the
Newtonian fluid. It occurs because of plasticity of Casson
fluid. When Casson parameter decreases, the plasticity of
the fluid increases, which causes the increment in velocity
boundary layer thickness. The graphical results for the phase
angle, 𝜔𝑡, are shown in Figure 6. It is observed that the
fluid is oscillating between −1 and 1. These fluctuations near
the plate are maximum and decrease for further values of
independent variable𝑦.This figure can easily help us to check
the accuracy of our results. For illustration of such results
we have concentrated more on the values of 𝜔𝑡 = 0, 𝜋/2

and 𝜋. We can see that, for these values of 𝜔𝑡, the velocity
shows its values either 1, 0, or −1 which are identical with the
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Figure 7: Profiles of velocity for different values of 𝑡, when Pr =

0.3, Gr = 3, 𝛾 = 0.5, and 𝜔 = 0.
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Figure 8: Profiles of temperature for different values of Pr, when
𝑡 = 0.4.

imposed boundary conditions of velocity in (11). Hence, both
the graphical and mathematical results are found in excellent
agreement. In Figure 7 the influence of dimensionless time 𝑡

on the velocity profiles is shown. It is found that the velocity
is an increasing function of time 𝑡.

It is depicted from Figure 8 that the temperature profile
decreases with increasing values of Prandtl number Pr. The
specific values of Prandtl number such as Pr = 0.71, Pr = 1.0,
and Pr = 7.0 are important in the sense that, physically, they
correspond to air, electrolytic solution, and water, respec-
tively. It is observed that the thermal boundary layer thickness
is maximum near the plate and decreases with increasing
distance from the leading edge and finally approaches to
zero. It is also noticed from this figure that the magnitude
of temperature is greater for air compared to electrolytic
solution and water. It is justified due to the fact that thermal
conductivity of the fluid decreases with increasing Prandtl
number Pr and hence decreases the thermal boundary layer
thickness and finally the temperature profiles.

Figure 9 is plotted to show the effects of the dimensionless
time 𝑡 on the temperature profiles. Four different values
of time 𝑡 = 0.1, 𝑡 = 0.2, 𝑡 = 0.3, and 𝑡 = 0.1 are
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Figure 9: Profiles of temperature for different values of 𝑡, when Pr =

0.71.

Table 1: Skin friction variations.

Pr Gr 𝛾 𝜔𝑡 𝑡 𝜏

0.3 3 0.5 𝜋/4 0.3 3.384043
0.71 3 0.5 𝜋/4 0.3 0.437932
0.3 5 0.5 𝜋/4 0.3 0.200932
0.3 3 1.0 𝜋/4 0.3 0.536355
0.3 3 0.5 𝜋/2 0.3 0.422417
0.3 3 0.5 𝜋/4 0.4 0.307634

Table 2: Nusselt number variations.

Pr 𝑡 Nu
0.3 0.3 0.564
0.71 0.3 0.867
0.3 0.6 0.398

chosen. Obviously the temperature increases with increasing
time 𝑡. This graphical behaviour of temperature is in good
agreement with the corresponding boundary conditions of
temperature profiles as shown in (9). Results for skin friction
and Nusselt number are computed in Tables 1 and 2. The
computations of skin friction give complex results.Therefore,
for the sake of conveniencewe have considered in Table 1 only
its real part. Table 1 shows that skin friction increases with
increasing values of Pr, Gr, 𝛾, and 𝜔𝑡, whereas it decreases
with increasing values of 𝑡. On the other hand, it is found
from Table 2 that Nusselt number increases with increasing
Pr whereas it decreases with increasing 𝑡.

6. Conclusion

In this paper an exact analysis is performed to investigate
the unsteady boundary layer flow of a Casson fluid past
an oscillating vertical plate with constant wall temperature.
The dimensionless governing equations are solved by using
the Laplace transform technique. The results for velocity
and temperature are obtained and plotted graphically. The
numerical results for skin friction and Nusselt number are
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computed in tables. The main conclusions of this study are
as follows.

(1) Velocity increases with increasing Gr and 𝑡, whereas
it decreases with increasing values of Pr, 𝛾, and 𝜔𝑡.

(2) Temperature increases with increasing 𝑡, whereas it
decreases when Pr is increased.

(3) Skin friction is increasingwith increasing values of Pr,
𝛾, and 𝜔𝑡, whereas it decreases with increasing values
of Gr and 𝑡.

(4) Nusselt number increases with increasing Pr, whereas
it decreases with increasing 𝑡.

(5) Solutions (24) are found in excellent agreement with
those obtained by Fetecau et al. [9].
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