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Abstract. We consider the isothermal Euler equations with phase transition between

a liquid and a vapor phase. The mass transfer is modeled by a kinetic relation. We

prove existence and uniqueness results. Further, we construct the exact solution for

Riemann problems. We derive analogous results for the cases of initially one phase with

resulting condensation by compression or evaporation by expansion. Further we present

numerical results for these cases. We compare the results to similar problems without

phase transition.

1. Introduction. We study compressible multi-phase flows without and with phase

transitions relying on the isothermal Euler equations with a nonmonotone pressure-

density function. Our main objective is a detailed discussion of a thermodynamically

based kinetic relation that controls the mass transfer across a sharp interface between

two coexisting phases. The derivation of the kinetic relation is based on thermodynamics,

especially on classical Hertz-Knudsen theory; see Bond and Struchtrup [4]. To this end

we study Riemann problems and show for various classes of initial data the existence and
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uniqueness of solutions. We consider single-phase initial data describing condensation by

compression or evaporation by expansion, as well as initial data describing two differing

adjacent phases. The case of multi-phase flows without phase transition mainly serves

as an illustration and as a comparison with other treatments of the same subject in the

literature.

Phase transitions can be treated either by sharp interface models or by models that

describe the interface between two adjacent phases by a smooth transition within the

setting of phase field models. Sharp interface models are physically better founded while

phase field models may have numerical advantages. The available sharp interface models

are surveyed in Zein [23].

The phase field model of Euler-Korteweg type by Dreyer et al. [9] establishes a sharp

interface limit that produces our kinetic relation, whereupon the mass flux across the

interface is proportional to the jump of the Gibbs free energy. A similar study of the

same model by Benzoni-Gavage et al. [3] ends up with a kinetic relation describing local

equilibrium at the interface; i.e., the Gibbs free energy is continuous.

The seminal paper by Abeyaratne and Knowles [1] considers a solid-solid phase transi-

tion and describes the Riemann problem of the corresponding Euler system in Lagrangian

coordinates. For this reason the nonlinearities appearing there are different from the cur-

rent study. The kinetic relation in [1] relies on the same driving force as we use here.

However, Abeyaratne and Knowles relate the mass flux to the jump of the Gibbs free

energy in a nonlinear manner.

A very interesting review on the Riemann problem for a large class of thermodynam-

ically consistent constitutive models in the setting of Euler equation models by Menikoff

and Plohr [14] is restricted to a simple kinetic relation that results from the assump-

tion of a local equilibrium at the interface. For isothermal processes a local interfacial

equilibrium is guaranteed by the continuity of the Gibbs free energy.

Merkle [15] also considered the Riemann problem for the isothermal Euler system.

Differences to the current work are: he used the van der Waals equation to model the

nonmonotone pressure-density dependence. We observed that it is better to model the

pressure-density function by pieces of three linear functions. This leads to a closer agree-

ment with measured data, e.g. for a substance such as water. The kinetic relation intro-

duced by Merkle does arise from thermodynamic motivations. But there are initial data

for which it must be supplemented by further assumptions in order to pick up a unique

solution. Furthermore the structure of the solutions is essentially different from those

that we obtain here. Our solutions consist exclusively of three types of elementary waves,

namely classical shocks, rarefaction waves and phase transitions, that separate a certain

number of constant states. Merkle needs composite waves to construct the solution.

The isothermal Euler system was also studied by Müller and Voss [18], [21]. They

modeled the fluid by a van der Waals equation; however, instead of a kinetic relation

they exclusively applied the Liu entropy condition in order to establish uniqueness. Con-

sequently Müller and Voss also need composite waves.

There are also studies of the same subject that use the Euler equations in a different

manner than they are used here. Despite the fact that in those studies the nonisothermal

case is considered, the main difference to our study concerns the application of a full
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Euler system to each phase everywhere in space. Thus the number of balance equations

is doubled. Additionally there is an equation determining the local phase fraction. The

basic paper is that of Baer and Nunziato [2]. However, it is restricted to 2-phase flows

without phase transition. The main aim of those models is to study phase mixtures such

as e.g. bubbly flows or sprays. Zein et al. [24] started from this approach and added

the continuity of the Gibbs free energy across the interface in order to allow for a phase

transition.

For basics on conservation laws, see the books of Toro [20], Lax [12], LeVeque [13],

Smoller [19], Kröner [11], Dafermos [5] and others. For thermodynamics, see for instance

Müller and Müller [16] as well as Müller [17].

Next we describe the main results of the current study. Our kinetic relation can

be obtained in two different ways. It follows in the sharp interface limit that starts

with the isothermal Navier-Stokes-Korteweg model and ends up with the corresponding

isothermal Euler equations; see Dreyer et al. [9]. In this case the kinetic relation gives the

mass flux across the interface as a linear function of the jump of the Gibbs free energy

and it is proportional to the Navier-Stokes viscosities. A more physical derivation of the

kinetic relation can be given in the setting of the Hertz-Knudsen theory; its nonisothermal

version is described in Bond and Struchtrup [4]. Here the only difference between the

two derivations is the factor of proportionality that is related to the sound velocity at

the gas side of the interface.

A main consequence of this kinetic equation is the absence of composite waves in the

solution to Riemann problems. If we consider a Riemann problem where the left and

right state correspond to two different phases, our kinetic relation implies a solution

that exclusively consists of two classical waves and a phase transition in between. This

construction is unique and generates classes of initial data, for which the existence of

solutions is guaranteed.

If we consider a Riemann problem where the left and right state correspond to the

same phase, two cases may occur. Either the two states can be connected by only classical

waves or, if this is not possible, nucleation of the other phase is enforced by the kinetic

relation. Also here we prove existence and uniqueness.

The paper is organized as follows. In Section 2 we introduce the system of balances in

the bulk and across the interface. Details of the equations of state are given in Section 3,

whereas the entropy inequality is discussed in the following section. In Section 5 we obtain

mathematical properties of the system considered. Moreover we discuss rarefactions and

shocks for the isothermal case. The main part of this section is Subsection 5.3. Here

we introduce the kinetic relation and prove a uniqueness result for the pressures at the

phase interface. Moreover, we derive monotonicity results for interface quantities. Based

on these results we construct the exact solution for the isothermal Euler euqations with

phase transition, presented in Subsection 6.2. We prove uniqueness results within the

class of Riemann problems as well as sufficient conditions for solvability. In Section 7 we

discuss the cases of condensation by compression as well as evaporation by expansion.

As before we prove several existence and uniqueness results. Also we present the exact

solution for the Riemann problems considered. Finally we give numerical examples for

all cases considered. These are presented in Section 8.
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2. Isothermal Euler equations. In our study we consider inviscid fluids under the

isothermality assumption. This means that the temperature T0 is fixed. The phases are

indicated by the value of the mass density ρ, and we have the velocity v as a variable.

The physical fields are assumed to depend on time t ∈ R≥0 and space x ∈ R. In regular

points of the bulk phases we have the local mass conservation law (2.1) and the balance

law for momentum (2.2). These are

∂ρ

∂t
+

∂(ρv)

∂x
= 0, (2.1)

∂(ρv)

∂t
+

∂(ρv2 + p)

∂x
= 0 . (2.2)

In the momentum balance equation (2.2) there is a further quantity, the pressure p. It

is not among the basic variables and is therefore called a constitutive quantity. This

quantity is related to the variable ρ in a material dependent manner by an equation

of state. This will be given in Section 3. The system (2.1)-(2.2) is called a system of

isothermal Euler equations.

Across any discontinuity we have the jump conditions

�ρ(v −W )� = 0, (2.3)

ρ(v −W )�v� + �p� = 0 . (2.4)

Here we use the jump brackets �Ψ� = Ψ′′−Ψ′ for any physical quantity Ψ, where ′ and ′′

denote the one-sided limits to the left and right of the discontinuity, respectively, on the

horizontal x-axis. Further, W denotes the propagation speed of the discontinuity. The

mass flux Z across the discontinuity is given by

Z = −ρ(v −W ) (2.5)

with

Z =

{
Q shock wave

z phase boundary
and W =

{
S shock wave

w phase boundary.
(2.6)

For more details on interface relations, see Dreyer [7, Sections 5-14] and Müller [17,

Section 2.2.2, Chapter 3].

3. Equations of state. The pressure is related to the density by the equation of

state

p = p(ρ) with p′(ρ) = a2 = const , (3.1)

where a denotes the speed of sound.

In particular, for the vapor phase V we use the ideal gas law

pV = ρV
kT0

m
(3.2)

for given temperature T0. Here k denotes the Boltzmann constant and m is the mass of

a single water molecule.
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The liquid phase L is modeled as a compressible fluid whose pressure is related to the

liquid density by

pL = p0 + K0

(
ρL
ρ0

− 1

)
, (3.3)

where the pressure p0 and the density ρ0 denote arbitrary reference values. The constant

K0 is the modulus of compression, which is temperature dependent. For convenience

we choose p0, ρ0,K0 at the saturation state; see the table in [22]. The data can also be

found in [10].

In order to characterize the two phases we introduce two constant parameters that

will be properly defined later on. Within a range 0 ≤ ρV ≤ ρ̃ the fluid is assumed to be

in the vapor state. For ρL ≥ ρm the liquid phase is present. Between the pure phases

there are intermediate states, whose pressure is defined by a linear function of negative

slope. For more details, see Section 5.3.

p

ρ~ ρ
m ρ

Fig. 1. Equation of state: p(ρ)

According to the second law of thermodynamics the pressure is the derivative of the

Helmholtz free energy with respect to 1/ρ,

p = − ∂ψ

∂(1/ρ)
.

The Gibbs free energy is defined by

g = ψ +
p

ρ
.

This quantity occurs in the entropy inequality for isothermal processes

Z�g +
1

2
(v −W )2� ≤ 0 . (3.4)

For details, see Dafermos [5], Merkle [15], Müller and Voss [18].

4. Riemann problem. In our study we consider the Riemann problem for the

isothermal Euler equations. This is given by the balances (2.1)-(2.2), the equation of

state (3.1) and the corresponding Riemann initial data

ρ(x, 0) =

{
ρ− for x < 0

ρ+ for x > 0
and v(x, 0) =

{
v− for x < 0

v+ for x > 0 .
(4.1)

We denote the solution to the Riemann problem by W. The solution consists of constant

states W = const, that are separated by waves or phase boundaries. We will denote
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neighboring states by ′ and ′′, as done in Section 2. The Riemann problem is solved by

self-similar solutions of type W(t, x) = Ŵ(x/t).

5. Generic solution. In order to give the mathematical properties of the Euler

system (2.1)-(2.2), we rewrite the system in quasilinear form in terms of ρ and v:(
ρ

v

)
t

+

(
v ρ
a2

ρ v

)(
ρ

v

)
x

=

(
0

0

)
.

The Jacobian matrix is

A =

(
v ρ
a2

ρ v

)

with the eigenvalues

λ1 = v − a and λ2 = v + a

as well as the corresponding right eigenvectors

r1 =

(
ρ

−a

)
and r2 =

(
ρ

a

)
.

The system is strictly hyperbolic. Finally we give the Riemann invariants

I1 = v + a ln ρ = const and I2 = v − a ln ρ = const (5.1)

across the left and right wave, respectively.

5.1. Rarefaction wave fans. Assume that the wave corresponding to λ1 is a (left)

1-rarefaction. Then we use the Riemann invariant given in (5.1)1 to obtain

v′ + a ln ρ′ = v′′ + a ln ρ′′ . (5.2)

For a left rarefaction the head speed is given by v′ − a whereas the tail speed is given by

v′′ − a. The slope inside the rarefaction fan is given by

dx

dt
=

x

t
= v − a .

Using (5.2) we obtain that the solution W inside the fan is given by

W1fan =

{
v = a + x

t

ρ = exp
(

v′−v
a + ln ρ′

)
.

(5.3)

On the other hand, using (5.1)2 for a (right) 2-rarefaction we get

v′ − a ln ρ′ = v′′ − a ln ρ′′ . (5.4)

Analogously to the above calculations for a 2-rarefaction wave we have the head speed

v′′ + a and the tail speed v′ + a. The solution inside the fan is then given by

W2fan =

{
v = −a + x

t

ρ = exp
(

v−v′′

a + ln ρ′′
)
.

(5.5)
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5.2. Shocks.

5.2.1. Entropy inequality across a shock wave. In this section we want to prove that

the Lax condition is equivalent to the entropy condition for the system considered. We

take the case where the states(
ρ′

v′

)
and

(
ρ′′

v′′

)

are separated by a shock wave that propagates with speed S. W.l.o.g. we assume that

v′ = 0. This assumption is used to simplify the following calculations and is only used

in Section 5.2.1. Due to v′ = 0 we have v′′ < 0. Then from the Rankine-Hugoniot

conditions we obtain for S,

S = − ρ′′v′′

ρ′ − ρ′′
(5.6)

and

S =
−ρ′′v′′2 + a2(ρ′ − ρ′′)

−ρ′′v′′
.

This gives

v′′2 = a2
(ρ′ − ρ′′)2

ρ′ρ′′
. (5.7)

Further, the entropy inequality is given by

ρ′S

(
a2 ln

ρ′

ρ′′
+

1

2
S2 − 1

2
(v′′ − S)2

)
≤ 0 .

For the second factor we obtain, using (5.1) twice, then (5.6) and (5.7),

a2 ln
ρ′

ρ′′
+

1

2
S2 − 1

2
(v′′ − S)2 = a2 ln

ρ′

ρ′′
+

Q2

2

(
1

ρ′2
− 1

ρ′′2

)

= a2 ln
ρ′

ρ′′
+

ρ′2S2

2

(
1

ρ′2
− 1

ρ′′2

)

= a2 ln
ρ′

ρ′′
+

ρ′2ρ′′2v′′2

2(ρ′ − ρ′′)2

(
1

ρ′2
− 1

ρ′′2

)

= a2 ln
ρ′

ρ′′
+ a2

ρ′ρ′′

2

(
1

ρ′2
− 1

ρ′′2

)

= a2
(

ln
ρ′

ρ′′
+

ρ′ρ′′

2

(
1

ρ′2
− 1

ρ′′2

)) = 0, ρ′ = ρ′′,

> 0, ρ′ < ρ′′,

< 0, ρ′ > ρ′′.

For the case ρ′ < ρ′′ we have from (5.7) that S < 0, whereas for the second case ρ′ > ρ′′

this leads to S > 0. In the first case we thus have from (5.6) and (5.7) that

S =
ρ′′

ρ′′ − ρ′
v′′ > v′′ and S = −a

ρ′′√
ρ′ρ′′

< −a .

This implies the Lax condition a > −a > S > v′′ − a, which in general notation is given

by

v′ + a > v′ − a > S > v′′ − a;
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see Lax [12]. Obviously in that case we have a left or 1-shock. Similarly in the second

case we have a right or 2-shock and we obtain the corresponding Lax condition

v′ + a > S > v′′ + a > v′′ − a .

In summary, for the isothermal Euler equations, the entropy condition and the Lax

condition are equivalent. For this special system this is a more general result than

that given in Dafermos [5]. Based on the explicit constitutive functions used here this

statement is true for arbitrarily strong shocks.

5.2.2. Shock relations. Let us assume that the left wave is a shock wave, propagating

with speed S1. As was done in Toro [20] we define the relative velocities

v̂′ = v′ − S1 and v̂′′ = v′′ − S1 . (5.8)

We obtain the corresponding Rankine-Hugoniot conditions

ρ′v̂′ = ρ′′v̂′′, (5.9)

ρ′v̂′2 + p′ = ρ′′v̂′′2 + p′′ . (5.10)

For the mass flux Q1 we have

−Q1 = ρ′(v′ − S1) = ρ′′(v′′ − S1) = ρ′v̂′ = ρ′′v̂′′ . (5.11)

We substitute Q1 into (5.10) to obtain

−Q1v̂
′ + a2ρ′ = −Q1v̂

′′ + a2ρ′′ .

Solving for −Q1 and using the entropy condition discussed above, this leads to

−Q1 = −a2(ρ′′ − ρ′)

v̂′′ − v̂′
= −a2(ρ′′ − ρ′)

v′′ − v′
> 0 , (5.12)

which gives us

v′′ = v′ +
a2(ρ′′ − ρ′)

Q1
. (5.13)

On the other hand, using (5.11) to substitute v̂′ and v̂′′ in (5.12), we derive the relation

−Q1 = −a2(ρ′′ − ρ′)

−Q1

ρ′′ + Q1

ρ′

(5.14)

and get

Q2
1 = a2ρ′ρ′′ . (5.15)

In combination with (5.13) and Q1 < 0 this gives us across a left shock,

v′′ = v′ − a2(ρ′′ − ρ′)√
a2ρ′ρ′′

.

Finally, from (5.11) and (5.15) we obtain the speed of a left shock,

S1 = v′ +
Q1

ρ′
= v′ −

√
a2ρ′ρ′′

ρ′
.

For a right shock the calculations are very similar. We obtain Q2 > 0 and

v′′ = v′ +
a2(ρ′′ − ρ′)√

a2ρ′ρ′′
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as well as

S2 = v′ +
Q2

ρ′
= v′ +

√
a2ρ′ρ′′

ρ′
.

In general terms the result is given by

v′′ = v′ − a2|ρ′′ − ρ′|√
a2ρ′ρ′′

and S = v′ +
Q

ρ′
. (5.16)

Remark 5.1. Note that our notation is similar to, but slightly different from, the

notation in the book of Toro [20].

5.3. Phase transition.

5.3.1. Definition of the phases. In the case that the discontinuity represents a bound-

ary between two phases we always have

ρV < ρL . (5.17)

Furthermore, from the mass and momentum balances (2.3)-(2.4) across the phase bound-

ary together with (2.5) and (2.6) we obtain

z2 = − p′ − p′′

1
ρ′ − 1

ρ′′
.

With the above relation for the densities (5.17) we conclude that

pL ≥ pV and with pV ≥ 0 we have pL ≥ 0 . (5.18)

The second statement is due to the fact that we ignore surface tension. We define, see

(3.3),

ρm =
ρ0
K0

(K0 − p0) , (5.19)

which gives pL(ρm) = 0. Corresponding to ρm we have to find ρ̃. This value is uniquely

defined by the equation of state (3.1), equation (5.19) and the Maxwell condition∫ 1
ρV (p0)

1
ρ0

p(ρ) d
1

ρ
=

(
1

ρV (p0)
− 1

ρ0

)
· p0 .

After some calculations we obtain

K0

ρ0
ln

ρ0
ρm

+
kT0

m
ln

ρm
ρV (p0)

− ρm
ρm − ρ̃

kT0

m
ln

ρm
ρ̃

= 0 . (5.20)

This relation defines ρ̃ uniquely for sufficiently low temperatures T ≤ 633.15K. For higher

temperatures the definition of ρm gives a negative value. The critical temperature Tc

for water is given by Tc = 647.096K. For T0 = 573.15K we obtain ρ̃ = 36.515 kg/m3;

see Figure 2. The corresponding reference values are given by p0 = 18.6664mPa, ρ0 =

1/0.00189451kg/m3 and K0 = 1/36.627 · 109pa.

Furthermore we give the curves ρm(T ) and ρ̃(T ), see Figure 3a, and the quotient

ρ̃(T )/ρm(T ), see Figure 3b. Obviously one has

ρ̃(T )/ρm(T ) < 1/4 (5.21)

for all temperatures 273.15K≤ T0 ≤ 623.15K.

Remark 5.2. In our notation all temperature-dependent constants have index 0. If

we choose T0 we have to use the corresponding reference values ρ0, p0,K0.
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Remark 5.3. Most estimations in this paper are based on the data found in [22].

Accordingly for all temperatures usually means the finite number of discrete temperature

values in the table in [22]. For the intermediate temperatures not included in the table

we have: If for monotonic temperature changes the temperature-dependent constants

change monotonically, the estimations are also valid for the intermediate temperatures.

5.3.2. A simple kinetic relation to describe phase transitions. Besides the balances for

mass (2.3) and momentum (2.4) at the phase boundary we need a further equation, which

is called a kinetic relation. This equation describes the rate of change of mass across the

interface. We choose

z =
pV√
2π

(
m

kT0

) 3
2

�g + ekin� , (5.22)

where V denotes the vapor phase. For details of the derivation, see Dreyer et al. [8]. If

the vapor phase is to the left of the liquid phase, this results in

z =
pV√
2π

(
m

kT0

) 3
2
[
K0

ρ0
ln

ρL
ρ0

− kT0

m
ln

pV
p0

+
1

2
(vL − w)2 − 1

2
(vV − w)2

]
. (5.23)

Here V and L denote the vapor and the liquid phase, respectively. Equation (5.24) gives

the kinetic relation for the case that the vapor phase is to the right:

−z =
pV√
2π

(
m

kT0

) 3
2
[
K0

ρ0
ln

ρL
ρ0

− kT0

m
ln

pV
p0

+
1

2
(vL − w)2 − 1

2
(vV − w)2

]
. (5.24)

For the moment we restrict ourselves to the case that the vapor phase is on the left side.

Therefore in this section we identify ′ (left state) with the vapor phase and ′′ (right state)

with the liquid phase.
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If condensation and evaporation are excluded, we replace (5.22) by the new kinetic

relation

z = 0 . (5.25)

This implies that vV = vL at the phase boundary; see (2.5) and (2.6).

5.3.3. Uniqueness of pL for given pV . If pV is given, we have to determine 4 unknowns,

namely pL, vL, vV and z. At the interface we have 4 conditions: two mass flux conditions

(2.5), the interface momentum balance (2.4) and furthermore the kinetic relation (5.23).

Our goal is to determine an equation for pL. The interface momentum balance can be

written as

�p� = −z2�
1

ρ
� . (5.26)

Because ρL > ρV we have

pL = pV ⇔ z = 0 .

This is the equilibrium case pL = pV = p0. Otherwise we have pV < pL .

In the following lemma we will make the assumption

−aV ρV ≤ z ≤ aLρL . (5.27)

It simplifies the calculations and later it turns out to be automatically satisfied due to

physical considerations; see Remark 5.11.

Lemma 5.4. Consider the isothermal case with 273.15K≤ T0 ≤ 623.15K. Then for a

given interface pressure pV of the vapor phase with 0 ≤ pV ≤ p̃, the conditions (5.27)

and the corresponding equations of state (3.2), (3.3) define the liquid interface pressure

pL, uniquely. Furthermore by these relations the mass flux z is uniquely defined.

Proof. We replace z in (5.26) by the kinetic relation (5.23) and get

�p� +

(
m

kT0

)3
p2V
2π

[
K0

ρ0
ln

ρL
ρ0

− kT0

m
ln

pV
p0

− 1

2
�p�

(
1

ρL
+

1

ρV

)]2
�
1

ρ
� = 0 . (5.28)

Next we define the functions

h(pV , pL) =

(
m

kT0

)3/2
1√
2π

[
K0

ρ0
ln

ρL
ρ0

− kT0

m
ln

pV
p0

− 1

2
�p�

(
1

ρL
+

1

ρV

)]
(5.29)

and

f(pV , pL) = �p� + h2(pV , pL)p2V �
1

ρ
�

for pV ≥ 0 and pL ≥ pV . The roots of the latter function are the solutions of (5.28).

(1) Let us consider pV = p0, i.e. the saturation pressure. Then for pL = p0 we have

f(p0, pL) = 0. So (p0, p0) is a solution of (5.28). It obviously satisfies (5.27) with

z = 0.

(2) We note that

∂f

∂pV
(p0, p0) = −1 and

∂f

∂pL
(p0, p0) = 1 .
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Accordingly in a neighborhood of pV = p0, relation (5.28) implicitly defines a

function pL(pV ) with p′L(pV ) > 0. This means, in a neighborhood of pV = p0,

that relation (5.28) has a solution that satisfies the inequalities (5.27).

(3) By our assumption we consider a temperature regime, where in (3.3) we have

pL = p0 + K0
ρL
ρ0

−K0 < p0 + K0
ρL
ρ0

− (p0 − pV ) .

Therefore

1 − pL − pV
K0

ρ0
ρL

> 0,

and we conclude that

∂h

∂pL
(pV , pL) =

(
m

kT0

)3/2
1√
2π

[
1

2

(
1

ρL
− 1

ρV

)
+

1

2

pL − pV
K0

ρ0
ρL

1

ρL

]
< 0 .

For any fixed pV the function h(pV , pL) is strictly decreasing in pL. Due to

pL ≥ pV it attains its maximum at pL = pV .

(4) Next we calculate

∂f

∂pL
(pV , pL) = 1 − p2V · h2(pV , pL)

1

ρ2L

ρ0
K0

+ p2V h(pV , pL)
∂h

∂pL
(pV , pL)�

1

ρ
�.

Let us consider any p∗V , p
∗
L such that f(p∗V , p

∗
L) = 0 and (5.27) is satisfied. Let

us further consider that z > 0. Then we obtain

∂f

∂pL
(p∗V , p

∗
L) > 1 − K0

ρ0

ρ0
K0

= 0 .

On the other hand, if z < 0, then

∂f

∂pL
(p∗V , p

∗
L) > 1 − ρ∗2V

ρ∗2L

a2V
a2L

−
(

m

kT0

)3/2
p∗V√
2π

ρV aV
1

ρ∗2V
> 0 .

So p∗L is a simple root of f(p∗V , ·) with ∂f
∂pL

(p∗V , p
∗
L) > 0.

(5) Because of f(p∗V , ·) → −∞ for pL → ∞ it is clear that f has a further root

p∗∗L > p∗L with ∂f
∂pL

(p∗V , p
∗∗
L ) ≤ 0. Accordingly (p∗V , p

∗∗
L ) does not satisfy the

inequality (5.27); see step 4. Moreover, by monotonicity of h there is no further

root pL > p∗L that satisfies (5.27); see step 3.

By the same arguments as before there is no further root pL < p∗L.

(6) We have seen that in a neighborhood of pV = p0 for every fixed p∗V there exists

a unique p∗L such that f(p∗V , p
∗
L) = 0 and (5.27) are satisfied. Next we want to

show that this is true for every 0 ≤ pV < p0.

Assume that there exists a pV < p0 such that there is no solution pL with

f(pV , pL) = 0. Then by the previous results we conclude that there exist p∗V , p
∗
L

with pV < p∗V < p0 such that f(p∗V , p
∗
L) = 0 and ∂f

∂pL
(p∗V , p

∗
L) = 0. Accordingly

the solution (p∗V , p
∗
L) does not satisfy the right-hand side of inequalities (5.27).

For (p∗V , p
∗
L) we estimate

z(p∗V , p
∗
L) < p∗V h(p∗V , p

∗
V ) < −

(
m

kT0

)(3/2)
p∗V√
2π

kT0

m
ln

p∗V
p0

= − aV√
2π

ρ∗V ln
p∗V
p0

.
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The expression − aV√
2π

ρ∗V ln
p∗
V

p0
attains its maximum at p̂V = p0 exp(−1). Accord-

ingly we get

− aV√
2π

ρ∗V ln
p∗V
p0

≤ aV√
2π

ρ̂V < aLρL .

This contradicts the above statement that (p∗V , p
∗
L) does not satisfy the right-

hand side of inequalities (5.27). We conclude, that for every fixed 0 < p∗V < p0
there exists a unique p∗L, such that f(p∗V , p

∗
L) = 0 and (5.27) are satisfied.

(7) Taking p∗V = p̃ one can easily check that the root (p̃, pL(p̃)) satisfies (5.27).

Accordingly by an argumentation analogous to step 6 this is true for every p∗V
with p0 ≤ p∗V < p̃. Now the first statement of Lemma 5.4 is proven for all

0 ≤ p∗V < p̃.

Applying this solution to the kinetic relation (5.23) we obtain the mass flux z across the

interface. �
Remark 5.5. For shorter and more clear notation we will often use instead of ρL the

quantity
(

pL−p0

K0
+ 1

)
ρ0 given by the equation of state (3.3). This fact one should keep

in mind when calculating partial derivatives ∂/∂pL.

Corollary 5.6. For every temperature 273.15K≤ T0 ≤ 623.15K and given p∗V the

first root of f(p∗V , ·) satisfies (5.27).

Proof. It is obvious that for pV = pL > p0 the function h is negative whereas for

pV = pL < p0 the function h is positive. Accordingly in the latter case we have

pV · h(pV , pL) < −
(

m

kT0

)3/2
pV√
2π

kT0

m
ln

pV
p0

≤ p0 exp(−1)

aV
√

2π
< aLρL . (5.30)

This proves the statement that the right-hand side of (5.27) is always satisfied.

For the left-hand side of (5.27) this statement is clear by step 7 of the proof of Lemma

5.4. �
5.3.4. Monotonicity of p∗L(p∗V ).

Lemma 5.7. By (5.28) the implicitly defined function p∗L(p∗V ) is strictly increasing. Here

p∗L denotes the uniquely defined root of (5.28) for given p∗V .

Proof. By the implicit function theorem we know that

p∗
′

L (p∗V ) = − ∂f

∂pV
(p∗V , p

∗
L)

/
∂f

∂pL
(p∗V , p

∗
L) .

From the last subsection we know that ∂f
∂pL

(p∗V , p
∗
L) > 0. So we only have to show that

∂f

∂pV
(p∗V , p

∗
L) < 0 .

We calculate

∂f

∂pV
(p∗V , p

∗
L) = −1 + p∗V · h2(p∗V , p

∗
L)

(
2

ρ∗L
− 1

ρ∗V

)
+ p2V · h(p∗V , p

∗
L)

∂h

∂pV
(p∗V , p

∗
L)�

1

ρ∗
� .
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Let us assume that z < 0. Then

∂h

∂pV
(p∗V , p

∗
L) =

(
m

kT0

)3/2
1√
8π

(
�

1

ρ∗
� +

�p∗�

ρ∗V p
∗
V

)

=

(
m

kT0

)3/2
1√
8π

(
1 − z2

p∗V ρ
∗
V

)
�

1

ρ∗
� < 0

and consequently ∂f
∂pV

(p∗V , p
∗
L) < 0. If z > 0 and z ≤ ρ∗V aV , then

∂f

∂pV
(p∗V , p

∗
L) < −1 +

(
m

kT0

)3/2
p∗V√
2π

ρ∗V

(
kT0

m

)1/2
1

ρ∗2V
< 0 .

Finally, for z > 0 and z > ρ∗V aV the above statement is obvious. �
Corollary 5.8. During a condensation process both pressures are larger than the

saturation pressure

p0 < pV < pL

whereas during an evaporation process we have

pV < pL < p0 .

This is a direct consequence of the last lemma and the fact that pL(p0) = p0.

5.3.5. Monotonicity of z� 1
ρ∗ �. Due to Lemma 5.4, for given p∗V the mass flux z is

uniquely defined, because f(p∗V , pL) = 0 has only a single admissible solution. Next we

prove a further monotonicity relation.

Lemma 5.9. For given temperature 273.15K≤ T0 ≤ 623.15K the expression z� 1
ρ∗ � is

strictly increasing in p∗V , where z depends on the function p∗L(p∗V ) implicitly defined by

(5.28).

Proof. We have

dz� 1
ρ �

dpV
(p∗V , p

∗
L) =

(
∂z� 1

ρ �

∂pV
+

∂z� 1
ρ �

∂pL
p∗

′

L

)
(p∗V , p

∗
L) =

(
∂z� 1

ρ�

∂pV
−

∂z� 1
ρ �

∂pL

∂f
∂pV

∂f
∂pL

)
(p∗V , p

∗
L).

Using previous results we will show that(
∂z� 1

ρ �

∂pV

∂f

∂pL
−

∂z� 1
ρ�

∂pL

∂f

∂pV

)
(p∗V , p

∗
L) > 0 . (5.31)

Calculating all the derivatives we obtain(
∂z� 1

ρ �

∂pV

∂f

∂pL
−

∂z� 1
ρ �

∂pL

∂f

∂pV

)
(p∗V , p

∗
L) =

(
m

kT0

)3/2
1

ρ∗V
√

2π

{
�

1

ρ∗
�2

(
ρ∗V p

∗
V − z4

1

ρ∗2L

ρ0
K0

)

+

[
K0

ρ0
ln

ρ∗L
ρ0

− kT0

m
ln

p∗V
p0

− 1

2
�p∗�

(
1

ρ∗L
+

1

ρ∗V

)]
ρ∗V
ρ∗L

(
1 − ρ0

K0

p∗L
ρ∗L

)}
.

Let us first consider that z > 0. Then for z2 ≤ ρ∗V ρ
∗
LaV aL the above statement is obvious.
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Assume that z is positive with z2 > ρ∗V ρ
∗
LaV aL. Then because z > 0 we conclude that

−kT0

m
ln

p∗V
p0

− 1

2
�p∗�

(
1

ρ∗L
+

1

ρ∗V

)
> 0

=⇒ −kT0

m
ln

p∗V
p0

+
1

2
�

1

ρ∗
�

(
1

ρ∗L
+

1

ρ∗V

)
ρ∗V ρ

∗
LaV aL > 0

=⇒ −kT0

m
ln

p∗V
p0

− ρ∗L
2ρ∗V

a2V > 0

⇐⇒ ρ∗L + 2ρ∗V ln
p∗V
p0

< 0 . (5.32)

By some simple calculations we find that for fixed ρ∗L the expression ρ∗L + 2ρ∗V ln
p∗
V

p0

attains its minimum for p̂V = p0 · exp(−1). Accordingly we have

ρ∗L + 2ρ∗V ln
p∗V
p0

≥ ρ∗L − 2ρ̂V > 0 .

This is a contradiction to (5.32) and we conclude that z2 ≤ ρ∗V ρ
∗
LaV aL. This implies the

above statement for positive z.

Now let us consider z < 0. We obtain

�
1

ρ∗
�2

(
ρ∗V p

∗
V − z4

1

ρ∗2L

ρ0
K0

)

+

[
K0

ρ0
ln

ρ∗L
ρ0

− kT0

m
ln

p∗V
p0

− 1

2
�p∗�

(
1

ρ∗L
+

1

ρ∗V

)]
ρ∗V
ρ∗L

(
1 − ρ0

K0

p∗L
ρ∗L

)

> �
1

ρ∗
�2

(
ρ∗2V a2V − ρ∗4V a4V

ρ∗2L a2L

)
+

[
K0

ρ0
ln

ρ∗L
ρ0

− kT0

m
ln

p∗V
p0

− 1

2
�p∗�

(
1

ρ∗L
+

1

ρ∗V

)]
ρ∗V
ρ∗L

≥ a2V

(
�

1

ρ∗
�2ρ∗2V

(
1 − ρ∗2V a2V

ρ∗2L a2L

)
−
√

2π
ρ∗V
ρ∗L

)
.

This expression is obviously positive, because ρV /ρL < 1/4; cf. (5.21). Accordingly the

proof of Lemma 5.9 is complete. �
Remark 5.10. If we exclude phase transitions, this means that we use the trivial

kinetic relation z = 0. Then Lemma 5.4 and Lemma 5.7 remain valid. It is quite evident

that we have p∗L = p∗V . The expression z� 1
ρ� of Lemma 5.9 becomes zero and is clearly

nonstrictly increasing in p∗V .

Remark 5.11. During the proof of Lemma 5.9 we observe that the smallest pL ≥ 0

with f(p∗V , pL) = 0 identically satisfies the inequalities

−aV ρV ≤ z ≤ √
aV aL

√
ρV ρL < aLρL , (5.33)

which is a sharper result than the inequality (5.27).

6. Explicit solutions of the Riemann problem for isothermal Euler equa-

tions for two phases with different equations of state. Now let us consider two

phase flows, where from now on for all examples the left phase (initially x < 0) is as-

sumed to be water vapor, whereas the right phase (initially x > 0) is assumed to be
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liquid water. The different phases are characterized by different equations of state, given

in (3.2) and (3.3). We consider the Riemann problem

ρ(x, 0) =

{
ρ− = ρV for x < 0

ρ+ = ρL for x > 0
and v(x, 0) =

{
v− = vV for x < 0

v+ = vL for x > 0 .
(6.1)

The solution consists of 4 constant states that are separated by 2 classical waves and the

phase boundary. Accordingly we have three possible wave patterns; see Figure 4.

a) b) c)

Fig. 4. Wave patterns. Solid line: classical waves. Dashed line:
vapor-liquid interface

6.1. Case 1: Two-phase flow without phase transition. Let us first consider the case

where the phase transition is excluded, i.e. z = 0. In this case we have

Lemma 6.1. There exists no solution of wave pattern types a) and c), which include the

cases of the coincidence of the classical waves with the phase boundary.

The lemma will be proven at the end of this section.

Now we consider Case b). For solutions of that type we use the following notation for

the 4 constant states:

WV =

[
ρV
vV

]
, W∗

V =

[
ρ∗V
v∗V

]
, W∗

L =

[
ρ∗L
v∗L

]
, WL =

[
ρL
vL

]
. (6.2)

To find the exact solution we extend the procedure that is described for single gas flows

by Toro in [20]. We aim to derive a function

f(p,WV ,WL) = fV (p,WV ) + fL(p,WL) + (vL − vV ) , (6.3)

such that the only root p = p∗ is the solution for the pressure p∗V of the Riemann

problem (2.1)-(2.2), (6.1). The functions fV and fL are the increments that relate the

initial velocities vV , vL to v∗V and v∗L, resp., only in terms of the initial data and the

unknown solution p∗. This means that

v∗V = vV − fV (p∗,WV ) and v∗L = vL + fL(p∗,WL) . (6.4)

This procedure makes use of the constancy of pressure and velocity across the phase

boundary, v∗V = v∗L and p∗V = p∗L, which is due to z = 0.

Because p is constant in the star region, we choose p∗ to be the unknown and eliminate

ρ∗V , ρ
∗
L. However, for shorter notation we keep the initial data ρV , ρL.
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We use the results in (5.2), (5.4) and (5.16). For a left wave we replace ′ and ′′ by V

and ∗
V , resp. On the other hand, for a right wave, ′ and ′′ are replaced by ∗

L and L. We

end up with the following.

Theorem 6.2 (Solution of isothermal two-phase Euler equations without phase

transition). Let f(p,WV ,WL) be given as

f(p,WV ,WL) = fV (p,WV ) + fL(p,WL) + Δv , Δv = vL − vV ,

where the functions fV and fL are given by

fV (p,WV ) =

{
p−pV√
ρV p if p > pV (shock),

−aV ln pV + aV ln p if p ≤ pV (rarefaction),

fL(p,WL) =

⎧⎪⎨
⎪⎩

p−pL√
K0ρL

(
p−p0
K0

+1
) if p > pL (shock),

−aL ln ρL

ρ0
+ aL ln

(
p−p0

K0
+ 1

)
if p ≤ pL (rarefaction).

If the function f(p,WV ,WL) has a root p∗ with 0 < p∗ ≤ p̃ and with p̃ as in Section

3, then this root is unique and is the unique solution for pressure p∗V of the Riemann

problem (2.1)-(2.2), (6.1). The velocity v∗V can be calculated as follows:

v∗V =
1

2
(vV + vL) +

1

2
(fL(p∗,WL) − fV (p∗,WV )) .

Proof. The function f is strictly monotone increasing in p with f(p,WV ,WL) → −∞
for p → 0. Therefore f has at most one unique root, which is by construction the solution

for the pressure p∗V of the Riemann problem considered. The second part of the theorem

is an immediate consequence of (6.4). �
For given initial data one can define the sets of states that can be connected to the

initial states by a single shock or rarefaction wave. These sets define curves in the p-v-

phase plane, where the intersection point (p∗, v∗) is the solution due to Theorem 6.2; see

Figure 5. In Figure 5 the curve CV belongs to the vapor phase, whereas the curve CL

0 0.5 1 1.5 2 2.5
−1000

−500

0

500
Wave curves in the p−v−plane

Pressure in bar

V
el

o
ci

ty
 i
n
 m

/
s

C
L

(p*, v*)

C
V

Fig. 5. Wave curves in the p-v-phase plane

belongs to the liquid phase. The solid lines denote those states that can be connected to

the initial states, indicated by a star, by a rarefaction wave. Along the dash-dotted lines

we have states that may be connected to the initial states by a shock wave. The wave

curves in Figure 5 belong to the data of the second example in Section 8.
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Theorem 6.3 (Sufficient condition for solvability). Let us consider the Riemann

problem (2.1)-(2.2), (6.1). We have two cases.

• For pL < pV (ρ̃) = p̃ the above Riemann problem is solvable if and only if

f(p̃,WV ,WL) =
p̃− pV√

ρV p̃
+

p̃− pL√
ρ
L
(p̃− p0 + K0)

+ Δv ≥ 0 .

• For pL ≥ p̃ the above Riemann problem is solvable if and only if

f(p̃,WV ,WL) =
p̃− pV√

ρV p̃
+ aL ln

(
pL − p0 + K0

p̃− p0 + K0

)
+ Δv ≥ 0 .

Proof. As seen before, f is strictly monotone increasing in p with f(p,WV ,WL) →
−∞ for p → 0. Accordingly f has a unique root if and only if f(p,WV ,WL) ≥ 0 for

p → p̃. �
Remark 6.4 (Complete solution). Theorems 6.2 and 6.3 allow us to calculate

the pressure and the velocity in the star region as well as the interface velocity. From

the equations of state (3.2) and (3.3) we find the densities ρ∗V , ρ
∗
L of the star region

respectively. In the case of shock waves the relation (5.16) gives the shock speeds.

For a left (right) rarefaction wave the head and tail speeds can be obtained from (5.2)

or (5.4) respectively. The solution inside the fans is given by (5.3), respectively (5.5).

Finally we give the proof of Lemma 6.1.

Proof. We denote the states between the classical waves with two stars. The states

between the right wave and the phase boundary have one star; also see Figure 6. Assume

ρ
V
, v

V

ρ
V*

,v
V*ρ

V**
,v

V**

ρ
L
,v

L

Fig. 6. Notation, wave pattern type c)

that the solution is of wave pattern type c). Then the interface is moving with speed

w = vL = vV ∗. Let us further assume that the right wave is a shock wave moving with

speed S2. Obviously the condition w ≥ S2 must hold. To find S2 we use (5.16)1 and

(5.16)2. We replace ′ and ′′ by V ∗∗ and V ∗, resp. We obtain

S2 = w +
aV ρV ∗√
ρV ∗ρV ∗∗

,

which contradicts the condition w ≥ S2.

On the other hand if the right wave is a rarefaction wave, then the head speed is

given by aV + vV ∗; see Subsection 5.1. This is likewise a contradiction to the condition

w = vL = vV ∗ ≥ aV + vV ∗. If the phase boundary lies within the rarefaction wave or at

its tail we obtain the analogous contradiction in the wave speeds.

Accordingly there is no solution of type c). In an analogous manner we may discuss

the case of wave pattern type a). �
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6.2. Case 2: Two-phase flow with phase transition. The lemma corresponding to

Lemma 6.1 is much more complicated in this case. For this reason we must discuss

all three cases from Figure 4 and we start with Case b).

6.2.1. Solutions of type b). To find the solution for the Riemann problem (2.1)-(2.2),

(6.1) with phase transition we use the same strategy as before. Due to phase transition

we have v∗L �= v∗V at the interface, which gives us a further term in the resulting algebraic

equation. Moreover, a further challenge results from the inequality of the pressures

p∗L �= p∗V . Nevertheless we are able to construct a function

fz(p,WV ,WL) = fV (p,WV ) + fL(p∗L(p),WL) + z�
1

ρ
� + (vL − vV ) (6.5)

such that the only root p = p∗ is the solution for the pressure p∗V of the Riemann

problem (2.1)-(2.2), (6.1) with phase transition. The functions fV and fL relate the

initial velocities vV , vL to v∗V and v∗L, respectively, only in terms of the initial data and

the unknown solution p∗ as well as the implicitly defined function p∗L(p∗).

As before we use the results in (5.2), (5.4) and (5.16). For a left wave we repalce ′ and
′′ by V and ∗

V , respectively. On the other hand, for a right wave, ′ and ′′ are replaced by
∗
L and L. We end up with the following.

Theorem 6.5 (Solution of isothermal two-phase Euler equations with phase

transition). Let fz(p,WV ,WL) be given as

fz(p,WV ,WL) = fV (p,WV ) + fL(p∗L(p),WL) + z�
1

ρ
� + Δv , Δv = vL − vV , (6.6)

where the functions fV and fL are given by

fV (p,WV ) =

{
p−pV√
ρV p if p > pV (shock),

−aV ln pV + aV ln p if p ≤ pV (rarefaction),

fL(p,WL) =

⎧⎪⎪⎨
⎪⎪⎩

p∗
L(p)−pL√

K0ρL

(
p∗
L

(p)−p0
K0

+1

) if p∗L(p) > pL (shock),

−aL ln ρL

ρ0
+ aL ln

(
p∗
L(p)−p0

K0
+ 1

)
if p∗L(p) ≤ pL (rarefaction) .

The function p∗L(p) is implicitly defined by (5.28) and z is given by (5.23).

If the function fz(p,WV ,WL) has a root p∗ with 0 < p∗ ≤ p̃, see Section 3, this root is

unique.

If further

p∗ > pV , we must have z > −aV
√
ρV ρ∗V . (6.7)

In this case the root p∗ is the unique solution for the pressure p∗V for a b)-type solution of

the Riemann problem (2.1)-(2.2), (6.1) with phase transition and the complete solution

is uniquely determined.

If there is no root or condition (6.7) is not satisfied, then the Riemann problem has

no solution.

Proof. The function fz is strictly increasing in p. This follows from Lemma 5.7 and

Lemma 5.9. Further we have fz → −∞ for p → 0. Therefore fz has at most one unique

root, which is by construction the solution for p∗V of the considered Riemann problem.
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Then by Lemma 5.4 the pressure p∗L(p) and the mass flux z are uniquely defined. The

corresponding densities can be obtained from the equations of state (3.2), (3.3). To find

the velocities in the star regions one can use (5.2), (5.4) for rarefactions or (5.16) for

shocks. The interface velocity can be obtained from (2.5).

The further calculations are the same as in the case of isothermal Euler equations

without phase transition; see the proof for Theorem 6.2 and the remarks following. �
Remark 6.6. The additional condition (6.7) in Theorem 6.5 is necessary to guarantee

that S1 ≤ w in the case of a 1-shock propagating through the gas. If this condition is

not satisfied, the root p∗ of (6.6) is meaningless.

As in the case of no phase transition in the previous section, one can construct the

solution in the p−v−phase plane. We define the same sets of states as before. Moreover,

for every state that can be connected to (pV , vV ) by a single wave, there exists a uniquely

defined state (p∗L, v
∗
L) that can be connected to (pV , vV ) by a phase boundary due to the

kinetic relation (5.23). These states define a further wave curve CL′ ; see Figure 7. The
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Fig. 7. Wave curves in the p− v−phase plane

curves CL and CV are identical to the case before. The curve CL′ is newly defined, where

the solid part of CL′ corresponds to the solid part of CV . The intersection point of the

curves CL′ and CL is the solution for (p∗L(p∗V ), v∗L) due to Theorem 6.5. As before the

wave curves in Figure 7 belong to the data of the second example in Section 8.

Theorem 6.7 (Sufficient condition for solvability I). Let us consider the Riemann

problem (2.1)-(2.2), (6.1). If the Riemann problem considered for Case 1 is solvable, then

the same Riemann problem is also solvable taking into account phase transition due to

the kinetic relation (5.23).

The proof is obvious by the monotonicity properties of fz. For details, see the following

corollary and its proof.

Corollary 6.8. Let p∗ be the solution of the pressure in the star region of the

Riemann problem (2.1)-(2.2), (6.1) for Case 1. Then for the solutions p∗V and p∗L(p∗V ) of

the same Riemann problem for Case 2 we have:

(1) p∗ = p0 implies that p∗V = p∗L(p∗V ) = p0.

(2) p∗ < p0 implies that p∗ < p∗L(p∗V ) < p0.
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(3) p∗ > p0 implies that p0 < p∗V < p∗.

Proof. The first statement is obvious. Now let us consider p∗ < p0. Consider

that p∗L(p∗V ) = p0. Then we have an equilibrium and therefore p∗V = p0 and further

fz(p0,WV ,WL) = f(p0,WV ,WL) > 0. Now fz(p0,WV ,WL) > 0 and we obtain

due to the monotonicity of fz that p∗L(p∗V ) < p0. On the other hand, if p∗L(p∗V ) = p∗,

then fz(p
∗
V ,WV ,WL) < f(p∗,WV ,WL) = 0 and we conclude the other inequality

p∗ < p∗L(p∗V ). The argumentation for the third statement is analogous. �

Theorem 6.9 (Sufficient condition for solvability II). Let us consider the Riemann

problem (2.1)-(2.2), (6.1) with phase transition. This Riemann problem is solvable by a

b)-type solution if and only if

fz(p̃,WV ,WL) ≥ 0

and (6.7) is satisfied.

Proof. The statement is obvious, because the above requirement guarantees that the

function fz has a root. �
6.2.2. Further solutions. As in Section 6.1 we want to discuss the existence of further

solutions for the Riemann problem (2.1)-(2.2), (6.1) with phase transition. We obtain

Lemma 6.10. There is no solution of type a).

Proof. Assume there is a solution of type a). Then analogously to solutions of type c)

in Section 6.1 we denote the constant states by (ρV , vv), (ρL∗, vL∗), (ρL∗∗, vL∗∗), (ρL, vL);

see Figure 6. Obviously in that case we have a condensation process and therefore z < 0.

Assume the left wave is a rarefaction wave. Then the head speed is given by vL∗ − aL
and

w =
z

ρL∗
+ vL∗ ≤ vL∗ − aL (6.8)

must hold. We obtain z ≤ −aLρL∗. This contradicts (5.27), and therefore there is no

solution of type a) with a left rarefaction.

Similarly, for a left shock wave,

w =
z

ρL∗
+ vL∗ < vL∗ − aL

√
ρL∗∗
ρL∗

must hold. This is a stronger inequality than (6.8), and therefore it cannot be satisfied.

This proves the above statement. �

Lemma 6.11. Consider the Riemann problem (2.1)-(2.2), (6.1) with phase transition. If

pL ≥ p0 there is no solution of type c).

Proof. A solution of type c) implies an evaporation process. This requires that pL <

p0. �

Lemma 6.12. Consider the Riemann problem (2.1)-(2.2), (6.1) with phase transition.

For sufficiently large pL with pL ≤ p0 there is no solution of type c).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



530 M. HANTKE, W. DREYER, AND G. WARNECKE

Proof. Assume there is a solution of type c). Then analogously to the previous case

of an a)-type solution for a right rarefaction,

w =
z

ρV ∗
+ vV ∗ ≥ vV ∗ + aV

must hold. On the other hand, for a right shock wave we have

w =
z

ρV ∗
+ vV ∗ > vV ∗ + aV

√
ρV ∗∗
ρV ∗

.

Accordingly
z

ρV ∗
+ vV ∗ < vV ∗ + aV ⇐⇒ z

ρV ∗aV
< 1

is sufficient to guarantee that there is no solution of type c). Due to z > 0 we obtain

from (5.23) by a simple estimate

z

ρV ∗aV
< − 1√

2π
ln

pV ∗
p0

.

Therefore, if

− 1√
2π

ln
pV ∗
p0

≤ 1 ⇐⇒ pV ∗ ≥ p0 exp(−
√

2π)

there is no solution of type c). By the strict monotonicity of pL(pV ∗) the proof is

complete; see Lemma 5.7. �
Remark 6.13. Note that the inequality pL ≥ pL(p0 exp(−

√
2π)) is sufficient, but not

necessary, for the statement of the above lemma.

7. 3-Phase flow.

7.1. Condensation by compression. Now let us consider the Riemann problem for the

isothermal Euler equations with the following initial data for ρV± ∈ [0, p̃]:

ρ(x, 0)=

{
ρ−=ρV − for x < 0

ρ+=ρV+ for x > 0
and v(x, 0)=

{
v−=vV − for x < 0

v+=vV + for x > 0 .
(7.1)

This means that we have a Riemann problem for a vapor phase only. Using the results

of Section 5 we easily obtain

Theorem 7.1 (Solution of classical isothermal Euler equations). Let the function

fV V be given as

fV V (p,WV−,WV +) = fV−(p,WV−) + fV+(p,WV+) + Δv , Δv = vV+ − vV −,

where the functions fV− and fV+ are given by

fV −(p,WV−) =

{
p−pV −√
ρV −p if p > pV− (shock),

−aV ln pV− + aV ln p if p ≤ pV− (rarefaction),

fV+(p,WV+) =

{
p−pV +√
ρV +p if p > pV+ (shock),

−aV ln pV+ + aV ln p if p ≤ pV+ (rarefaction).
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If the function fV V (p,WV−,WV+) has a root p∗ with 0 < p∗ ≤ p̃, this root is unique

and is the unique solution for pressure p∗V of the Riemann problem (2.1)-(2.2), (7.1). The

velocity v∗V is given by

v∗V =
1

2
(vV− + vV+) +

1

2
(fV+(p∗,WV+) − fV−(p∗,WV−)) .

In principle this result is known with some small modifications; see for instance the

book of Toro [20]. In the literature one usually looks for a pressure p∗ that is a root

of the above algebraic equation. Due to fV V → −∞ for p → 0 and fV V → +∞ for

p → +∞ there is always a solution. The latter case is physically not meaningful because

a sufficiently high pressure in a gas will lead to a phase transition to a liquid or solid

phase. In contrast we only consider solutions that satisfy the inequality 0 < p∗ ≤ p̃, where

p̃ denotes the maximal possible gas pressure. As a consequence one can find Riemann

initial data without a solution. If this happens we follow the following strategy.

Definition 7.2 (Nucleation criterion). If there is no solution to the Riemann

problem (2.1)-(2.2), (7.1) according to Theorem 7.1, then nucleation occurs.

If this criterion is fulfilled, we look for a solution with two transition fronts (phase

boundaries) and two classical waves. Next we discuss the possible wave patterns for

condensation.

Lemma 7.3. If there is a solution of the Riemann problem (2.1)-(2.2), (7.1) consisting of

two classical waves and two phase boundaries, then no wave is propagating through the

liquid. Waves may only occur in the gas.

Proof. Assume there is a solution with a classical wave propagating through the liquid

phase. W.l.o.g. this wave is a left going wave. We denote the states to the left and right

of this wave by L∗ and L∗∗, respectively. Furthermore, on the left-hand side of this

wave there is a phase boundary propagating with speed w1. The state left to the phase

boundary is denoted by V ∗.

Obviously we have a condensation process. Accordingly p∗ > p0 and pL∗ > p0. This

configuration is impossible due to Lemma 6.10. Analogously we discuss the case of a

right going wave. �
We conclude that both waves propagate through the vapor phase. The possible wave

patterns are given in Figure 8.

d) e) f)

Fig. 8. Wave patterns. Solid line: classical waves. Dashed line:
vapor-liquid interface

Lemma 7.4. There are no solutions of wave pattern types d) and f).
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Proof. Let us assume that the solution is of wave pattern type d). This corresponds to

solutions of wave pattern type c) in Section 6.2.2; see Figure 4. We have seen that such

solutions can only occur for very low pressures, which implies evaporation; see Lemma

6.11 and Lemma 6.12. Here we have a condensation process, so wave pattern type d) is

impossible. Analogously we can exclude solutions of wave pattern type f). �
Accordingly the only possible wave configuration is of type e). We use the notation

as given in Figure 9 and obtain

ρ
V−

, v
V− ρ

V+
, v

V+

ρ
L* , v

L*

ρ
V**, v

V**
ρ

V*, v
V*

Fig. 9. Notation, wave pattern type e).

Lemma 7.5. Assume there is a solution of wave pattern type e). Then pV ∗ = pV ∗∗.

Proof. For given pV ∗ the pressure pL∗ is uniquely defined; cf. Lemma 5.4. The func-

tion pL∗(pV ∗) is strictly monotone; see Lemma 5.7. For the second phase boundary we

have to use the modified kinetic relation (5.24). We obtain the same pressure function

pL∗(pV ∗∗) = pL∗(pV ∗) with the same monotonicity properties as in Section 5.3.4. �
Using the results of the previous sections and taking into account that there are two

phase boundaries we can formulate the following.

Theorem 7.6 (Solution of isothermal Euler equations for two gases with phase

transition). Consider the Riemann problem (2.1)-(2.2), (7.1) and assume that the nu-

cleation criterion is satisfied. Let fV V z(p,WV−,WV +) be given as

fV V z(p,WV−,WV+) = fV −(p,WV−) + fV+(p,WV+) + 2z�
1

ρ
� + vV + − vV− ,

where the functions fV− and fV+ are given by

fV −(p,WV−) =

{
p−pV −√
ρV −p if p > pV− (shock),

−aV ln pV− + aV ln p if p ≤ pV− (rarefaction),

fV+(p,WV+) =

{
p−pV +√
ρV +p if p > pV+ (shock),

−aV ln pV+ + aV ln p if p ≤ pV+ (rarefaction).

Here z is given by (5.23) and � 1
ρ � = 1

ρL∗
− 1

ρV ∗
. The function p∗L(p) is implicitly defined

by (5.28).

If the function fV V z has a root with p0 < p ≤ p̃, then this root is the only one.

Furthermore, this root is the unique solution for the pressure pV ∗ = pV ∗∗ of the Riemann

problem (2.1)-(2.2), (7.1) for the vapor pressure in the star regions. The liquid velocity

vL∗ can be calculated by

vL∗ =
1

2
(vV− + vV +) +

1

2
(fV+(p∗) − fV−(p∗)) .
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By previous results it is obvious that the function fV V z has at most one root. By

construction this root is the solution for the pressure of the vapor phase in the two star

regions in Figure 9.

The further calculations to find the complete solution are analogous to previous cal-

culations.

Remark 7.7. Note that vV ∗ �= vV ∗∗ with vV ∗ + vV ∗∗ = 2vL∗.

Theorem 7.8 (Sufficient condition for solvability I). Consider the Riemann prob-

lem (2.1)-(2.2), (7.1). This problem is solvable without phase transition if and only

if

fV V (p̃,WV−,WV+) ≥ 0 .

Proof. This statement is obvious by the monotonicity of fV V . �

Theorem 7.9 (Sufficient condition for solvability II). Consider the Riemann prob-

lem (2.1)-(2.2), (7.1) and assume that the nucleation criterion due to Definition 7.2 is

satisfied. Taking phase transition into account this problem is solvable if and only if

fV V z(p̃,WV−,WV+) ≥ 0 .

Proof. This statement is obvious due to the monotonicity of fV V z. �
7.2. Evaporation by expansion. In the following we consider the Riemann problem for

the isothermal Euler equations with initial data ρL± ≥ ρmin:

ρ(x, 0)=

{
ρ−=ρL− for x < 0

ρ+=ρL+ for x > 0
and v(x, 0)=

{
v− = vL− for x < 0

v+ = vL+ for x > 0;
(7.2)

i.e., the initial data only contain two states in a liquid phase.

We have seen that at a planar phase boundary the liquid pressure is always positive.

It is known from applications that negative liquid pressures are possible. They give

rise to cavitation in the liquid; see Doering [6]. Recall that in the liquid-vapor case a

negative liquid pressure is forbidden; see (5.18). Now, in the liquid-liquid case we may

meet negative pressures. The smallest pressure in the liquid is pmin.

Using that definition we obtain

Theorem 7.10 (Solution of isothermal Euler equations for two states of a liquid

without phase transition). Let fLL(p,WL−,WL+) be given as

fLL(p,WL−,WL+) = fL−(p,WL−) + fL+(p,WL+) + Δv , Δv = vL+ − vL−,

where the functions fL− and fL+ are given by

fL−(p,WL−) =

⎧⎨
⎩

p−pL−√
ρL−(p−p0+K0)

if p > pL− (shock),

−aL ln ρL−
ρ0

+ aL ln
(

p−p0

K0
+ 1

)
if p ≤ pL− (rarefaction),

fL+(p,WL+) =

⎧⎨
⎩

p−pL+√
ρL+(p−p0+K0)

if p > pL+ (shock),

−aL ln ρL+

ρ0
+ aL ln

(
p−p0

K0
+ 1

)
if p ≤ pL+ (rarefaction).
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If the function fLL(p,WL−,WL+) has a root p∗ with pmin ≤ p∗, this root is unique and

is the unique solution for the pressure p∗L of the Riemann problem (2.1)-(2.2), (7.2). The

velocity v∗L is calculated from

v∗L =
1

2
(vL− + vL+) +

1

2
(fL+(p∗) − fL−(p∗)) .

Remark 7.11. For simplicity in our calculations we choose pmin = 0, but also lower

values are possible. Our theoretical results are general and do not depend on the special

value of pmin.

Analogous to the above nucleation criterion we give the

Definition 7.12 (Cavitation criterion). If there is no solution of the Riemann

problem (2.1)-(2.2), (7.2) according to Theorem 7.10, then we may encounter cavitation.

If this criterion is fulfilled, we look for a solution involving a vapor phase with two

transition fronts (phase boundaries) and two classical waves. As before we discuss the

possible wave patterns.

Lemma 7.13. Assume there is a solution of the Riemann problem (2.1)-(2.2), (7.2) con-

sisting of two classical waves and two phase boundaries. If further pL−, pL+ are suffi-

ciently large, then no wave is propagating through the vapor.

The proof is analogous to the proof of Lemma 6.12. A sufficient lower bound for

pL−, pL+ is given in Remark 6.13.

Lemma 7.14. There is no solution of types d) and f); see Figure 8.

The proof is analogous to the proof of Lemma 6.10.

Accordingly we construct solutions of type e); the notation is analogous to the notation

in Figure 9. We obtain

Lemma 7.15. Assume there is a solution of wave pattern type e). Then pL∗ = pL∗∗.

The proof is analogous to the proof of Lemma 7.5.

The next theorem addresses wave pattern type e).

Theorem 7.16 (Solution for isothermal Euler equations for two liquids with

phase transition). Consider the Riemann problem (2.1)-(2.2), (7.2) and assume the

cavitation criterion is satisfied. Let fLLz(p,WL−,WL+) be given as

fLLz(p,WL−,WL+) = fL−(pL(p),WL−) + fL+(pL(p),WL+) + 2z�
1

ρ
� + vL+ − vL− ,

with fL− and fL+ according to

fL−(p∗L(p),WL−) =

⎧⎨
⎩

p∗
L(p)−pL−√

ρL−(p∗
L(p)−p0+K0)

if p∗L(p) > pL− (shock),

−aL ln ρL−
ρ0

+ aL ln
(

p∗
L(p)−p0

K0
+ 1

)
if p∗L(p) ≤ pL− (rf.),

fL+(p∗L(p),WL+) =

⎧⎨
⎩

p∗
L(p)−pL+√

ρL+(p∗
L(p)−p0+K0)

if p∗L(p) > pL+ (shock),

−aL ln ρL+

ρ0
+ aL ln

(
p∗
L(p)−p0

K0
+ 1

)
if p∗L(p) ≤ pL+ (rf.) .
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Here z is calculated from (5.23) and � 1
ρ � = 1

ρL∗
− 1

ρV ∗
. The function p∗L(p) is implicitly

defined by (5.28).

If the function fLLz has a root with pmin ≤ p, then this root is unique. Further, this

root uniquely determines the pressure p∗V of the Riemann problem (2.1)-(2.2), (7.2) for

the vapor pressure in the star region. Further, the vapor velocity vV ∗ is given by

vV ∗ =
1

2
(vL− + vL+) +

1

2
(fL+(p∗L(p∗)) − fL−(p∗L(p∗))) .

Proof. Due to our previous results, it is obvious that the function fLLz has at most

one root. By construction this root is the solution for the pressure of the vapor phase in

the star region.

The further calculations leading to the complete solution are analogous to previous

calculations. �

Theorem 7.17 (Sufficient condition for solvability I). Consider the Riemann prob-

lem (2.1)-(2.2), (7.2). This problem is solvable without phase transition if and only

if

fLL(pmin,WV−,WV +) ≤ 0 .

Proof. This statement is obvious due to monotonicity of fLL. �

Theorem 7.18 (Sufficient condition for solvability II). Consider the Riemann prob-

lem (2.1)-(2.2), (7.2) and assume the cavitation criterion is satisfied. If we admit phase

transition, this problem is always solvable.

Proof. This statement is obvious due to the fact that z� 1
ρ � → −∞ for p∗V → 0. �

8. Numerical results. In the following section we discuss some numerical examples.

The calculations need the Boltzmann constant k and the mass of a single water molecule

mW :

k = 1.380658 · 10−23J/K and mW =
2 · 1.0079 + 15.9994

6.02205 · 1026
kg .

The reference values used are found in [22].

8.1. Example 1: 2-phase flow, wave structure independent of phase transition. We

consider an example in which the wave structure does not depend on whether a phase

transition is modeled or not. The initial data and reference values for the first example

are given by

vV = −100m/s vL = 100m/s T0 = 293.15K K0 = 109/0.45836Pa

pV = 2300Pa pL = 1000Pa ρ0 = 1000/1.00184kg/m3 p0 = 2339Pa.

Figure 10 shows for z = 0 the solution for velocity, pressure and density as well as the

wave pattern. The phase boundary is indicated by the dotted line. Figure 11 gives the

solution for the same problem with z �= 0, i.e. with phase transition. Both solutions have

similar wave patterns.
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Fig. 10. Example 1, without phase transition
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Fig. 11. Example 1, with phase transition

Note that in the plots for density and velocity the jump across the shock wave is so

small that it is not visible in the chosen scale. This is generally true for classical waves

inside the liquid phase. The difference is only visible in a local zoom.

The solutions to Example 1 for the intermediate states vV ∗, pV ∗, vL∗, pL∗ for both

cases are summarized in the following table:

vV ∗ = 100.0002m/s vL∗ = 100.0002m/s vV ∗ = 42.5m/s vL∗ = 100.0004m/s

pV ∗ = 1335.3Pa pL∗ = 1335.3Pa pV ∗ = 1561Pa pL∗ = 1699.5Pa .

8.2. Example 2: 2-phase flow, wave structure depending on phase transition. We now

consider an example in which the wave type changes when a phase transition is intro-

duced. The second example relies on
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vV = −200m/s vL = −50m/s T0 = 473.15K K0 = 109/0.88383Pa

pV = 60000Pa pL = 100000Pa ρ0 = 1000/1.15651kg/m3 p0 = 1554670Pa .

In the case without phase transition the solution is composed of two rarefaction waves,

see Figure 12, whereas the solution with phase transition possesses two shock waves, see

Figure 13. The corresponding wave curves are given in Figure 5 of Subsection 6.1 and

Figure 7 of Subsection 6.2. The solutions to Example 2 for the intermediate states
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Fig. 12. Example 2, without phase transition
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Fig. 13. Example 2, with phase transition

vV ∗, pV ∗, vL∗, pL∗ for both cases are summarized in the following table:

vV ∗ = −50.057m/s vL∗ = −50.057m/s vV ∗ = −472m/s vL∗ = −49.905m/s

pV ∗ = 43531Pa pL∗ = 43531Pa pV ∗ = 106525Pa pL∗ = 193464Pa .
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8.3. Example 3: Condensation by compression. In the third example the data are

vV− = 2.7m/s vV + = −2.7m/s T0 = 363.15K K0 = 109/0.47316Pa

pV− = 70000Pa pV+ = 70000Pa ρ0 = 1000/1.03594kg/m
3

p0 = 70182.4Pa.

The solution at time t = 0.001s is illustrated in Figure 14, including a zoom plot

to show the details. Further, the solutions to Example 3 for the intermediate states

vV ∗, pV ∗, vL∗, pL∗, vV ∗∗, pV ∗∗ are summarized in the following table:

vV ∗ = 0.465m/s vL∗ = 0 vV ∗∗ = −0.465m/s

pV ∗ = 70383.04Pa pL∗ = 70383.13Pa pV ∗∗ = 70383.04Pa .
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Fig. 14. Example 3, condensation by compression

8.4. Examples 4 and 5: Evaporation by expansion. At first we start from the data

vL− = −40m/s vL+ = 40m/s T0 = 363.15K K0 = 109/0.47316Pa

pL− = 60000Pa pL+ = 60000Pa ρ0 = 1000/1.03594kg/m
3

p0 = 70182.4Pa

and show the result at time t = 0.001s in Figure 15. The same phenomenon is pro-

duced now by different data, namely

vL− = −20m/s vL+ = 30m/s T0 = 363.15K K0 = 109/0.47316Pa

pL− = 30000Pa pL+ = 40000Pa ρ0 = 1000/1.03594kg/m3 p0 = 70182.4Pa.

Example 4 consists of two rarefaction waves and two phase transitions, whereas Ex-

ample 5 exhibits two shock waves and two phase transitions; see Figure 16. The data for

the intermediate states vL∗, pL∗, vV ∗, pV ∗, vL∗∗, p∗∗ for both examples are given in

vL∗ = −39.996m/s vV ∗ = 0 vL∗∗ = 39.996m/s

pL∗ = 55188Pa pV ∗ = 54665Pa pL∗∗ = 55188Pa

and
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Fig. 15. Example 4, evaporation by expansion
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Fig. 16. Example 5, evaporation by expansion

vL∗ = −23.9m/s vV ∗ = 4.3m/s vL∗∗ = 32.5m/s

pL∗ = 59185Pa pV ∗ = 58905Pa pL∗∗ = 59185Pa .
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[6] W. Döring, Die Überhitzungsgrenze und Zerreißfestigkeit von Flüssigkeiten, Z. physikal. Chem.,
Abt. B, Bd. 86 (1937), Heft 5/6.

[7] W. Dreyer, On jump conditions at phase boundaries for ordered and disordered phases, WIAS
Preprint, 869 (2003). [http://www.wias-berlin.de/main/publications/wias-publ/]

[8] W. Dreyer, F. Duderstadt, M. Hantke, and G. Warnecke, On phase change of a vapor bubble in liquid
water, WIAS Preprint, 1424 (2009). [http://www.wias-berlin.de/main/publications/wias-publ/]

[9] W. Dreyer, J. Giesselmann, C. Kraus, and C. Rohde, Asymptotic Analysis for Korteweg models,

WIAS Preprint, 1545 (2010). [http://www.wias-berlin.de/main/publications/wias-publ/]
[10] U. Grigull, S. Straub, and P. Schiebener, Steam Tables in SI-Units, Wasserdampftafeln, Springer-

Verlag, Berlin, 1990.
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