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Problem Statement

p,q,r €N
E a linear/affine subspace of p x g matrices with real entries
M a p x q matrix, A = (\;j) a p X q positive matrix

[M]|p = \/ Zi,j )‘iJM,?,j
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Problem Statement

p,q,r €N
E a linear/affine subspace of p x g matrices with real entries
M a p x q matrix, A = (\;j) a p X q positive matrix

[M]|p = \/ Zi,j )‘iJM,?,j

Structured (and weighted) Low-Rank Approximation

Given U € E, compute a matrix M € E such that
m Rank(M) <r;

m [|[U— M|, is minimum.

2 PJ Spaenlehauer



Some applications in symbolic-numeric computations

m £ =Sylvester matrices ~~ univariate approximate GCD

das 0 b2 0 0
da> as bl b2 0
dr ar bo b1 b2
dg a1 0 bo bl
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Some applications in symbolic-numeric computations

m £ =Sylvester matrices ~~ univariate approximate GCD

m £ =Hankel matrices ~~ denoising, signal processing, tensors
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Some applications in symbolic-numeric computations

m £ =Sylvester matrices ~~ univariate approximate GCD
m £ =Hankel matrices ~~ denoising, signal processing, tensors

m £ =affine coordinate spaces ~~ matrix completion
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Some applications in symbolic-numeric computations

E =Sylvester matrices ~~ univariate approximate GCD
E =Hankel matrices ~~ denoising, signal processing, tensors

E =affine coordinate spaces ~~ matrix completion

E =Ruppert matrices ~» multivariate factorization

0 -2 —-a 0 -2b —d
-1 0 ¢ —-b O e
a 2c 0 d 2e 0
0 0 0 1 a c
0 0 0 —-b —d -e

XY? + aXY + bY? + cX +dY + e € C[X, Y] factors < rank < 4
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Several approaches to SLRA:
Structured Total Least Norm (Park, Kaltofen, Zhi), Alternating projections
(Cadzow, Condat, Hirabayashi), Riemannian optimization (Absil, Amodei,

Meyer, Vandereycken), Matrix Factorization(/shteva, Usevich, Markovsky),
Newton iteration (Schost, S.). ..
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Several approaches to SLRA:

Structured Total Least Norm (Park, Kaltofen, Zhi), Alternating projections
(Cadzow, Condat, Hirabayashi), Riemannian optimization (Absil, Amodei,

Meyer, Vandereycken), Matrix Factorization(/shteva, Usevich, Markovsky),
Newton iteration (Schost, S.). ..

Global polynomial optimization (Abril Bucero, Greuet, Lasserre, Mourrain, Nie,
Parrilo, Safey, Schost, Sturmfels,. . .)

The EDdegree, algebraic degree of optimization of Euclidean distances on
algebraic varieties:
Draisma/Horobet/Ottaviani/Sturmfels/Thomas’13

Goals:

m Certified and global SLRA using symbolic (Grébner bases) and
symbolic-numeric algorithms (homotopy continuation methods) methods

m a priori estimates of the “algebraic difficulty” of the problem
~ explicit formulas for EDdegree of SLRA

m Applications: low-rank tensor approximation from diffusion magnetic
resonance imaging (Schultz), Hankel matrices, approximate GCD
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A symbolic approach to SLRA

p,q,r € N, E a linear/affine subspace of p x g matrices with real entries

M a p X g matrix, A a p X g positive matrix, |[M||, = «/Zi,j )\,-JM,?J

D,: variety of p X g matrices of rank at most r

The minimizers of SLRA are

Minimizing a polynomial function M — >, - Xi j(Ui; — M; ;)? on an algebraic
variety D, N E
~> SLRA can be modeled by polynomial system solving

Many possible approaches: Grébner bases, border bases, homotopy methods,
resultants, triangular sets, geometric resolution, ...
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A symbolic approach to SLRA

p,q,r € N, E a linear/affine subspace of p x g matrices with real entries

M a p X g matrix, A a p X g positive matrix, |[M||, = «/Zi,j >‘i,jM,'2,j

D,: variety of p X g matrices of rank at most r

The minimizers of SLRA are

Minimizing a polynomial function M — >, - Xi j(Ui; — M; ;)? on an algebraic
variety D, N E
~> SLRA can be modeled by polynomial system solving

Many possible approaches: Grébner bases, border bases, homotopy methods,
resultants, triangular sets, geometric resolution, ...

First step: model the problem as a polynomial system
~ |deal vanishing on the regular critical points

Technical assumptions for this talk:
m Finitely-many complex critical points on the smooth locus of D, N E.

m Minimum is reached on the smooth locus of D, N E.
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\Weighted low-rank approximation of the 4 x 4 determinant

D(x) € Q[x11, - - -, Xxaa]: determinant of the matrix (x;;)
U: 4 x 4 matrix picked at random
A: positive 4 x 4 matrix

D(x)=0
8D/8X11 e 8D/8X44
Rank <1
W ArCar — 1) oo Aea(xas — uag)] =
Rank(x;;) =3
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\Weighted low-rank approximation of the 4 x 4 determinant

D(x) € Q[x11, - .., xa4]: determinant of the matrix (x;;)
U: 4 x 4 matrix picked at random
N\: positive 4 X 4 matrix

D(x) =0
8D/8X11 0oo 8D/8X44
1 =0 ... 0
y 1 Mi(xin —u11) .. Aaa(xas — usa) [ ]
variables: x11,...,Xa4,y. 17 equations.
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1 =0 ... 0
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Timings with FGb (Faugére):
m A generic, over Q: > 1 day
m A=1, over Q: 0.3s
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\Weighted low-rank approximation of the 4 x 4 determinant

D(x) € Q[x11, - .., xa4]: determinant of the matrix (x;;)
U: 4 x 4 matrix picked at random
N\: positive 4 X 4 matrix

D(x) =0
8D/8X11 0oo 8D/8X44
1 =0 ... 0
y 1 Mi(xin —u11) .. Aaa(xas — usa) [ ]
variables: x11,...,Xa4,y. 17 equations.

Timings with FGb (Faugére):
m A generic, over Q: > 1 day
m A=1, over Q: 0.3s

Can we explain these timings and/or find a better modeling?
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The Euclidean Distance degree

The Euclidean distance degree
Draisma/Horobet/Ottaviani/Sturmfels/Thomas 13
V € C" an algebraic variety, u € C" a generic point. The

EDdegree) of V is the number of complex critical points of the
function

)‘l(xl - u1)2 JFeco An(xn - Un)2

on the smooth locus of V. )
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The Euclidean Distance degree

The Euclidean distance degree
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V € C" an algebraic variety, u € C" a generic point. The
EDdegree) of V is the number of complex critical points of the

function
)‘l(Xl - u1)2 + .-+ An(xn - Un)2

on the smooth locus of V. )

EDdegree(ellipse) = 4.
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The Euclidean Distance degree

The Euclidean distance degree
Draisma/Horobet/Ottaviani/Sturmfels/Thomas 13

V € C" an algebraic variety, u € C" a generic point. The
EDdegree) of V is the number of complex critical points of the

function
)‘l(Xl - u1)2 + .-+ An(xn - Un)2

on the smooth locus of V.

Solution of SLRA:

critical point of the distance func-

tion on a linear section of a deter-

minantal variety 2, N E.
EDdegree(ellipse) = 4.
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The conormal variety

Let X C C" be an affine cone
(the vanishing locus of homogeneous

Nx C C" x C" is defined as

Nx = {(x,v) : X € Xsmootn, vV € Ny X}.
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The conormal variety

b S

)

LR .

) Ir’f?‘f'[fij,/, Let X C C" be an affine cone
Wi i o .o

R / »~  (the vanishing locus of homogeneous
P

v _ polynomials). The conormal variety
“ Nx C C" x C" is defined as

Nx = {(x,v) : X € Xsmootn, vV € Ny X}.

x € Xsmooth critical point of > \;i(x; — u;)?
VZ)\,’(X,' = u,')2 e N X

2Aix1 —v1 2A\1 g
: = || @ for (x,v) € Nx
2AnXp — Vp 2Anln

8 PJ Spaenlehauer



Proposition (Draisma/Horobet/Ottaviani/Sturmfels/ Thomas)

The EDdegree of a projective variety is bounded by the sum of
the degrees of its polar classes. Equality holds when the
diagonal of the conormal variety is empty.

Duality:

Nx = {(x,v) : X € Xsmootn, vV € Ny X}.

9 PJ Spaenlehauer



Proposition (Draisma/Horobet/Ottaviani/Sturmfels/ Thomas)

The EDdegree of a projective variety is bounded by the sum of
the degrees of its polar classes. Equality holds when the
diagonal of the conormal variety is empty.

Duality:

Nx = {(x,v) : X € Xsmootn, vV € Ny X}.
m: Nx — C" X* = Im(m)
(x,v) — v

Rank r matrices are dual to corank r matrices.
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Proposition (Draisma/Horobet/Ottaviani/Sturmfels/ Thomas)

The EDdegree of a projective variety is bounded by the sum of
the degrees of its polar classes. Equality holds when the
diagonal of the conormal variety is empty.

Duality:

Nx = {(x,v) : X € Xsmootn, vV € Ny X}.

m: Nx — C" X* = Im(m)
(x,v) — v

Rank-deficient matrices are dual to rank 1 matrices
~ Segre varieties.
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Back to the 4 x 4 determinant: duality

D(x) € Q[x11, . .., xa4]: determinant of the matrix (x;;)
U: 4 x 4 matrix picked at random

N\: positive 4 X 4 matrix

Projective dual to {D(x) = 0}: rank 1 matrices

@ C3 xct — (O
al al b1 al b2 ai b3 dl b4
) an b1 ) b2 =) b3 dn b4
as ’ [bl b2 b3 b4] ~ as b1 as b2 as b3 a3z b4
1 by by b3 by
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Back to the 4 x 4 determinant: duality

D(x) € Q[x11, . .., xa4]: determinant of the matrix (x;;)
U: 4 x 4 matrix picked at random

N\: positive 4 X 4 matrix

Projective dual to {D(x) = 0}: rank 1 matrices

@ C3 xct — (O
al al b1 al b2 ai b3 dl b4
) an bl ) b2 =) b3 dn b4
as ’ [bl b2 b3 b4] ~ as b1 as bg as b3 a3z b4
1 by by b3 by

Dual optimization problem:

v||90(alv a, as, by, by, bs, b4) - U/H%\/ =0
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Primal vs. dual

Timings with FGb (primal/dual):
m A generic, over Q: >1day/891s
m A =1, over Q: 0.35/0.2s

Explanation of the gap between timings:
EDdegree; = 4 EDdegreege, = 284.

+ general polynomial modeling for SLRA.
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Primal vs. dual

Timings with FGb (primal/dual):
m A generic, over Q: >1day/891s
m A =1, over Q: 0.35/0.2s

Explanation of the gap between timings:
EDdegree; = 4 EDdegreege, = 284.

+ general polynomial modeling for SLRA.

Strong correlation between timings and EDdegree of the problem.
A priori estimates of the EDdegree?
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Generic E, Generic weights, corank 1

critical points of Ay 1(x11 — u171)2 + -+ Apg(xp,g — up,q)2
on (Dr N E)smooth-
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Generic E, Generic weights, corank 1

critical points of Ay 1(x11 — u171)2 + -+ Apg(xp,g — up,q)2
on (Dr N E)smooth-

Proposition

Let £ be a generic codimension s linear space of p X g matrices,
and D, be the variety of rank-deficient matrices. The generic
EDdegree of D, N E equals

50 qFoco = 5pq—2—5‘

where

p+q—2
k+1
_ _1\pt+g—k
o= > (D) (£+1)"“

k=
v = [P (14 5)P(1 + £)9(t + ).
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Generic E, Generic weights, corank 1

critical points of Ay 1(x11 — u171)2 + -+ Apg(xp,g — up,q)2
on (Dr N E)smooth-

Proposition

Let £ be a generic codimension s linear space of p X g matrices,
and D, be the variety of rank-deficient matrices. The generic
EDdegree of D, N E equals

50 SF oo e 5pq—2—s-

where

ptq—2
k+1
_ _1\Pta—k
R
ve = [sP7H9TH (14 5)P(1 + £)9(t + )k

+ similar statement for rank 1 matrices.
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Generic E, Generic weights, corank 1

critical points of Ay 1(x11 — u171)2 + -+ Apg(xp,g — up,q)2
on (Dr N E)smooth-

Proposition

Let £ be a generic codimension s linear space of p X g matrices,
and D, be the variety of rank-deficient matrices. The generic
EDdegree of D, N E equals

50 + ...+ 5pq—2—s-

where

p+q—2
k+1
_ _1)\pta—k
b = > (-1 (£+1)"“

k=
v = [P (14 5)P(1 + £)9(t + ).

+ similar statement for rank 1 matrices.
Intermediate coranks ~~ Schubert calculus
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E generic, N =17

EDdegree dramatically decreases.
Role of the isotropic quadric, the self-dual hypersurface Zx =0:

EDdegree1 (V) = EDdegreegen(V)

)

V intersects tranversely the isotropic quadric.
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E generic, N =17

EDdegree dramatically decreases.
Role of the isotropic quadric, the self-dual hypersurface Zx =0:

EDdegree1 (V) = EDdegreegen(V)

)

V intersects tranversely the isotropic quadric.

Let r = min(p, g) — 1 and Z be the locus of non-tranverse
intersection between D, N E and the isotropic quadric.

EDdegreei (D, N E) = EDdegreege,(D, N E) — EDdegreegen(Z).
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E generic, N =17

EDdegree dramatically decreases.
Role of the isotropic quadric, the self-dual hypersurface Zx =0:

EDdegree1 (V) = EDdegreegen(V)

)

V intersects tranversely the isotropic quadric.

Let r = min(p, g) — 1 and Z be the locus of non-tranverse
intersection between D, N E and the isotropic quadric.

EDdegreei (D, N E) = EDdegreege,(D, N E) — EDdegreegen(Z).

+ explicit formula for EDdegreegen(Z). Tested on many examples.
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Special linear space: k-th Sylvester matrices

FX) = FuXT 4+ AX 4+
g(X) = &X'+ +aX+f
I(F,8)II° = amfa+---+aoff + Brgs + -+ bogs

Approximate GCD problem:
find nearest pair (f*, g*) such that deg(GCD(f™,g")) > k.
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Special linear space: k-th Sylvester matrices

FX) = FuXT 4+ AX 4+
g(X) = &X'+ +aX+f
I(F,8)II° = amfa+---+aoff + Brgs + -+ bogs

Approximate GCD problem:
find nearest pair (f*, g*) such that deg(GCD(f™,g")) > k.

fm 0o ... 0 0 &n o ... 0 0
fooi fm - 0 0 g1 g - 0 0
: . . . . m+n—2k+2
0 0 fo f1 0 0 g &1
0 0 0 fo 0 o ... 0 go
n—k+1 m—k+1
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Special linear space: k-th Sylvester matrices

FX) = FuXT 4+ AX 4+
g(X) = &X'+ +aX+f
I(F,8)II° = amfa+---+aoff + Brgs + -+ bogs

Approximate GCD problem:
find nearest pair (f*, g*) such that deg(GCD(f™,g")) > k.

fm O ... 0 O g O ... 0 O
fooi fm - 0 0 g1 g - 0 0
: _ _ : : . . _ m+n—2k+2
0 0 fo f]_ 0 0 8o 81
0 0 0 fo 0 0 0 go
n—k+1 m—k+1

Rank deficient if and only if deg(GCD(f, g)) > k
~~ SLRA problem
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Special linear subspaces: resultant and approximate GCD

FX) = fuX™ 4+ AX+ 1
gX) = gX"+---+aX+1h
(£, 8)II? = amf2+ -+ aoff + Bng2+ -+ Bogl

Vk C Pm+n+1:
pairs of pols sharing a GCD of degree at least k.
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Special linear subspaces: resultant and approximate GCD

f(X) = X"+ -+ AX + 1
g(X) = X'+ +aX+f
I(F. )7 = amf3+- -+ aoff + Baga + -~ + Pogs
Vi C Pttt
pairs of pols sharing a GCD of degree at least k.

The generic EDdegree of V equals that of the Segre variety of
(k+1) x (n+ m — 2k + 2) matrices of rank 1.
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Special linear subspaces: resultant and approximate GCD

f(X) = X"+ -+ AX + 1
g(X) = X'+ +aX+f
I(F. )7 = amf3+- -+ aoff + Baga + -~ + Pogs
Vi C Pttt
pairs of pols sharing a GCD of degree at least k.

The generic EDdegree of V equals that of the Segre variety of
(k+1) x (n+ m — 2k + 2) matrices of rank 1.

Sketch of proof:

Pk x prtm—2k+1 N Vi
(A(x), (B(x), C(x)) = (A(x)B(x), A(x)C(x))
is a desingularization and it factors through the Segre embedding of
Pk x Prtm=2k+1 ., EDdegree of rank 1 matrices.
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Open questions

What about the number of real critical points/local minima?
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Open questions

What about the number of real critical points/local minima?

Open even for unstructured weighted low-rank approximation!

Question (Rey'13): is the number of local minima of rank 1 (resp.
corank 1) approximation bounded by min(p, q)?
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Open questions

What about the number of real critical points/local minima?

Open even for unstructured weighted low-rank approximation!

Question (Rey'13): is the number of local minima of rank 1 (resp.
corank 1) approximation bounded by min(p, q)?

Ottaviani/S./Sturmfels’13: negative answer

=59 11 59 9 6 1
U=]11 59 59 A=16 1 9
59 59 11 1 96

Rank 1 approximation of U has 7 local minima. EDdegree = 39,
number of real critical points: 19.
Can we find more real critical points/local minima?
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Conclusion

Algebraic geometry techniques: analysis of singularities,
characteristic class computations

)

Computational aspects, complexity of SLRA.
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Conclusion

Algebraic geometry techniques: analysis of singularities,
characteristic class computations

)

Computational aspects, complexity of SLRA.

Also in the paper: Hankel matrices, LRA of some tensors.
SLRA: hard problem with (relatively) low algebraic degree.
Questions:

m conjecture for the formula of the EDdegree of SLRA for
non-generic weights?

m algos: exploiting duality for SLRA?

m real critical points?
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Conclusion

Algebraic geometry techniques: analysis of singularities,
characteristic class computations

)

Computational aspects, complexity of SLRA.

Also in the paper: Hankel matrices, LRA of some tensors.
SLRA: hard problem with (relatively) low algebraic degree.
Questions:

m conjecture for the formula of the EDdegree of SLRA for
non-generic weights?

m algos: exploiting duality for SLRA?
m real critical points?

Thank you!
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