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Abstract

We describe an extension of the Markov decision process model in

which a continuous time dimension is incllMcd in the stat(', space.

This allows tbr the representation and exact solution of a wide

range of prohleins in which transitions or rewards vary over time.

We examine problems based on route planning with public trans-

portation and telescope observation scheduling.

1 Introduction

hnagine trying to plan a route from home to work that minimizes expected time.

One approach is to use a tool such as "Mapquest", which annotates maps with

information about estimated driving time, then applies a standard graph-search

algorithm to produce a shortest route. Even if driving times are stochastic, the an-

notations can be expected times, so this presents no additional challenge. However,

consider what happens if we would like to include public transportation in our route

plamfing. Buses, trains, and subways vary in their exi)ecte(t travel time according to

the time of day: buses and subways come more frequently during rush hour; trains

leave on or close to scheduled departure times. In fact, even highway driving times

vary with time of day, with heavier traffic and longer travel times during rush hour.

To formalize this problem, we require a model that includes both stochastic actions,

as in a Markov dccision process (MDP), and actions with time-dependent stochastic
durations. There are a number of models that include some of these attributes:

• Directed graphs with shortest path Mgorithms [2]: State transitions are deter-

nfinistic; action durations are time indei)endent (deterministic or stoch_Lstic).

• Stoct_astic Time Dependent Networks (STDNs) [6]: State transitions are deter-

ministic; action durations are stochastic and can be time dependent.

• Markov decision processes (MDPS) [5]: State transitions arc stochastic,; action
durations are deternfinistic.

• Semi-Markov decision processes (SMDPs) [5]: State transitions are stochastic;

action durations are stocheustic, but not time dependent.

In this paper, we introduce the Time-Dependent MDP (TIVIDP) model, which gener-

alizes all these models by including both stochastic state transitions and stochastic,



time-dependentactiondurations.At a high level, a TMDP is a special continuous-

state MDP [5; 4] consisting of states with both a discrete component and a real-valued

time component: (x, t} E X x N.

With absolute time as part of tile state space, we can model a rich set of domain ob-

jectives including minimizing expected time, maximizing the probability of making

a deadline, or maximizing the dollar reward of a path subject to a time deadline.

In fact, using the time dimension to represent other one-dimensional quantities,

TMDPs support planning with non-linear utilities [3] (e.g., risk-aversion), or with a

continuous resource such as battery life or money.

'vVe defiim TMDPs aim express their Bellman equations in a flmctional form that

gives, at each state x, the one-step lookahead value at (x, t) tor all times in parallel

(Section 2). We nse the term time-value flznction to denote a inapping flom real-
valued times to real-valued future reward. With appropriate restrictions on the form

of the stochastic state-time transition function and reward function, we guarantee

that the optimal tim_value flmction at each state is a piecewise linear function of

time, which can be represented exactly and computed by value iteration (Section 3).

We conclude with empirical results on two domains (Section 4).

2 General model
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Figure 1: An illustrative route-planning example TMDP.

Figure 1 depicts a small route-planning example that illustrates several distinguish-

ing features of the TMDP model. The start state xl corresponds to being at home.

From here, two actions are available: al, taking the 8am train (a scheduled action);

and a2, driving to work via highway then backroads (may be done at any time).

Action al has two possible outcom(_s, represented by /q and #2. Outcome /q

("Missed the 8am train") is active after 7:50am, whereas outcome #2 ("Caught the

train") is active until 7:50am; this is governed by the likelihood functions L1 and L2
in the model. These outcomes cause deterministic transitions to states xl aim x3,

respectively, but take varying amounts of time. Time distributions in a TMDP may

be either "relative" (REL) or "absolute" (ASS). In the case of catching the train

(/z2), the distrilmtion is absolute: the arrival time (shown in P2) has mean 9:45am
no matter what time before 7:50am the action was initiated. (Boarding the train

earlier does not allow us to arrive at, our destination earlier!) However, missing the

train and returIfing to Xl has a relative distribution: it deterministically takes 15

minutes from our starting time (distribution P1) to return home.

The outcomes for driving (a2) are pa and _4. Outcome #a ("Highway rush hour")



isactivewithprobability1duringtheinterval8am9am,andwithsmallerproba-
bilityoutsidethatinterval,_sshownby L3. Outcome #4 ("Highway - off peak")

is complementary. Duration distributions Pa and P4, both relative to the initiation

time, show that driving times during rush hour are on average longer than those off

peak. State z2 is reached in either ease.

From state x2, only one action is available, a:t. The corresponding outcome p5

("Drive on backroad") is insensitive to time of day and results in a deterministic
transition to state xa with duration 1 hour. The reward fimction for arriving at

work is +1 before llam and falls linearly to zero between 1lain and noon.

The solution to a TIvIDP such a.s this is a policy mat)ping state-time pairs (x, t} t_

actions so as to maximize expected future reward. As is standard in MDP methods,

our approach finds this policy via the value function V*. We represent the value

fimetion of a TMDP a_s a set, of time-value fimctions, one per state: 1_ (t) gives the

optimal expected future reward from state xi at time t. In our example of Figure 1,
the time-value fimctions for xa and x= are shown a.s Va and 1/2. Becanse of the

deterministic one-hour delay of #5, V2 is identical to Va shifted back one hour. This

wholesale shifting of time-value functions is exploited by our solution algorithm.

The TMDP model also allows a notion of "dawdling" in a state. This means the

TMDP agent can remain in a state for as long as desired at a reward rate of/x'(x, t)

per unit time before choosing an action. This makes it possible, for example, for an

agent to wait at home for rush hour to end before driving to work.

Formally, a TMDP consists of the following components:

X discrete state space

A discrete action space

M discrete set of outcomes, each of the form # = (x_, T_, Pt,):

x_, E X: the resulting state

T u E {ASS, REL}: specifies the type of the resulting time distribution

Pu(t') (if T_, = ABS): pdf over absolute arrival times of #
Pj,(6) (if Tj, = REL): pdf over durations of p

L L(#tx , t, a) is the likelihood of outcome # given state x, time t, action a

R R(tt, t, (_) is the reward for outcome # at time t with duration

K K(x, t) is the reward rate for "dawdling" in state x at time t.

We. can define the optimal vahle function for a TMDP in terms of these quantities

with the following Bellman equations:

t I

v(_, t) = sup (f K(_, _)d_+ _(_, t'))
t'>t

V(x,t) = max Q(z,t,a)
a(: A

Q(x,t,a) = E L(#Ix'a't)'U(#'t)

t_: M

{ ,f___ Pu(t') [R(#,t,t'-t)+ V(x;,t')]dt'U(#,t) = f___ pu(t' - t)[R(#,t,t' t) + V(x_,t')]dt'

value flmction (allowing dawdling)

value function (immediate action)

expected Q value over outcomes

(if Z u = ABS)

(if 7; = REL).

These equations follow straightforwardly from viewing the TMDP as an undiscounted
continuons-time MDP. Note that the calculations of U(#, t) are convoh_tions of the

result-time pdf P with the lookahead value R + V. In the next section, we discuss

a concrete way of representing and manipulating the continuous quantities that

apl)ear ill these equations.



3 Model with piecewise linear value functions

In the general model, tile time-wflue functions for each state can be arbitrarily

complex and theretbre impossible to represent exactly. In this section, w(" show how

to restrict the model to allow value functions to be manipulated exactly.

For each state, we represent its time-value flmction V/(t) as a piecewise linear fum:-

tion of time. V/(t) is thus represented by a data structure consisting of a set of

distinct times called break.points and, for each pair of consecutive breakpoints, the

equation of a line defined ow:r the corresponding interval.

Why are piecewise linear functions an appropriate representation'? Linear time-

value flmctions provide an exact representation for minimum-time problenls. Piece-

wise time-value functions provide closure under the "max" operator.

Rewards nmst be constrained to be. piecewise linear flmctions of start aml arrival

times and action durations. We write R(#, t, 5) = R_(p, t) + R_(lz, t + d) + R,t(iz, 5)

where R_, R,, and Rd are piecewise linear fimctions of start time, arrival time,

and duration, respectively. In addition, the dawdling reward /( and th(_ outcome

probability function L must be piecewise constant.

The most significant restriction needed for exact computation is that arriwt/ and

duration pdfs be discrete. This ensures closure under convolutions. In contrast,

convolving a piecewise constant pdf (e.g., a uniform distribution) with a piecewise

linear time-value function would in general produce a piccewise quadratic time-

value t\mction; further convolutions increase the degree with each iteration of value
iteration. In Section 5 below we discuss how to relax this restriction.

Given the restrictions just mentioned, all the ot)erations used in the Belhnan e(tua-

tions from Section 2 namely, addition, multiplication, integration, supremum.

m,xximization, and convolution--can be imt)lemented exactly. The runifillg tim("

of each operation is linear in the representation size of the time-value flmctions

involved. Seeding the process with an initial piecewise linear time-value function,

we can carry out value iteration until convergence. In general, the running time

from one iteration to the next can increase, as the number of linear "pieces" being

manipulate(t grows; however, the representations grow only as complex as necessary

to represent the vahm function V exactly.

4 Experimental domains

We present results on two domains: transI)ortation t)lanning and telescope schedul-

ing. For comparison, we also implemented the natural alternative to the piecewise-

linear technique: discrctizing the time dimension and solving the problem as a stan-

dard MDP. To apply the MDP method, three additional inputs must t)e specilied:

an earliest starting time, latest finishing time, and bin width. Since this paper's

loons is on exact computations, we chose a discrctization level corresi)on(lii_g to the

resolution necessary for exact solution by the MDP at its grid points. An advantage

of the MDP is that it is by construction acyclic, so it can be solved by just one sweep

of standard value iteration, working backwards in time. The TMDP'S advantage is

that it directly manipulates entire linear segments of the time-value functions.

4.1 Transportation planning

Figure 2 illustrates an example TMDP for optimizing a commute fi'om San Francisco
to NASA Ames. The 14 discrete states model both location and observed traific
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Figure 2: The Sall Francisco to Ame.s commuting example
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conditions:shadedandunshadedcirclesrepresentheavyandlighttraffic,respec-
tively.Observedtransitiontimesandtrafficconditionsarestochastic,anddepend
onboththetimeandtrafficconditionsat theoriginatinglocation.At states5,
6, 11,and12,the"catchthetrain"actioninducesanabsolutearrivaldistribution
reflectingtiletrainschedules.
Thedomainobjectiveisto arriveat Amesby9:00am.Weimposealinearpenalty
forarrivingbetween 9 and noon, and an in,nile penalty for arriwng after noon.

There are also linear penalties on the number of minutes spent driving in light

traffic, driving in heavy traffic, and riding on the train; the coefficients of these

penalties can be adjusted to reflect the conmmter's t_stes.

Figure 3 presents the optimal time-value functions and policy for state _10,

"US101&Bayshorc / heavy traffic." There are two actions from this state, cor-

responding to driving directly to Ames and driving to the train station to wait for

the next train. Driving to the train station is preferred (has higher Q-value) at

times that are close--but not too close!--to the departure times of the train.

The full domain is solved in well under a second by both solvers (see Table 1). The

optimal time-value functions ill the solution comprise a total of 651 linear segments.

4.2 Telescope observation scheduling

Next, we consider the problem of scheduling a.stronomical targets tot a telescope to

maximize the scientific return of one night's viewing [1]. We are given N possible

targets with associated coordinates, scientific value, and time window of visibility.

Of course, we can view only one target at a time. We assume that the reward of

an observation is proportional to the duration of viewing the target. Acquiring a

target requires two steps of stochastic duration: moving the telescope, taking time

roughly proportional to the distance traveled; and calibrating it on the new target.

Previous approaches have dealt with this stochasticity heuristically, using a just-in-

c,_se scheduling approach Ill. Here, we model the stocha.sticity directly within the

TMDP framework. The TMDP ha.s N q-1 states (corresponding to tile N observations

and "off") and N actions per state (corresponding to what to obserw; next). The

Model Value V _ Runtime
Domain Solver

states sweeps pieces (sees)

SF-Commute piecewise Vl 14 13 651 ().2

exact grid vl 5054 i 5054 0.i

Telescope-10 piecewise VX ii 5 186 0.i
exact grid Vl 14,311 1 14,311 1.3

Telescope-25 piecewise Vl 26 6 716 1.8

exact grid Vl 33,826 1 33,826 7.4

Telescope-50 piecewise vl 51 6 1252 6.3

exact grid Vl 66,351 1 66,351 34.5

Telescope-100 piecewise v1 101 4 2711 17.9

exact grid Vl 131,300 1 131_300 154.1

Table 1: Summary of results. The three rightmost columns measure solution com-

plexity in terms of the number of sweeps of vahm iteration before conw'xgence;

the number of distinct "pieces" or values in the optimal value function V*; and

tile running time. Running times are the median of five rims on an lrltraSparc II

(296MHz CPU, 256Mb RAM).



dawdlingrewardrateK(x, t) encodes the scientific value of observing x at time t;
that vahm is 0 at times when x is not visihle. Relative duration distributions encode

the inter-target distances and stochastic calibration times on each transition.

Wc generated random target lists of sizes N=10, 25, 50, and 100. Visibility windows

were constrained to he within a 13-hour night, specified with 0.01-hour pre(:ision.

Thus, representing the exact solution with a grid required 1301 time bins per state.

Table 1 shows comparative results of the piecewisc_linear aml grid-ba.scd solvcr,_'.

5 Conclusions

In sum, we have presented a new stocha.stic model fi)r time-depen(hmt MDPs

(TMDPs), discussed applications, and shown that dynanfic progranuning with piece-

wise linear time-walue functions can produce optimal policies efficiently. In initial

comparisons with the alternative method of discretizing the time dimension, the

TMDP approach was empirically faster, used significantly, less memory, and solved

the problem exactly over continuous t E N rather than just at grid points.

In our exact computation model, the requirement of discrete dm'ation distributions

seems particularly restrictive. We are currently investigating a way of using our

exact algorithm to generate upper and lower ho_mds oft ttlc optimal solution for

the case of arbitrary pdfs. This may allow the system to produce an optimal or

prowfi)ly near-optimal policy without having to identify all the twists and turns in

the optimal time-value functions. Perhaps the most important advantage of the

piecewise linear representation will turn out to be its amenability to bounding and

approxinmtion methods. We hope that such advances will enable the solution of

city-sized route planning, more realistic telescope scheduling, and other practical

time-dependent stochastic problems.
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