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EXACT SOLUTIONS TO OPTIMAL CONTROL PROBLEMS

FOR WIENER PROCESSES WITH EXPONENTIAL JUMPS

MARIO LEFEBVRE*

Abstract. The LQG homing problem, in which a diffusion process is con-
trolled until a certain event takes place, is considered for Wiener processes

with jumps that are exponentially distributed. The objective is either to
minimize (or maximize) the expected time spent by the controlled process in
an interval [a, b], or to try to make the process leave this interval through a

given endpoint. The integro-differential equation satisfied by the value func-
tion is transformed into a non-linear ordinary differential equation and is
solved exactly in particular cases.

1. Introduction

Let {B(t), t ≥ 0} be a one-dimensional standard Brownian motion and {N(t),
t ≥ 0} be a Poisson process with rate λ ≥ 0. The two stochastic processes are
assumed to be independent. We consider the controlled jump-diffusion process
{Xu(t), t ≥ 0} defined by

Xu(t) = Xu(0) + µt+

∫ t

0

b[Xu(s)]u[Xu(s)]ds+ σB(t) +

N(t)∑
i=1

Yi, (1.1)

where µ ∈ R and σ > 0 are constants, and b(·) is a non-zero function. The
random variables Y1, Y2, . . . are independent and are all exponentially distributed
with parameter α. If λ = 0 and the control variable u is chosen equal to zero,
then the uncontrolled process {X0(t), t ≥ 0} is a Wiener process with infinitesimal
mean µ and variance σ2.

We want to find the control that minimizes the expected value of the cost
criterion

J(x) :=

∫ T (x)

0

{
1

2
q[Xu(t)]u

2[Xu(t)] + θ

}
dt+K[Xu(T (x))], (1.2)

where θ is a real constant, q(·) is a positive function, T (x) is the first-passage time

T (x) = inf{t ≥ 0 : Xu(t) /∈ (a, b) | Xu(0) = x ∈ [a, b]}, (1.3)

and K is a general terminal cost function.
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The above problem is a particular LQG homing problem (where LQG stands
for Linear Quadratic Gaussian), in which one tries to optimally control an n-
dimensional diffusion process until a certain event occurs; see Whittle [7] and/or
Whittle [8]. When λ is equal to zero, so that there are no jumps, it is sometimes
possible to transform our problem into a purely probabilistic problem for the
uncontrolled process {X0(t), t ≥ 0} obtained by setting u(·) ≡ 0 in Eq. (1.1).
More precisely, if certain conditions are fulfilled, we can show that the optimal
control u∗(x) can be expressed in terms of the moment-generating function of the
random variable T0(x) that corresponds to T (x).

In Lefebvre [3], the author extended LQG homing problems to the case when
{Xu(t), t ≥ 0} is a jump-diffusion process with jumps of constant size ϵ > 0; see
also Theodorou and Todorov [6]. He proved that, if ϵ is small, the (approximate)
optimal control can be deduced from a mathematical expectation for the uncon-
trolled process {X0(t), t ≥ 0}. A particular problem for a controlled standard
Brownian motion with jumps was solved explicitly by making use of the results
obtained by Abundo [1]. Moreover, Lefebvre and Moutassim [5] were able to obtain
exact solutions to the problem considered in Lefebvre [3].

Next, Lefebvre [4] computed an approximation to the exact optimal control
when the independent random variables Y1, Y2, . . . are uniformly distributed over
the interval [−c, c]. As expected, he found that the approximate solution is more
precise when c is small. In the present paper, we will see that it is actually possible
to obtain exact solutions to the LQG homing problem defined above; that is, when
Yi has an exponential distribution with parameter α, for i = 1, 2, . . .

Jump-diffusion processes are used extensively in financial mathematics, but
there are other real-life applications of these processes. For example, they can
be used to model the variations of river flows; see Konecny and Nachtnebel [2].
In this type of application, the jumps are generated by weather events such as
thunderstorms, and are necessarily positive. An exponential distribution for the
jump sizes is a very common assumption in statistical hydrology.

Let us define the value function

F (x) = inf
u[Xu(t)]
0≤t≤T (x)

E[J(x)]. (1.4)

That is, F (x) is the expected cost obtained by choosing the optimal value of the
control u[Xu(t)] for 0 ≤ t ≤ T (x).

In the next section, the integro-differential equation satisfied by F (x) will be
derived by making use of dynamic programming. Then, the integro-differential
equation will be transformed into a non-linear ordinary differential equation. Par-
ticular problems will be considered and solved explicitly in Section 3. Finally, we
will end this paper with a few concluding remarks.

2. Integro-differential Equation

We first prove the following proposition that gives us the integro-differential
equation satisfied by F (x). In Lefebvre [3], the corresponding equation when the
jump size is a constant ϵ was derived.
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Proposition 2.1. The value function F (x) defined in Eq. (1.4) satisfies the
second-order, non-linear integro-differential equation

0 = θ + µF ′(x)− 1

2

b2(x)

q(x)
[F ′(x)]

2
+

1

2
σ2F ′′(x) (2.1)

+λ

∫ ∞

0

[F (x+ y)− F (x)] αe−αy dy

for a < x < b, subject to the boundary conditions

F (x) = K(x) if x = a or x ≥ b. (2.2)

Proof. Making use of Bellman’s principle of optimality, we can write that

F (x) = inf
u[Xu(t)]
0≤t≤∆t

E

[ ∫ ∆t

0

{
1

2
q[Xu(t)]u

2[Xu(t)] + θ

}
dt

+F

(
x+ [µ+ b(x)u(x)]∆t+ σB(∆t) +

N(∆t)∑
i=1

Yi

)]
= inf

u[Xu(t)]
0≤t≤∆t

E

[{
1

2
q(x)u2(x) + θ

}
∆t (2.3)

+F

(
x+ [µ+ b(x)u(x)]∆t+ σB(∆t) +

N(∆t)∑
i=1

Yi

)
+ o(∆)

]
.

Next, we have

P [N(∆t) = 0] = e−λ∆t = 1− λ∆t+ o(∆t) (2.4)

and

P [N(∆t) = 1] = λ∆te−λ∆t = λ∆t+ o(∆t). (2.5)

It follows that

E

[
F

(
x+ [µ+ b(x)u(x)]∆t+ σB(∆t) +

N(∆t)∑
i=1

Yi

)]
(2.6)

= E

[
F

(
x+ [µ+ b(x)u(x)]∆t+ σB(∆t) + Y1

)]
λ∆t

+ E

[
F

(
x+ [µ+ b(x)u(x)]∆t+ σB(∆t)

)]
(1− λ∆t) + o(∆t).

Moreover, E[B(∆t)] = 0 and E[B2(∆t)] = V [B(∆t)] = ∆t. Hence, assuming
that F (x) is twice differentiable with respect to x and making use of Taylor’s
formula, we can write that

E

[
F

(
x+ [µ+ b(x)u(x)]∆t+ σB(∆t)

)]
(1− λ∆t) (2.7)

=

{
F (x) + [µ+ b(x)u(x)]∆tF ′(x) +

1

2
σ2∆tF ′′(x)

}
− λ∆tF (x)

+o(∆t)
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and

E

[
F

(
x+ [µ+ b(x)u(x)]∆t+ σB(∆t) + Y1

)]
λ∆t (2.8)

= E[F (x+ Y1)]λ∆t+ o(∆t) = λ∆t

∫ ∞

0

F (x+ y)αe−αydy + o(∆t).

Substituting (2.7) and (2.8) into Eq. (2.3), we find that

0 = inf
u[Xu(t)]
0≤t≤∆t

{(
1

2
q(x)u2(x) + θ

)
∆t+ [µ+ b(x)u(x)]∆tF ′(x) (2.9)

+
1

2
σ2∆tF ′′(x)− λ∆tF (x)

+λ∆t

∫ ∞

0

F (x+ y)αe−αydy + o(∆t)

}
.

Now, dividing each side of the above equation by ∆t and letting ∆t decrease to
zero, we obtain the following dynamic programming equation:

0 = inf
u(x)

{
1

2
q(x)u2(x) + θ + [µ+ b(x)u(x)]F ′(x) +

1

2
σ2F ′′(x) (2.10)

−λF (x) + λ

∫ ∞

0

F (x+ y)αe−αydy

}
.

We deduce from Eq. (2.10) that the optimal control u∗(x) can be expressed as

u∗(x) = − b(x)

q(x)
F ′(x). (2.11)

Substituting this expression into Eq. (2.10), and noticing that we can write

F (x) =

∫ ∞

0

F (x)αe−αydy, (2.12)

we obtain Eq. (2.1).
Finally, the boundary conditions in Eq. (2.2) follow from the fact that, the

jumps being strictly positive, the controlled process {Xu(t), t ≥ 0} cannot take on
a value smaller than the left-hand endpoint a of the interval [a, b], but it can cross
the boundary x = b. �

Next, we will transform the integro-differential equation (2.1) into an ordinary
differential equation.

Proposition 2.2. Assume that the ratio b2(x)/q(x) is a constant:

κ :=
b2(x)

2q(x)
(> 0), (2.13)

and that the value function F (x) is thrice differentiable. Then F (x) satisfies the
non-linear, third-order ordinary differential equation

αθ = −(λ+ αµ)F ′(x) +

(
µ− 1

2
ασ2

)
F ′′(x) +

1

2
σ2F ′′′(x) (2.14)

+ακ [F ′(x)]
2 − 2κF ′(x)F ′′(x).
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Proof. Let z := x+ y. Then Eq. (2.1) can be rewritten as

0 = θ+µF ′(x)−κ [F ′(x)]
2
+
1

2
σ2F ′′(x)−λF (x)+λαeαx

∫ ∞

x

F (z)e−αz dz. (2.15)

Next, differentiating with respect to x, we obtain

0 = µF ′′(x)− 2κF ′(x)F ′′(x) +
1

2
σ2F ′′′(x) (2.16)

−λF ′(x)− λαF (x) + λα2 eαx
∫ ∞

x

F (z)e−αz dz.

Since we deduce from Eq. (2.1) that

λ

∫ ∞

0

F (x+ y)αe−αy dy = λαeαx
∫ ∞

x

F (z)e−αz dz (2.17)

= −
{
θ + µF ′(x)− κ [F ′(x)]

2
+

1

2
σ2F ′′(x)− λF (x)

}
,

we find that F (x) indeed satisfies Eq. (2.14). �

Equation (2.14) is obviously not easy to solve exactly. The mathematical soft-
ware Maple does not give any explicit solution to this equation. Nevertheless, it
is generally easier to try to solve a (third-order) non-linear ordinary differential
equation than a (second-order) non-linear integro-differential equation.

In the next section, we will try to determine whether a function of a given form
could indeed be a solution to Eq. (2.14), subject to the boundary conditions in
(2.2). Two particular cases will be considered.

3. Particular Cases

Case I. First, we will look for solutions of the form

F (x) = cxm, (3.1)

where c ̸= 0 and m ∈ R are constants. Substituting into Eq. (2.14), we obtain the
following equation:

αθ = −(λ+ αµ)cmxm−1 +

(
µ− 1

2
ασ2

)
cm(m− 1)xm−2 (3.2)

+
1

2
σ2 cm(m− 1)(m− 2)xm−3 + ακc2m2x2m−2

− 2κc2m2 (m− 1)x2m−3.

Because the above equation must be satisfied for any x ∈ (a, b), we must conclude
that the only admissible value of m is m = 1.

Remark 3.1. Actually, if θ = 0, Eq. (3.2) is satisfied with m = 0. However, then
F (x) ≡ c, so that u∗(x) ≡ 0. Moreover, we must have K[Xu(T (x))] ≡ c as well.
If θ is equal to zero and K[Xu(T (x))] is a constant, it is obvious that the optimal
control is also equal to zero.
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When m = 1, Eq. (3.2) reduces to

αθ = −(λ+ αµ)c+ ακc2. (3.3)

It follows that there are two possible values of the constant c:

c =
(λ+ αµ)±

[
(λ+ αµ)2 + 4α2κθ

]1/2
2ακ

. (3.4)

Proposition 3.2. If

(λ+ αµ)2 ≥ −4α2κθ (3.5)

and if

K[Xu(T (x))] = cXu(T (x)), (3.6)

where c is given in (3.4), then the value function is F (x) = cx for x ∈ [a, b].
Furthermore, the optimal control is

u∗(x) = − b(x)

q(x)
c. (3.7)

Remark 3.3. (i) Notice that the value function and the optimal control do not
depend on the parameter σ. In the case of a controlled standard Brownian motion
with jumps, so that µ = 0, Eq. (3.4) simplifies to

c =
λ±

(
λ2 + 4α2κθ

)1/2
2ακ

. (3.8)

(ii) The sign that we must choose in Eq. (3.4) corresponds to the one in the function
K defined in (3.6). There are therefore two particular LQG homing problems that
we can solve explicitly and exactly under the above assumptions.

(iii) If θ > 0, the optimizer wants the controlled process {Xu(t), t ≥ 0} to leave
the interval (a, b) as soon as possible, whereas when θ < 0 the optimizer receives a
reward while the process is in (a, b), so that the objective should be to maximize the
survival time in this interval. If the constant c is positive (respectively negative),
then the optimizer should try to make the process leave the interval (a, b) through
its left-hand endpoint a (respectively right-hand endpoint b) as well.

(iv) We see that Eq. (3.5) is satisfied for any θ > 0. However, we must have

θ ≥ θ0 := − (λ+ αµ)2

4α2κ
. (3.9)

The value θ = 0 is admissible; if µ = 0 too, we then obtain that

c =
λ

ακ
. (3.10)

(v) We assumed in Proposition 2.2 that the ratio b2(x)/q(x) is a constant. Nev-
ertheless, it is important to observe that the optimal control is not necessarily a
constant.

(vi) In the case when there are no jumps, so that λ = 0, we find that the constant
c is

c =
µ±

(
µ2 + 4κθ

)1/2
2κ

, (3.11)
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in which we assume that µ2 ≥ −4κθ. Hence, if µ = 0, we have c = ±
√
θ/κ, so

that θ must then be positive. Actually, when λ = 0, we can obtain the general
solution of Eq. (2.1), under the assumption in (2.13). Let

γ :=
√
µ2 + 4κθ. (3.12)

We find that

F (x) =
1

4κ

{
2σ2 ln(γ/κ)− σ2 ln

[(
c1 e

2γx/σ2

+ c2

)2
]
+ 2(γ + µ)x

}
, (3.13)

where the constants c1 and c2 can be determined uniquely from the boundary
conditions (since there are no jumps)

F (x) = K(x) if x = a or x = b. (3.14)

We can check that the particular solution F (x) = cx (for each value of c) is
obtained by choosing the appropriate constants c1 and c2. More precisely, the
solution with the “+” sign in Eq. (3.11) corresponds to the choice c1 = 0 and
c2 = γ/κ, while the one with the “−” sign corresponds to c2 = 0 and c1 = γ/κ.

(vii) A simple case is the one for which µ = 0 and σ = θ = λ = α = κ = 1. We
must then solve the differential equation

1 = −F ′(x)− 1

2
F ′′(x) +

1

2
F ′′′(x) + [F ′(x)]

2 − 2F ′(x)F ′′(x). (3.15)

One can check that the function

F (x) =
1±

√
5

2
x (3.16)

does indeed satisfy the above equation, together with the boundary conditions

F (a) =
1±

√
5

2
a and F (x) =

1±
√
5

2
x for x ≥ b. (3.17)

Case II. Next, we will try solutions of the form

F (x) = cemx, (3.18)

where c ̸= 0 and m ∈ R are constants. Equation (2.14) becomes

αθ = cmemx

[
−(λ+ αµ) +m

(
µ− 1

2
ασ2

)
+

1

2
m2σ2

]
(3.19)

+ c2κm2 e2mx (α− 2m) .

We deduce from the above equation that θ must be equal to zero. Then, as in
Case I, the value m = 0 (together with K[Xu(T (x))] ≡ c) leads to the obvious
optimal control u∗(x) ≡ 0.

Proposition 3.4. Let m = α/2. If the relation

α

2
= −

µ±
(
µ2 − 2λσ2

)1/2
σ2

(> 0) (3.20)

holds, and if

K[Xu(T (x))] = c exp{mXu(T (x))}, (3.21)



8 MARIO LEFEBVRE

then the value function is F (x) = cemx for x ∈ [a, b]. Moreover, the optimal
control is given by

u∗(x) = − b(x)

q(x)
cmemx. (3.22)

Proof. Because Eq. (3.19) must be satisfied for any x ∈ (a, b), we must take
m = α/2. Then, the coefficient of emx will also vanish if

0 = −(λ+ αµ) +
α

2

(
µ− 1

2
ασ2

)
+

1

8
α2σ2

⇐⇒ 0 = λ+ µ
α

2
+

1

2
σ2

(α
2

)2

, (3.23)

from which Eq. (3.20) follows at once. �

Remark 3.5. (i) For the solution to be valid, we must have

µ2 ≥ 2λσ2. (3.24)

Therefore, we cannot take µ = 0 in this case. Moreover, the value of α will be
positive if and only if µ < 0. Thus, there are again two possible solutions.

(ii) This time, the solution does not depend on the constant c, but it depends on
σ2.

(iii) When there are no jumps (i.e., λ = 0), the general solution of Eq. (2.1)
(together with Eq. (2.13)) reduces to

F (x) = − σ2

2κ
ln

(
c1 e

−2µx/σ2

+ c2

)
, (3.25)

from which we deduce that there are no solutions of the form F (x) = cemx, except
when m = 0. The solution F (x) ≡ c is actually a special case of the one given in
Proposition 3.4. Notice that, when λ = 0, we should set α equal to zero as well.

(iv) As a particular example, let us choose µ = −2, σ = 1, λ = 2 and κ = 1. Then,
Eq. (3.20) implies that α must be equal to 4. We can check that the function
F (x) = ce2x does indeed satisfy Eq. (2.14) when θ = 0.

4. Conclusion

In this paper, we were able to find explicit solutions to LQG homing problems
for one-dimensional jump-diffusion processes. Contrary to previous papers on this
type of problems, the solutions that were obtained are exact ones. The continuous
part of the jump-diffusion processes was a controlled Wiener process, and the
jumps occurred according to a Poisson process. In the previous work, the size of
the jumps was either deterministic or uniformly distributed. Here, this size was
exponentially distributed.

To obtain explicit solutions to our problems, we first transformed the integro-
differential equation satisfied by the value function into a non-linear ordinary dif-
ferential equation of order three. Then, we looked for solutions of a certain form,
namely first a power function, and next an exponential function.
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Depending on the sign of the parameter θ in the cost function defined in
Eq. (1.2), the optimizer wants either the controlled process to leave the inter-
val (a, b) as soon as possible, or to maximize its survival time in this interval.
There is also a final cost function that must be of the same form as the value
function (or the other way around) for the solutions to be valid. We saw that the
optimal control u∗(x) was not trivial, except when the value function is a constant,
which leads to u∗(x) ≡ 0.

Finally, in some applications the jumps can be both positive or negative, but
cannot be as large as we want. Moreover, in financial mathematics the value
of a stock or of a market index like the NASDAQ can decrease a lot in a short
amount of time, but it obviously cannot become negative. Therefore, there are
other distributions for the jump sizes that it would be interesting to consider in
LQG homing problems.

Acknowledgment. This research was supported by the Natural Sciences and
Engineering Research Council of Canada. The author also wishes to thank the
anonymous reviewer of this paper for his/her constructive comments.
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