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EXACT SPECTRAL ASYMPTOTICS

ON THE SIERPINSKI GASKET

ROBERT S. STRICHARTZ

(Communicated by Michael T. Lacey)

Abstract. One of the ways that analysis on fractals is more complicated than
analysis on manifolds is that the asymptotic behavior of the spectral counting
function N(t) has a power law modulated by a nonconstant multiplicatively
periodic function. Nevertheless, we show that for the Sierpinski gasket it is
possible to write an exact formula, with no remainder term, valid for almost
every t. This is a stronger result than is valid on manifolds.

1. Introduction

The Weyl asymptotic formula for the counting function

(1.1) N(t) = #{λj ≤ t}
for the eigenvalues {λj} of−Δ on a compact manifold Ω (with or without boundary)
states that

(1.2) N(t) ∼ cnvol(Ω)t
n/2 as t → ∞,

where cn is a constant depending on the dimension n of Ω. There are more precise
statements such as

(1.3) N(t) ∼ cn vol(Ω)t
n/2 +O(t(n−1)/2)

for manifolds without boundary or with smooth boundary, and

(1.4) N(t) = cn vol(Ω)t
n/2 +O(td/2)

for manifolds with nonsmooth boundary of Minkowski dimension d [L].
In the case of Laplacians on fractals, the situation is more complicated. For

example, for the Sierpinski gasket (SG) with either Dirichlet or Neumann boundary
conditions, the analogous statement is

(1.5) N(t) ∼ G(t)tα as t → ∞ for α =
log 3

log 5
,

where G is a multiplicatively periodic function

(1.6) G(5t) = G(t)
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that is bounded away from zero and discontinuous (hence nonconstant). This was
first observed by Fukushima and Shima [FS] based on a precise description of the
spectrum. It was later put into a wider context by Kigami and Lapidus [KL] based
on the Renewal Theorem. Using a refinement of the Renewal Theorem, Kigami
[K1] showed that the error is bounded,

(1.7) N(t) = G(t)tα +O(1).

Note that this is consistent with the fact that the boundary of SG consists of three
points, hence has dimension zero. Similarly, the explanation for the value of α is
that α = d/(d+ 1), where d = log 3/ log 5 is the dimension of SG in the resistance
metric and d+ 1 is the order of the Laplacian [S2].

We already see that (1.7) is stronger than (1.3). The point of this paper is that
even more is true; we can have an exact formula with no remainder term at all,

provided we restrict attention to almost every t. More precisely, let S̃G denote the
double cover of SG (two copies glued together at corresponding boundary points).

Then S̃G is an example of a fractafold without boundary [S1]. Neumann eigenfunc-

tions on SG extended evenly to S̃G and Dirichlet eigenfunctions on SG extended

oddly to S̃G give a complete set of eigenfunctions on S̃G. In particular,

(1.8) Ñ(t) = NN (t) +ND(t),

where Ñ , NN and ND denote the eigenvalue counting function on S̃G, and SG
with Neumann or Dirichlet boundary conditions, respectively.

Theorem. There exists an open set A ⊂ (0,∞) whose complement has measure
zero, with 5A = A, such that for each t ∈ A there exists m0(t) such that

(1.9) Ñ(5mt) = 2G(5mt)(5mt)α = 2G(t)tα3m

for all m ≥ m0(t), and G is continuous on A. Also

NN (5mt) = G(t)tα3m +G1(t),(1.10)

ND(5mt) = G(t)tα3m −G1(t)

for all m ≥ m0(t), where G1(5t) = G1(t) and G1 is bounded.

Our proof is based on the “spectral decimation” description of the spectrum
from [FS]. It seems likely that a similar result holds for many pcf fractals for which
spectral decimation is valid ([Sh], [B-T]), but this would require a different proof.
It is straightforward to extend the result to all fractafolds without boundary based
on SG [S1].

It is instructive to compare our result with the case of the second derivative
on an interval. To be specific, consider the interval [0, π] with Dirichlet boundary
conditions. The eigenvalues are the perfect squares and N(t) = [t1/2]. Then we
have N(t) = t1/2 exactly when t is a perfect square, so N(4mt) = 2mt1/2 for all t of
the form 4−nk2 for m ≥ n. Thus the analog of the set A is a countable dense set.
This is not the first example of a result in fractal analysis that is stronger than the
corresponding result in classical analysis (see [S3] for convergence of Fourier series,
and also [BK], [BS], [S5]). We hope it will not be the last example.

The reader is referred to the books [K2] and [S4] for any undefined notation.
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2. Structure of the spectrum

We review briefly the structure of the spectrum for S̃G and SG with Dirichlet
or Neumann boundary conditions ([FS], [GRS], [S1], [S4]). The lowest eigenvalue
is of course zero, corresponding to the constant eigenfunction, and this occurs with

multiplying one for S̃G and SG with Neumann boundary conditions. After that,
the eigenvalues arrange themselves in cycles C1, C2, . . . . Each cycle contains ten
distinct eigenvalues. The eigenvalues and their multiplicities in a cycle are shown
in Table 1. We factor out the powers of 2 to write uniquely

(2.1) k = 2j(2�− 1),

where j is a nonnegative integer and � is a positive integer. There are increasing

families of primitive eigenvalues {λ(2)
n }, {λ(3)

n } and {λ(5)
n } for n = 1, 2, 3, . . . . The

upper index denotes the eigenvalue of the graph Laplacian of the restriction of

the corresponding eigenfunctions to the nine-element graph Γ1 approximating S̃G
(Figure 2.1).

Figure 2.1. The graph Γ1 (dotted lines indicate identified points)

The table lists the eigenvalues in increasing order (top to bottom), followed by

their multiplicities in each of the three cases. Note that M̃ = MN +MD. The last
column gives the difference of the eigenvalue counting functions NN (t)−ND(t) for
t equal to the eigenvalue. Since this is a cumulative total, it needs to be justified by
an induction argument. Note that NN (0)−ND(0) = 1, so the values are correct for
the first cycle. Since the value is 1 at the end of the first cycle, the pattern repeats
at each subsequent cycle. Note that we know a priori that 0 ≤ NN (t)−ND(t) ≤ 3
because the boundary of SG consists of three points and this is consistent with the
values in Table 1.

Note that the multiplicities are the same for the first seven eigenvalues of each
cycle, but the last three entries in Table 1 have multiplicities that depend on the
value of j in (2.1).
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Table 1. Eigenvalues and their multiplicities in the cycle Ck

Eigenvalues MN MD M̃ NN −ND

λ
(2)
2k−1 0 1 1 0

λ
(3)
2k−1 2 0 2 2

λ
(5)
2k−1 0 2 2 0

5λ
(3)
k 3 0 3 3

λ
(5)
2k 0 2 2 1

λ
(3)
2k 2 0 2 3

λ
(2)
2k 0 1 1 2

5j+1λ
(5)
2�−1

3j+1−1
2

3j+1+3
2 3j+1 + 1 0

5j+2λ
(3)
�

3j+2+3
2

3j+2−3
2 3j+2 3

5j+1λ
(5)
2�−1

3j+1−1
2

3j+1+3
2 3j+1 + 1 1

We can also say explicitly what the values of the primitive eigenvalues are. Define

ϕ±(t) =
5±

√
25− 4t

2
and(2.2)

ψ(t) =
3

2
lim
k→∞

5kϕ
(k)
− (t),(2.3)

where ϕ
(k)
− denotes ϕ− composed with itself k times (the convergence of the limit

in (2.3) follows from the Taylor expansion ϕ−(t) =
1
5 t + O(t2) near t = 0). More

generally, if δ = (δ1, δ2, . . . , δm) is a finite sequence of ± signs, we write ϕδ =
ϕδ1 ◦ ϕδ2 ◦ · · · ◦ ϕδm and |δ| = m. Then
(2.4)

{λ(p)
n } = {5ψ(p), 52ψ(ϕ+(p)), 5

3ψ(ϕ++(p)), 5
3ψ(ϕ+−(p)), . . . , 5

|δ|+1ψ(ϕδ(p)), . . .}
for p = 2, 3 or 5, and δ1 = +, but otherwise δ is unrestricted. Therefore there are
2m−1 choices of δ with |δ| = m, and since δ− is increasing and δ+ is decreasing
it is necessary to use an unconventional ordering in order for the list (2.4) to be

in increasing order. However we always have 5|δ|+1ψ(ϕδ(p)) < 5|δ
′|+1ψ(ϕδ′(p′)) if

|δ| < |δ′|. This follows from the estimate

(2.5) ψ(3)5|δ|+1 ≤ 5|δ|+1ψ(ϕδ(p)) < ψ(5)5|δ|+1,

which follows from the estimate 3 ≤ ϕ+(t) ≤ 5 on 0 ≤ t ≤ 6 and the fact that ψ is
increasing.
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The following is the key lemma in the proof of the theorem. Note that it is really

(1.9) for the special values t = λ
(3)
n .

Lemma. For any n and j,

(2.6) Ñ(5j+2λ(3)
n ) = 3jÑ(52λ(3)

n ).

Proof. For n = 1 it is known that Ñ(5j+2λ
(3)
1 ) = 3j+3, the total number of vertices

in the level j + 2 graph approximation Γj+2 of S̃G. It is easy to see in any case

from Table 1 that Ñ(52λ
(3)
1 ) = 27 and Ñ(53λ

(3)
1 ) = 81. We will show by induction

on k that

(2.7) Ñ(5j+3λ
(3)
� ) = 3Ñ(5j+2λ

(3)
� ),

and this verifies the k = 1 case. So we assume that the result is true for k − 1.
The argument is slightly different depending on the parity of k, so assume first that
k = 2�− 1 is odd. Then k − 1 = 2j

′
(2�′ − 1) is even, and the induction hypothesis

is

(2.8) Ñ(5j
′+3λ

(3)
�′ ) = 3Ñ(5j

′+2λ
(3)
�′ ).

What we need to show is

(2.9) Ñ(53λ
(3)
� )− Ñ(5j

′+3λ
(3)
�′ ) = 3

(
Ñ(5j

′
λ
(3)
� )− Ñ(5j

′+2λ
(3)
�′ )

)
.

Note that on the right side of (2.9) we are counting the last eigenvalue in cycle

Ck−1 (multiplicity 3j
′+1+1) and the first nine eigenvalues of cycle Ck (multiplicities

1 + 2 + 2 + 3 + 2 + 2 + 1 + 4 + 9 = 26), so the right side of (2.9) is 3j
′+2 + 34. On

the left side of (2.9) we are counting the last eigenvalue in cycle C2k−2 (multiplicity

3j
′+2 + 1), all the eigenvalues in cycle C2k−1 (multiplicities 1 + 2 + 2 + 3 + 2 +

2 + 1 + 4 + 9 + 4 = 30) and the first nine eigenvalues in cycle C2k (multiplicities

1+2+2+3+2+2+1+10+27 = 50) for a total of 81+3j
′+2. This verifies (2.9).

Finally, assume that k = 2j(2�− 1) is even and that k− 1 = 2�′ − 1 is odd. The
induction hypothesis is

Ñ(53λ
(3)
�′ ) = 3Ñ(52λ

(3)
�′ ),(2.10)

and we need to show

Ñ(5j+3λ
(3)
� )− Ñ(53λ

(3)
�′ ) = 3

(
Ñ(5j+2λ

(3)
� − Ñ(52λ

(3)
�′ )

)
.(2.11)

We are counting the same eigenvalues as before but the multiplicities are different.
On the right side the multiplicities are 4 and 1 + 2 + 2 + 3 + 2 + 2 + 1 + (3j+1 +
1) + 3j+2 = 14 + 3j+1 + 3j+2. On the left side the multiplicities are 10 from
cycle C2k−2, 1 + 2 + 2 + 3 + 2 + 2 + 1 + 4 + 9 + 4 = 30 from cycle C2k−1, and
1+ 2+ 2+ 3+ 2+ 2+ 1+ (3j+2 +1)+ 3j+3 = 14+ 3j+2 +3j+3 from cycle C2k, for
a grand total of 54 + 3j+2 + 3j+3. �

There appears to be a lot of arithmetic in this proof with no clear explanation.
Certainly it would be desirable to have a more conceptual proof.
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3. Proof of theorem

We consider two intervals between 52λ
(3)
� and its neighboring eigenvalues, namely

(3.1)

⎧⎨⎩A� =
(
5λ

(5)
2�−1 , 52λ

(3)
�

)
,

A′
� =

(
52λ

(3)
� , 5λ

(5)
2�

)
.

The function Ñ(t) is constant on these intervals:

(3.2) Ñ(t) =

{
Ñ(52λ

(3)
� )− 9, t ∈ A�,

Ñ(52λ
(3)
� ), t ∈ A′

�.

More generally, Ñ(t) is constant on the intervals 5jA� and 5jA′
� for j ≥ 0, namely

(3.3) Ñ(5jt) =

{
3jÑ(52λ

(3)
� )− 3j+2, t ∈ A�,

3jÑ(52λ
(3)
� ), t ∈ A′

�.

This uses the lemma and the fact that the multiplicity of 5j+2λ
(3)
� is 3j+2. This

gives us (1.9) with m0(t) = 0 on A� ∪ A′
� with

(3.4) G(t) =

{
1
2

(
Ñ(52λ

(3)
� )− 9

)
t−α, t ∈ A�,

1
2Ñ(52λ

(3)
� )t−α, t ∈ A′

�.

For any n ∈ Z, we similarly obtain (1.9) with m0(t) = max{−n, 0} for t ∈ 5n(A� ∪
A�′) with G extended by multiplicative periodicity. We also observe from Table 1
that (1.10) holds on the same intervals with

(3.5) G1(t) =

{
0, t ∈ A�,
3
2 , t ∈ A′

�.

Now let A =
⋃∞

n=−∞
⋃∞

�=1 5
n (A� ∪ A′

�). To complete the proof we have to
show that the complement of A has measure zero. We can restrict attention to the

interval [0, 5] because 5A = A. Write A′′
� = A�∪{52λ(3)

� }∪A′
� =

(
5(5)λ

(5)
2�−1 , 5λ

(5)
2�

)
and A′′ =

⋃∞
n=−∞

⋃∞
�=1 5

nA′′
� . The complement of A′′ differs from the complement

of A by a countable set of points, and it simplifies matters to deal with A′′. Now
each of the intervals A′′

� has the form

(5mψ(ϕδ(5)), 5
mψ(ϕδ′(5)),

where |δ| = |δ′| = m − 1 and we no longer require that δ1 and δ′1 be + (this uses
the fact that ψ(ϕ−(x)) = 5ψ(ϕ(x)). Then 5−mA′′

� = (ψ(ϕδ(5)), ψ(ϕδ′(5))) ⊆ [0, 5].
The composition with ψ is just a differentiable distortion factor, so we drop it and
define B� = (ϕδ(5), ϕδ′(5)) and B =

⋃∞
�=1 B�. Our problem is to show that the

complement of B in [0, 5] has measure zero.
Call this complement J . We claim that J is just the Cantor set defined by

the mappings ϕ+ and ϕ− on [0, 5], or equivalently the Julia set for the mapping
z → z(5 − z) since ϕ± are the the inverses of this mapping. It is known that this
Julia set has measure zero, but in any case this is easily seen from estimates on the
derivatives of ϕ±.
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Note that B1 =
(

5−
√
5

2 , 5+
√
5

2

)
, so the complement of B1 is ϕ−([0, 5])∪ϕ+([0, 5]).

Then B2 = ϕ−(B1) and B3 = ϕ+(B1), so the complement of B1 ∪ B2 ∪ B3 is
ϕ−−([0, 5]) ∪ ϕ−+([0, 5]) ∪ ϕ++([0, 5]) ∪ ϕ+−([0, 5]). Iterating this reasoning, the

complement of
⋃2m−1

�=1 B� is
⋃

|δ|=m ϕδ([0, 5]). This verifies the Cantor set descrip-

tion of J . �
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