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The most general and versatile defining feature of quantum chaotic systems is that they possess
an energy spectrum universally described by random matrix theory (RMT). This feature can be
exhibited by systems with a well defined classical limit as well as by systems with no classical cor-
respondence, such as locally interacting spins or fermions. Despite great phenomenological success,
a general mechanism explaining the emergence of RMT without reference to semiclassical concepts
is still missing. Here we provide exact analytical results for the energy spectrum of the Floquet
propagator of the kicked Ising spin-1/2 chain with longitudinal and transverse fields. Specifically,
we write the Fourier transform of spectral density’s two-point function, the spectral form factor, in
terms of a partition function of a two-dimensional classical Ising model featuring a space-time dual-
ity. We show that the self-dual cases provide a minimal model of many-body quantum chaos, where
the spectral form factor is demonstrated to match RMT for all values of the integer time variable
t in the thermodynamic limit. In particular, we rigorously prove RMT form factor for odd t, while
we formulate a precise conjecture for even t. Our results imply ergodicity for any finite amount of
disorder in the longitudinal field, rigorously excluding the possibility of many-body localization.

The importance of minimal models in theoretical and
mathematical physics can hardly be overstated. In such
models, or classes of models, all inessential details are
pruned away and one can isolate clean paradigms, greatly
advancing the understanding of physical phenomena.

Take for instance the two dimensional Ising model in
statistical physics, or in dynamical systems the Sinai
billiards, the geodesic motions on compact constant
negative-curvature Riemannian surfaces, and the linear
toral authomorphims, e.g. Arnold’s cat map. The latter
models are instrumental in characterizing the few well
understood mechanisms of classical ergodicity. Moreover,
when quantized such models provide some of the few ex-
amples where quantum ergodicity (a.k.a. eigenstate ther-
malization hypothesis (ETH) in the many-body context)
can be proven [2] and the famous Selberg’s trace formula
[1] gives exact connection between the set of unstable pe-
riodic orbits and the energy, or quasi-energy spectrum.

For systems with chaotic and ergodic classical limit,
the quantum chaos conjecture [3–5] states that the sta-
tistical properties of energy spectrum are universal and
given in terms of random matrix theory (RMT) [7], where
all matrix elements of the Hamiltonian are considered to
be independent Gaussian random variables. An analo-
gous result for chaotic maps, or periodically driven (Flo-
quet) systems, relates the statistics of quasi-energy levels
to circular ensembles of unitary random matrices [6, 7].
This conjecture has been by now put on firm theoreti-
cal footing by clearly identifying contributions from pe-
riodic orbit theory and RMT for the simplest nontrivial
measure of spectral correlations: the spectral form fac-
tor (SFF) [9–14]. However, it has been rigorously proven
only for a specific type of single-particle models: the in-
commensurate quantum graphs [15, 16].

The situation is even less clear for non-integrable
many-body systems with simple, say clean and local, in-
teractions, where evidence for RMT spectral correlations

are abundant [17–20]. While for many-body systems of
bosons with a large number of quanta per mode, or other
models with small effective Planck’s constant, a semiclas-
sical reasoning may still be used [21–24], the intuition is
completely lost and no methods have been known when it
comes to fermionic or spin-1/2 systems. Very recently, a
few steps of progress have been made. First, an analytic
method analogous to the periodic orbit theory for spin-
1/2 systems has been proposed in Ref. [25]. This method
is able to establish RMT spectral fluctuations for long-
ranged but non-mean-field non-integrable spin chains,
however, it fails in the important extreme case of local
interactions. Second, it has been shown in Refs. [26, 27]
that Floquet local quantum circuits with Haar-random
unitary gates have exact RMT SFF in the limit of large
local Hilbert space dimension q. Remarkably, in both
cases the Thouless time, where universal RMT behavior
sets in, scales as tT ∼ logL [25, 27] which is consistent
with detailed numerical computations in Ref. [28].

In this Letter we provide an example of a locally in-
teracting many-body system with q = 2 for which the
SFF exactly approaches the RMT prediction in the ther-
modynamic limit at all times, i.e. tT = O(1). Thus, we
identify the first exactly solvable model displaying many-
body quantum chaos.

More specifically, we consider the Floquet Ising spin-
1/2 chain with transverse and longitudinal fields, de-
scribed by the following Hamiltonian [29, 30]

HKI[h; t] = HI[h] + δp(t)HK . (1)

Here δp(t) =
∑∞
m=−∞ δ(t−m) is the periodic delta func-

tion and we defined

HI[h] ≡
L∑
j=1

{
Jσzjσ

z
j+1 + hjσ

z
j

}
, HK ≡ b

L∑
j=1

σxj , (2)

where we denote by L the volume of the system, σαj ,
α ∈ {x, y, z}, are the Pauli matrices at position j, and
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FIG. 1. Pictorial representation of K̄(t). The average over hj
produces a transfer matrix T for all j = 1, . . . , L. Each col-
umn and row of the first lattice correspond respectively to the
tranfer matrix UKI[h] and the dual transfer matrix ŨKI[hjε].
Each column and row of the second lattice correspond respec-
tively to the complex conjugate transfer matrix UKI[h]∗ and
the complex conjugate dual transfer matrix ŨKI[hjε]

∗.

we impose σαL+1 = σα1 . The parameters J, b are, respec-
tively, the coupling of the Ising chain and the transverse
kick strength, while h = (h1, . . . , hL) describes a position
dependent longitudinal field. Here and in the following,
vectors of length L are indicated by bold latin letters.
For generic values of the longitudinal fields h the only
symmetry possessed by the Hamiltonian (1) is time re-
versal.

The Floquet operator generated by (1) reads as

UKI[h] = T exp

[
−i
∫ 1

0

dsHKI[h; s]

]
= e−iHKe−iHI[h] . (3)

In Floquet systems it is customary to introduce
quasienergies {ϕn} defined as the phases of the eigen-
values of the Floquet operator. The quasienergies take
values in the interval [0, 2π] and their number is equal
to the dimension of the Hilbert space N = 2L. The
quasienergy distribution function can then be written as
ρ(ε) = 2π

N
∑
n δ(ε− ϕn). It is instructive to consider the

connected two-point function of ρ(ε), defined as

r(ν) =
1

2π

∫ 2π

0

dε ρ
(
ε+

ν

2

)
ρ
(
ε− ν

2

)
− 1 . (4)

The Fourier transform of this quantity, known as the
spectral form factor, is the main object of our study

K(t) =
N 2

2π

∫ 2π

0

dν eiνtr(ν) =
∑
m,n

ei(ϕm−ϕn)t −N 2δt,0 . (5)

This object can be efficiently calculated in the context
of RMT. Since our system is time reversal invariant, the
RMT prediction relevant to our case is that of the circu-
lar orthogonal ensemble, KCOE(t) = 2t − t ln(1 + 2t/N )
for 0 < t < N [7]. SFF represents an extremely efficient
and sensitive diagnostic tool for determining the spec-
tral properties of a system. For example, for integrable

systems, spectral fluctuations are conjectured to be Pois-
sonian [8] and SFF is drastically different, K(t) = N for
all t > 0, while any significant deviation from RMT is an
indicator of non-ergodicity (e.g. due to localization).

Floquet SFF is defined for integer times t only (mul-
tiples of driving period) and for t > 0 admits a simple
representation in terms of the Floquet operator (3)

K(t) =
∣∣tr (U tKI[h]

)∣∣2 . (6)

The trace of the Floquet operator can be thought of as
the partition function of a two dimensional classical Ising
model defined on a periodic rectangular lattice of size
t× L

tr
(
U tKI[h]

)
=
∑
{sτ}

t∏
τ=1

〈sτ+1|e−iHKe−iHI[h]|sτ 〉

= [(sin 2b)/(2i)]Lt/2
∑
{sτ,j}

e−iE[{sτ,j},h]. (7)

Here the configurations are specified by {s1, . . . , st} ≡
{sτ,j}, where sτ,j ∈ {±1≡↑↓} for all τ, j, and can
be regarded as classical spin variables, |s〉 is such that
σzj |s〉 = sj |s〉 and the energy of a configuration reads as

E [{sτ,j},h] =

t∑
τ=1

L∑
j=1

(Jsτ,jsτ,j+1 + J ′sτ,jsτ+1,j + hjsτ,j)

(8)
where J ′ = −π4 −

i
2 log tan b. Note that the Boltzmann

weights of this model are generically complex.
Observing that (8) couples only “spins” on neighbour-

ing sites in both t and L directions, the partition function
(7) can be written both as the trace of a transfer matrix
propagating in the time direction and as the trace of a
transfer matrix propagating in the space direction. This
reveals the known duality transformation of the kicked
Ising model [31, 32]. The transfer matrix in the time di-
rection is clearly given by UKI[h], while the transfer ma-
trix in space, ŨKI[hj ], is given by the same algebraic form
(2,3) exchanging J and J ′ but acting on a spin chain of
t sites. Moreover, it acts at non-stationary homogeneous
field hj = hjε, where ε = (1, . . . , 1) is a t-component
constant vector. In other words, we have the identity

tr
(
U tKI[h]

)
= tr

 L∏
j=1

ŨKI[hjε]

 . (9)

Here UKI[h] acts on HL = (C2)⊗L and ŨKI[hjε] acts
on Ht = (C2)⊗t. Note that ŨKI[hjε] is generically non-
unitary: it becomes unitary only for |J | = |b| = π

4 where
J ′ = ±π4 . We call these points of parameter space the
“self dual points” and from now we focus on these.

The SFF is known to be a non-self averaging quan-
tity [33]. This means that K(t) computed in a single
system, i.e. for fixed parameters J, b,h, does not gener-
ically reproduce the ensemble average. In order to com-
pare to RMT predictions we then need to average over
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an ensemble of similar systems. Here we consider a very
natural form of averaging by introducing disorder (which
we may switch off at the end of calculation): we assume
that the longitudinal magnetic fields at different spatial
points hj are independently distributed Gaussian vari-
ables with the mean value h̄ and variance σ2 > 0, and
we average over their distribution. In other words, we
consider

K̄(t) ≡ Eh [K(t)] = Eh
[
tr
(
U tKI[h]

)
tr
(
U tKI[h]

)∗]
, (10)

where the symbol Eh[·] denotes the average over the lon-
gitudinal fields

Eh [f(h)] =

∫ ∞
−∞

f(h)

L∏
j=1

e−(hj−h̄)2/2σ2 dhj√
2πσ

. (11)

The average in (10) mixes two copies of the classical
Ising model (8) with complex conjugate couplings. Af-
ter rewriting in terms of dual transfer matrices (9), and
noting |trU |2 = tr (U ⊗U∗), we see that the average fac-
torizes row-by-row, and local averaging results in trans-
lationally invariant coupling between two periodic rows
of t spins at the same spatial point. The resulting av-
eraged SFF can again be interpreted as the trace of an
appropriate transfer matrix in spatial direction (Fig. 1)

K̄(t) = tr
(
TL
)
, (12)

where the transfer matrix acts on Ht ⊗Ht and reads as

T ≡ Eh
[
ŨKI[hε]⊗ ŨKI[hε]

∗
]

= (ŨKI ⊗ Ũ∗KI) ·Oσ . (13)

Here ŨKI ≡ ŨKI[h̄ε] and the local gaussian average is
encoded in the following positive symmetric matrix

Oσ = exp

[
−1

2
σ2 (Mz ⊗ 1− 1⊗Mz)

2

]
, (14)

where Mα ≡
∑t
τ=1 σ

α
τ for α ∈ {x, y, z}. Note that, be-

cause of Oσ, the matrix T is a non-unitary contraction.
The disorder averaged SFF K̄(t) can be computed nu-

merically by evaluating (6) for several values of the lon-
gitudinal fields and then taking the average (11). This
can be done for small systems up to very large times and
the result is found in good agreement with RMT even at
short times, as shown in Fig 2. Here, however, we follow
a different route. We use Eq. (12) to analytically com-
pute K̄(t) in the thermodynamic limit L → ∞. Before
proceeding with the calculation we note that Fig 2 pro-
vides strong numerical evidence for the validity of RMT
also in the thermodynamic limit, indeed for t � N the
system behaves as if it were effectively of infinite size.

In the thermodynamic limit, the averaged SFF is en-
tirely determined by the eigenvalues of T with largest
magnitude. Our strategy here is to find all such eigen-
values. To do that, it is useful to exploit the following
property [34]

Property 1. (i) the eigenvalues of T have at most unit
magnitude; (ii) even if T is generically not guaranteed
to be diagonalisable, the algebraic and geometric multi-
plicites of any eigenvalue of magnitude 1 coincide.

We shall construct all eigenvectors |A〉 of T of unimod-
ular eigenvalues. First, we note that all such |A〉 lie in
the eigenspace of Oσ with unit eigenvalue. This is seen
by expanding 〈A|T†T|A〉 = 1 in an eigenbasis of Oσ

1 = 〈A|T†T|A〉 = 〈A|O2
σ|A〉 =

∑
n

| 〈A|n〉 |2o2
σ,n , (15)

where 0 < oσ,n ≤ 1 are the eigenvalues of Oσ. Since |A〉 is
normalized and {|n〉} is complete, this is possible only if
〈A|n〉 = 0 for all oσ,n < 1. In other words, |A〉 is a linear
combination of eigenvectors of Oσ with unit eigenvalue,
namely Oσ|A〉 = |A〉. Using the exponential form (14) of
Oσ, we see that this condition means that all |A〉 are in
the kernel of Mz ⊗ 1− 1⊗Mz. Putting all together, we
have that the eigenvectors |A〉 associated to unimodular
eigenvalues must satisfy [35](

ŨKI ⊗ Ũ∗KI

)
|A〉 = eiφ |A〉 , φ ∈ [0, 2π] (16)

(Mz ⊗ 1− 1⊗Mz) |A〉 = 0 .

These conditions can be turned into equations for opera-
tors over Ht as follows. Denoting by {|n〉} a basis of Ht,
we can expand a generic vector in Ht ⊗Ht as

|A〉 =
∑
n,m

An,m |n〉 ⊗ |m〉∗ , (17)

where the 22t complex numbers {An,m} are interpreted as
the matrix elements of an operator A: 〈n|A|m〉 = An,m.
The operator A is in one-to-one correspondence with the

FIG. 2. SFF in the disordered kicked Ising model at the
self-dual point. The figure compares the time evolution of
the SFF for different widths σ of the disorder distribution.
Other parameters are fixed to L = 15 and h̄ = 0.6. The inset
highlights the short-time window. The large-time fluctuations
are due to a finite number (N = 9490) of disorder realizations.
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state |A〉 and we can rewrite the conditions (16) as follows

[A,Mz] = 0 ŨKIAŨ
†
KI = eiφA . (18)

After some simple manipulations [34] we find

Property 2. The relations (18) are equivalent to

UAU† = eiφA , [A,Mα] = 0 , α ∈ {x, y, z} , (19)

where we defined a unitary operator

U = exp

[
i
π

4

t∑
τ=1

(
σzτσ

z
τ+1 − 1

)]
. (20)

U is diagonal in the canonical basis |s〉 and gives the par-
ity of half-number of domain walls in the periodic t−spin
configuration s; the property U2 = 1 implies φ ∈ {0, π}.
Namely, the unimodular eigenvalues of T are either 1 or
−1. By exact numerical diagonalization of T we find that
the eigenvalues −1 are much rarer than +1 and are ob-
served only for small systems, see Tab. I. In particular, for
odd t we have the following additional symplification [34]

Property 3. φ = 0 for odd t.

For odd t the problem of computing K̄(t) is then
turned into that of finding all linearly independent ma-
trices A commuting with the setM = {U,Mx,My,Mz}.
A subset of all possible operators commuting withM is
found by considering the common symmetries: reflection
R and one-site shift Π on a periodic chain of t sites

Π =

t−1∏
τ=1

Pτ,τ+1 R =

bt/2c∏
τ=1

Pτ,t+1−τ . (21)

Here Pτ,ω = 1
21+ 1

2

∑
α σ

α
τ σ

α
ω is the elementary permuta-

tion operator (transposition). These operators generate
the so called dihedral group (see, e.g., [36])

Gt = {ΠnRm; n ∈ {0, . . . , t− 1}, m ∈ {0, 1}} , (22)

which is the symmetry group of a polygon with t vertices.
All elements of Gt commute withM and we have [34]

Property 4. The number of linearly independent ele-
ments of Gt is 2t for t ≥ 6, 2t− 1 for t ∈ {1, 3, 4, 5}, and
2 for t = 2.

We thus have a lower bound on the number of indepen-
dent matrices A fulfilling (19) and hence on the value of
the averaged SFF for odd t. Our main result is to show
that such lower bound is also an upper bound, namely

Theorem 1. For odd t, any A simultaneously commut-
ing with all elements of {U,Mx,My,Mz}, is of the form

A =

t−1∑
n=0

1∑
m=0

an,mΠnRm , an,m ∈ C . (23)

t 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#+1 2 5 7 9 13 14 18 18 22 22 25 26 29 30 33 34
#−1 0 0 0 0 2 0 0 0 2 0 0 0 0 0 0 0

TABLE I. Number of eigenvalues 1 and −1 of the transfer
matrix T determined via exact diagonalization for t ≤ 17.

See [34] for a proof. As the number of such linearly in-
dependent A is the multiplicity of eigenvalue 1 of T, and
since there is a finite gap between unit circle and the rest
of the spectrum, we have

lim
L→∞

K̄(t) =

{
2t− 1 , t ≤ 5

2t , t ≥ 7
, t odd . (24)

For even t the situation is more complicated. In this
case, we identify an additional independent operator be-
sides Gt spanning the commutant of M. This operator
can be written as a projector |ψ〉〈ψ|, where we introduced
a t−spin singlet state

|ψ〉 =
1

2t

t/2∏
τ=1

(
1− Pτ,τ+t/2

)
|↓, . . . , ↓︸ ︷︷ ︸

t/2

, ↑, . . . , ↑︸ ︷︷ ︸
t/2

〉 , (25)

satisfying U |ψ〉 = − |ψ〉, Mx,y,z |ψ〉 = 0, Π |ψ〉 = − |ψ〉,
R |ψ〉 = (−1)t/2 |ψ〉. Moreover, for t ∈ {8, 10} we iden-
tify the second additional operator commuting with the
setM [34]. Finally, for t ∈ {6, 10} we construct two op-
erators satisfying (19) with eigenphase φ = π [34]. All
these additional operators, except (25), appear to be a
short-time fluke and are observed only for t smaller than
11. We are then lead to conjecture

lim
L→∞

K̄(t) = 2t+ 1 , t > 11 , t even . (26)

This conjecture, together with the exact result (24), is in
agreement with exact diagonalization of T on chains of
length t ≤ 17, see Tab. I.

The results (24) and (26) are remarkable: we fully re-
covered 2-point RMT spectral fluctuations (in the ther-
modynamic limit) in a simple non-integrable spin-1/2
chain with local interactions. A key step of our calcu-
lation was to average over the distribution of indepen-
dent longitudinal fields h. This average introduces a fi-
nite gap in the spectrum of the transfer matrix T and
selects the 2t “universal” eigenvalues out of the exponen-
tialy many eigenvalues of T. Note that any nonvanishing
σ is sufficient for this astonishing simplification to occur.
Moreover, after the thermodynamic limit is taken there
is no additional dependence of the result on the disorder
variance σ2, we can then consider the limit σ → 0 corre-
sponding to a clean system. Finally, our result does not
depend on the particular distribution of the longitudinal
fields, as long as they are i.i.d.; a different choice mod-
ifies the form of (14) but not the thermodynamic-limit
result. To get a quantitative estimate of the expected
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FIG. 3. The spectral gap of T as a function of disorder
strength σ. The left panel shows ∆(σ) for h̄ = 0 and several
different values of t and we observe a clear even-odd effect
in the data but in both cases the gap is seen to approach a
finite limiting curve for large t. The right panel shows ∆(σ)
for t = 13 and several different values of h̄.

finite size effects, we numerically computed the spectral
gap ∆ = 1 − max

|λ|<1
λ∈eigenvalues(T) |λ|, as a function of the

disorder standard deviation σ for several different mean

fields and times, see Fig. 3.

Another remarkable consequence of our result is a rig-
orous proof of non-existence of many-body localization
[37–39] at any self-dual point in our model (J, b ∈ {±π4 })
for any amount of uncorrelated disorder in the longitudi-
nal field. Indeed, knowing that K(t) = 2t for odd t ≥ 7 is
enough to exclude localization which should be connected
to Poissonian behavior.

The novel technique developed, suggests immediate ap-
plications and generalizations in several directions. First,
one can apply it to compute the bipartite entangle-
ment entropy dynamics starting from a random separa-
ble state, testing recent conjectures [40, 41] on its uni-
versal linear behaviour in ergodic systems. Moreover,
our method can be used to rigorously approach ETH by
studying averages and higher moments of distributions
of expectation values of local observables. Finally, one
can use our technique to evaluate dynamical correlation
functions of local observables.
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Appendices

Here we report the proofs of the properties and the theorem described in the main text together with some useful
complementary information. In particular

- Section I contains the proofs of Properties 1–4;

- Section II contains the proof of Theorem 1;

- Section III contains some results for even t;

- Section IV contains the diagonalization of the Floquet operator, Eq. (3) of the main text, in the integrable case
h = 0;

- Section V contains some details on the numerical methods adopted to produce Tab. I, Fig. 2, and Fig. 3 of the
main text;

I. PROOFS OF PROPERTIES 1–4

Here we report the proofs of Properties 1–4 from the main text. For convenience of the reader, we also precisely
state each property before proving it.

Property 1. The following facts hold

(i) the eigenvalues of T ( cf. Eq. (13) of the main text) have at most unit magnitude;

(ii) even if T is generically not guaranteed to be diagonalisable, the algebraic and geometric multiplicites of any
eigenvalue of magnitude 1 coincide;

Proof. Let |w〉 be an eigenvector associated with an eigenvalue with largest magnitude, then we have

〈w|O2
σ|w〉 = 〈w|T†T|w〉 = |λ|2 . (1)

Expanding in the eigenbasis of Oσ we have

〈w|O2
σ|w〉 =

∑
n

| 〈w|n〉 |2 o2
σ,n ≤

∑
n

| 〈w|n〉 |2 = 1 , (2)

where we used that |w〉 is normalised and the eigenvalues oσ,n of Oσ are in the interval [0, 1]. This proves the point
(i). For the point (ii) we first note that the matrix T is not normal

T†T = O2
σ , TT† = (ŨKI ⊗ Ũ∗KI)O2

σ(ŨKI ⊗ Ũ∗KI)
† . (3)

There is then no general theorem ensuring that T is diagonalizable. To prove that, nonetheless, the algebraic and
geometric multiplicites of any eigenvalue of magnitude 1 coincide we use reductio ad absurdum: let us assume that
there is an eigenvalue λ with unit magnitude corresponding to a non-trivial Jordan block and see that this leads to a
contradiction. Let |w〉 be the eigenvector associated to λ, since the Jordan block is non-trivial we have a vector |v〉
such that

T |v〉 = λ |v〉+ α |w〉 , α 6= 0 , (4)

and

〈v|w〉 = 0 . (5)

This implies (noting that λ∗λ = 1)

〈v|O2
σ|v〉 = 〈v|T†T|v〉 = 〈v|v〉+ |α|2 〈w|w〉+ λα∗ 〈w|v〉+ λ∗α 〈v|w〉 = 1 + |α|2 > 1 . (6)

This result is in contradiction with (2) concluding the proof of point (ii).
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Property 2. The relations (16) of the main text imply

[A,Mα] = 0 , α ∈ {x, y, z} , (7)

UAU† = eiφA , φ ∈ [0, 2π] , (8)

where we defined

U = exp

iπ
4

t∑
j=1

(
σzjσ

z
j+1 − 1

) . (9)

Proof. Let us consider the operator ŨKIMzŨ
†
KI. Using Equations (16) of the main text it is immediate to see that

this operator commutes with A

AŨKIMzŨ
†
KI = e−iφŨKIAMzŨ

†
KI = e−iφŨKIMzAŨ

†
KI = ŨKIMzŨ

†
KIA . (10)

Using the explicit form of ŨKI (setting |J | = |b| = π/4) we have

ŨKIMzŨ
†
KI = e∓i

π
4MxMze

±iπ4Mx =
t∑

j=1

e±i
π
2 σ

x
j σzj e

∓iπ2 σ
x
j = ∓My . (11)

So My commutes with A. Since both Mz and My commute with A we have that

Mx = ei
π
4MzMye

−iπ4Mz , (12)

also commutes with A: this proves (7). The relation (8) follows from (7) and the first one of Eqs. (16) of the main
text.

Property 3. The case φ = π does not give solutions to (7)–(8) for odd t.

Proof. To prove this property we consider the self-dual integrable (transverse field) kicked Ising Floquet operator

UTFKI ≡ e−i
π
4

∑t
j=1 σ

z
j σ
z
j+1e+iπ4Mx . (13)

The operator UTFKI φ-commutes with A as a consequence of Property 2 and can be explicitly diagonalized: its
diagonalization is reviewed in Section IV. Writing the φ-commutation in an eigenbasis of UTFKI we have

〈n, r|A|m, r′〉 (ei(en,r−em,r′ ) − eiφ) = 0 , (14)

where we denoted by |n, r〉 the eigenstates of UTFKI. The index r ∈ {R,NS} distinguishes the two spin-flip symmetry
sectors (cf. Section IV). Since A is not the zero matrix, Eq. (14) implies that there exist some n and m such that

ei(en,r−em,r′ ) − eiφ = 0 . (15)

Using the explicit expression for the quasi-energy differences in the integrable kicked Ising model at the self dual
points, derived in Section IVA, we have

en,r − em,r′ =
2π

t
Nn,m +

π

4t
(ηr − ηr′) = φ , Nn,m ∈ Z , ηR = −ηNS = −1 , (16)

implying

8Nn,m + (ηr − ηr′) =
4tφ

π
Nn,m ∈ Z , ηR = −ηNS = −1 . (17)

For φ = π the equation is solved for t even by r = r′ and Nn,m = t/2. There is, however, no solution for φ = π and t
odd.
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Before considering the proof of Property 4, it is useful to introduce orthogonal projectors {Yk}k=0,...,t−1 on the
fixed momentum eigenspaces {Vk}k=0,...,t−1,

⊕t−1
k=0 Vk = Ht. Such operators are defined as follows

Yk =
1

t

t−1∑
j=0

e
2πi
t jkΠj , k ∈ {0, . . . , t− 1} , (18)

and satisfy the orthogonality and the projection property

YkYp = δk−pYk . (19)

Moreover, they fulfil

RYkR = Yt−k . (20)

We also introduce an additional set of operators

Y ′k = RYk , k ∈ {0, . . . , t− 1} . (21)

The operators {Yk, Y ′k}k=0,...,t−1 form a closed multiplicative algebra, defined by

YkYp = δk−pYk , Y ′kYp = δk−pY
′
k, YkY

′
p = δk+pY

′
p , Y ′kY

′
p = δk+pYp . (22)

The linear mapping between {Yk, Y ′k}k=0,...,t−1 and the elements of the dihedral group Gt is explicitly inverted as
follows

t−1∑
k=0

Yk e
− 2πi

t jk = Πj ,

t−1∑
k=0

Y ′k e
− 2πi

t jk = RΠj . (23)

Since the mapping is invertible, we can restate the Property 4 as follows

Property 4. The number of linearly independent operators in the set {Yk, Y ′k}k=0,...,t−1 is 2t for t ≥ 6, 2t − 1 for
t ∈ {1, 3, 4, 5}, and 2 for t = 2.

Proof. To prove this statement it is useful to distinguish the cases of t even and t odd. For odd t, all {Yk, Y ′k}k 6=0 are
linearly independent. This is seen by writing these operators in the basis of momentum eigenstates and noting that
each operator is non-zero only within a block of states with a given total momentum. Distinct operators are non zero
on distinct, non-overlapping, blocks: this proves their linear independence. Noting that all {Yk, Y ′k}k 6=0 are zero when
reduced to the zero-momentum block, we have that the only two operators which can be linearly dependent are Y0

and Y ′0 . In Lemma 2 of Section II we prove that for t ≤ 5 they are linearly dependent, namely

Y0 + Y ′0 = 0 , (24)

while they are independent for t ≥ 6. In the case of even t there is an additional special pair of operators, Yt/2 and
Y ′t/2, acting on the same momentum block (where all other Yk and Y ′k are zero). In Lemma 3 of Section III we prove
that {Yt/2, Y

′
t/2} are linearly independent for all even t ≥ 4, while for t = 2, Yt/2 + Y ′t/2 = 0. Putting all together we

found that the set {Yk, Y ′k}k=0,...,t−1 is composed of 2t− 1 linearly independent operators for t ∈ {1, 3, 4, 5} and by 2t
linearly independent operators for t ≥ 6. In the special case t = 2 we have just two linearly independent operators:
Y0, Yt/2 = Y1. This concludes the proof.

II. PROOF OF THEOREM 1

Here we present the proof of Theorem 1. We start by restating it in terms of the operators {Yk, Y ′k}k=0,...,t−1,
introduced in the previous section

Theorem 1. For odd t, any A simultaneously commuting with all the elements of {U,Mx,My,Mz}, is necessarily of
the form

A =

t−1∑
k=0

ckYk +

t−1∑
k=0

dkY
′
k , ck, dk ∈ C . (25)
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To prove it, we reformulate it in the following equivalent way

Theorem 2. Considering the representation of the algebra K generated by {U,Mx,My,Mz} in a subspace Vk ⊂ Ht
of fixed momentum k, the following facts hold for odd t

(i) If k 6= 0 the representation is irreducible.

(ii) If k = 0 the representation is irreducible for t ≤ 5 and is composed of two inequivalent irreducible representations
for t > 5.

(iii) The representations in the two fixed momentum subspaces Vk and Vp are equivalent for p = k or p = t− k and
inequivalent otherwise.

Let us first show that Theorem 2 is equivalent to Theorem 1.

Proof. Theorem 2 implies Theorem 1 as a consequence of Schur’s Lemma. This is easily seen as follows. Let A be a
matrix commuting with the algebra K generated by {U,Mx,My,Mz}. Then we have

EkAk,p = Ak,pEp , ∀E ∈ K , (26)

where

Ak,p ≡ YkAYp , Ek ≡ YkE = EYk . (27)

The facts (i), (ii), and (iii), combined with Schur’s Lemma imply

Ak,p = δk,p ck Yk + δp,t−k dk Y
′
k , k = 1, . . . , t , ck, dk ∈ C , (28)

A0,0 = c′0 Y0,a + d′0 Y0,b , c′0, d
′
0 ∈ C . (29)

Here we used that Yk acts as the identity operator in the subspace Vk, while Y ′k acts as the isomorphism between the
subspaces Vk and Vt−k. Moreover, we denoted by Y0,a and Y0,b the projectors on the subspaces V0,a, V0,b ⊂ V0 such
that

V0 = V0,a ⊕ V0,b . (30)

The spaces V0,a and V0,b carry two inequivalent irreducible representations of K (for t ≤ 5 one of the two is trivial).
Writing Y0,a, Y0,b in terms of Y0 and Y ′0 we have

A0,0 = c′0 Y0,a + d′0 Y0,b = c0 Y0 + d0 Y
′
0 , (31)

for appropriate c0, d0 ∈ C. Combining all together, we have

A =

t−1∑
k,p=0

Ak,p =

t−1∑
k=0

ckYk +

t−1∑
k=0

dkY
′
k . (32)

This proves Theorem 1.
The reverse direction is proven by reductio ad absurdum. If the representation of K in a fixed momentum sector

were not satisfying (i), (ii) or (iii), we could find operators commuting with the algebra K which are not of the form
(25).

Let us now prove Theorem 2. Our strategy is to construct a basis of the momentum eigenspace Vk. We show that

(1) For k 6= 0 all basis vectors are mapped into one another by elements of the algebra K.

(2) For k = 0 all reflection symmetric vectors are mapped into one another by elements of the algebra K. The
same holds for reflection antisymmetric vectors. Moreover, we show that for t ≤ 5 the reflection anti-symmetric
subspace is the zero space.

(3) There is no invertible matrix C such that

(U)p = C(U)kC
−1 , (Mj)p = C(Mj)kC

−1, for k 6∈ {p, t− p} , (33)

where by (M)p we denote the matrix M restricted to Vp.
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It is immediate to see that (1) ⇒ (i), (2) ⇒ (ii), and (3) ⇒ (iii).
We construct the basis of the sector with fixed momentum k as follows. Let us define the states

|• ◦ · · · ◦︸ ︷︷ ︸
`1−1

• ◦ · · · ◦︸ ︷︷ ︸
`2−1

• · · · • ◦ · · · ◦︸ ︷︷ ︸
`a−1

•〉(k)
=

1√
t

t−1∑
j=0

e
2πi
t kjΠjσ−1 σ

−
`1+1σ

−
`1+`2+1 · · ·σ

−
m |↑ . . . ↑︸ ︷︷ ︸

t

〉 (34)

where we introduced the “length of the state” m such that

m = 1 +

a∑
j=1

`j < t . (35)

These states are represented by a string of m symbols starting and ending with •, while the m − 2 symbols in the
“bulk” can be either “bullets” • or “holes” ◦. This means that for every length m ≥ 2 there are 2m−2 states, whereas
two special cases are

m = 1 −→ |•〉(k)
, (36)

m = 2 −→ |••〉(k)
. (37)

We then generically represent a state (34) as

|•σsm−2•〉
(k) (38)

where σsm−2 is a generic string of ◦ and • of length m− 2 and used the superscript s to indicate that the string σm−2

has exactly s holes. Note that the states (38) have momentum k

Π |•σsm−2•〉
(k)

= e−ik |•σsm−2•〉
(k)

. (39)

Moreover they are eigenstates of Mz and U

Mz |•σsm−2•〉
(k)

= (t− 2m+ 2s) |•σsm−2•〉
(k)

, U |•σsm−2•〉
(k)

= (−1)ν |•σsm−2•〉
(k)

, (40)

where ν is the number of “disconnected islands” of bullets in the string •σsm−2•. In the representation (34) the latter is
given by one plus the number of `1, `2, . . . , `a larger than 1 for m < t and by the number of of `1, `2, . . . , `a larger than
1 for m = t. Note that, for k 6= 0, the state |•〉(k) is the largest highest weight state among those of the irreducible
representations of SU(2) living in Vk. This state is the one with maximal eigenvalue of Mz and is therefore unique.

For k 6= 0 the states (38) form a complete set in Vk while for k = 0 the set is complete if we add the ferromagnetic
states, specifically the “vacuum state” and the “all bullets” state

|∅〉 = |↑ · · · ↑︸ ︷︷ ︸
t

〉 , |• · · · •︸ ︷︷ ︸
t

〉 = |↓ · · · ↓︸ ︷︷ ︸
t

〉 , (41)

which are translationally invariant and thus appear only in V0. The states (38) are, however, not all linearly indepen-
dent. While for m < (t+ 1)/2 the states are orthonormal, some of the states with m ≥ (t+ 1)/2 can be represented
by a string with shorter length or they have multiple representations with the same length. We then construct a basis
Bk of Vk as follows

Bk =
{
|•〉(k)

, |••〉(k)
}
∪
{
|•σm−2•〉(k)

: ∀σm−2 , m ∈ {3, . . . , (t− 1)/2}
}

∪
{
|•σm−2•〉(k)

: ∀σm−2 , m ∈ {(t+ 1)/2, . . . , t− 1}
}′

(42)

where we denote by {· · · }′ the maximal set of linearly independent vectors. Note in particular that for each m the
so-called “m-block state”

|• • · · · •︸ ︷︷ ︸
m

〉(k) (43)

is always included in the basis because it is impossible to represent it with lower m. Finally, the sector k = 0 is special
because it is invariant under the reflection symmetry R. It is then convenient to consider a basis of simultaneous
eigenvectors of Mz, U , Π and R. This is easily done by taking

B̄0 = S+B0 ∪ S−B0 ∪ {|∅〉 , |• · · · •〉} , (44)
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where B0 is the basis (42) for k = 0, and

S± =
1

2
(1±R) , (45)

projectors to even/odd reflection subspaces. Before starting with the proof it is useful to introduce the following
operators which generate the algebra K

M± =
1

2
(Mx ± iMy) , P± =

1

2
(1± U) . (46)

Three of these operators have a very simple action on the states (38). Specifically,

P± |•σsm−2•〉
(k)

=
1

2
(1± (−1)ν) |•σsm−2•〉

(k)
, (47)

where ν is, again, the number of disconnected islands of bullets in •σsm−2•, and

M+ |•σsm−2•〉
(k)

=

′∑
h

|•σsm−2,h•〉
(k)

+ states of length smaller than m, (48)

where the sum is over the positions of the bullets in σsm−2 and σsm−2,h is the string obtained by σsm−2 by removing
the bullet in position h. However, the action of M− on the basis state is simple only if it is combined with the action
of an appropriate projector Pσ, where σ = (−1)ν

PσM
− |•σsm−2•〉

(k)
= e−

2πik
t |•• σsm−2•〉

(k)
+ |•σsm−2 ••〉

(k)
+

′′∑
b

|•σsm−2,b•〉
(k)
. (49)

The sum is now over all the positions of the holes in σsm−2, and σsm−2,b is the string obtained from σsm−2 by putting
a bullet in a vacant position b, such that the total number of islands of holes in the string σsm−2,b is the same as in
σsm−2 (i.e., we can only add a bullet to any of contiguous clusters of bullets, without changing the number of islands
of bullets). A few additional useful operators are given by the following Lemma

Lemma 1. The following operators belong to the algebra K

M++ ≡
t∑

τ=1

σ+
τ σ

+
τ+1 , M−− ≡

t∑
τ=1

σ−τ σ
−
τ+1 , (50)

M

k︷ ︸︸ ︷
z+. . .+z ≡

t∑
τ=1

σzτσ
+
τ+1 · · ·σ

+
τ+kσ

z
τ+k−1 , M

k︷ ︸︸ ︷
z−. . .−z ≡

t∑
τ=1

σzτσ
−
τ+1 · · ·σ

−
τ+kσ

z
τ+k−1 , (51)

M

t︷ ︸︸ ︷
+ · · ·+ ≡

t∏
τ=1

σ+
τ , M

t︷ ︸︸ ︷
− · · ·− ≡

t∏
τ=1

σ−τ , (52)

where k ≤ t is odd and we defined σ±τ = 1
2 (σxτ ± iσyτ ).

Proof. To prove the statement we explicitly construct these operators using generators of K.
Let us consider

UMxU =

t∑
τ=1

UσxτU =

t∑
τ=1

σxτ e
iπ2 (σzτ−1σ

z
τ+σzτσ

z
τ+1) = −

t∑
τ=1

σzτ−1σ
x
τσ

z
τ+1 . (53)

Rotating by π/4 around x axis we then find

ei
π
4MxUMxUe

−iπ4Mx = −
t∑

τ=1

σyτ−1σ
x
τσ

y
τ+1 . (54)
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Iterating the same operations (k − 1)/2 times, for k ≤ t odd, we find

ei
π
4MxU · · · eiπ4MxU︸ ︷︷ ︸

(k−1)/2

Mx Ue
−iπ4Mx · · ·Ue−iπ4Mx︸ ︷︷ ︸

(k−1)/2

= −
t∑

τ=1

σyτσ
x
τ+1 · · ·σxτ+t−2σ

y
τ+k−1 . (55)

In particular, for k = t we have

ei
π
4MxU · · · eiπ4MxU︸ ︷︷ ︸

(t−1)/2

Mx Ue
−iπ4Mx · · ·Ue−iπ4Mx︸ ︷︷ ︸

(t−1)/2

= −
t∑

τ=1

σyτσ
x
τ+1 · · ·σxτ+t−2σ

y
τ+t−1 . (56)

Multiplying by ei
π
2Mx we find

ei
π
2Mx ei

π
4MxU · · · eiπ4MxU︸ ︷︷ ︸

(t−1)/2

Mx Ue
−iπ4Mx · · ·Ue−iπ4Mx︸ ︷︷ ︸

(t−1)/2

= −i(t−2)
t∑

τ=1

σzτσ
z
τ+1 . (57)

The operators (50) are then obtained as follows. First we construct
t∑

τ=1

σxτσ
x
τ+1 = ei

π
4M

y
t∑

τ=1

σzτσ
z
τ+1e

−iπ4M
y

,

t∑
τ=1

σyτσ
y
τ+1 = ei

π
4M

x
t∑

τ=1

σzτσ
z
τ+1e

−iπ4M
x

, (58)

t∑
τ=1

(σxτσ
y
τ+1 + σyτσ

x
τ+1) =

i

2

[
t∑

τ=1

σxτσ
x
τ+1,M

z

]
. (59)

Then we take the following linear combinations
t∑

τ=1

σxτσ
x
τ+1 −

t∑
τ=1

σyτσ
y
τ+1 ± i

t∑
τ=1

(σxτσ
y
τ+1 + σyτσ

x
τ+1) = M±± . (60)

The operators (51) are constructed starting from
∑t
τ=1 σ

y
τσ

x
τ+1 · · ·σxτ+kσ

y
τ+k−1 (cf. (55)) as follows. First we construct

t∑
τ=1

σzτσ
x
τ+1 · · ·σxτ+kσ

z
τ+k−1 = ei

π
4M

x
t∑

τ=1

σyτσ
x
τ+1 · · ·σxτ+kσ

y
τ+k−1e

−iπ4M
x

. (61)

Then we take subsequent commutators with Mz

C−1 ≡ 0 , C0 ≡
t∑

τ=1

σzτσ
x
τ+1 · · ·σxτ+kσ

z
τ+k−1 , Cn ≡

1

n

((
i

2

)
[Cn−1,M

z] + (k + 2− n)Cn−2

)
. (62)

The last step is to take the following linear combinations

k−2∑
j=0

(±i)jCj = M

k︷ ︸︸ ︷
z±. . .±z . (63)

Finally, the operators (52) are obtained by starting from
t∏

τ=1

σxτ = ei
π
2 (Mx−1) , (64)

taking subsequent commutators with Mz

D−1 ≡ 0 , D0 ≡
t∏

τ=1

σxτ , Dn ≡
1

n

((
i

2

)
[Dn−1,M

z] + (k + 2− n)Dn−2

)
, (65)

and constructing the following linear combinations

t∑
j=0

(±i)jDj = M

t︷ ︸︸ ︷
±. . .± . (66)

This concludes the proof.
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1. Proof of (1)

We are now in a position to prove (1): we consider k 6= 0 and show that we can map the states of the basis Bk into
one another using elements of the algebra. Namely, for each pair |•σm−2•〉(k) and |•σ′m′−2•〉

(k) of states in Bk we
construct an operator Aσ,σ′ ∈ K such that

(k) 〈•τm−2 • |Aσ,σ′ | • τ ′m′−2•〉
(k)

= δτ ,σδτ ′,σ′ , ∀ |•τm−2•〉(k)
, |•τ ′m′−2•〉

(k) ∈ Bk . (67)

To construct such operator, it is useful to introduce the operator Bσ, mapping the largest highest weight state |•〉(k)

to the basis vector |•σm−2•〉(k). Namely

Bσ |•〉(k)
= |•σm−2•〉(k)

. (68)

In terms of Bσ, an operator Aσ,σ′ fulfilling (67) can be written as

Aσ,σ′ = Bσ |•〉(k)(k)〈•|B†σ , (69)

where (·)† represents Hermitian conjugation. Our goal is to show that such Aσ,σ′ is in K. It is immediate to see that
the projector |•〉(k)(k)〈•| is in the algebra K. Indeed, it can be written as

|•〉(k)(k)〈•| = 1

4 cos2
(

2πk
t

)M t︷ ︸︸ ︷
z +. . .+ zM

t︷ ︸︸ ︷
z −. . .− z . (70)

where M

t︷ ︸︸ ︷
z ±. . .± z are constructed in Lemma 1 and the operator on the right hand side should be interpreted as an

element of the representation of the algebra K in the fixed momentum subspace Vk. Moreover, if the operator Bσ is
in the algebra so is its Hermitian conjugate. This is seen by noting

U† = U , M†x = Mx , M†y = My , M†z = Mz , (71)

implying that the Hermitian conjugate of any sum of products of {U,Mα}α=x,y,z is again a sum of products of
{U,Mα}α=x,y,z.

The problem is then reduced to proving that the operator Bσ is in the algebra, or, in other words, that starting
from |•〉(k) we can access any state in Bk using elements of K.

In order to proceed and avoid the problem of linear dependence in our coding of states for m ≥ (t+ 1)/2, we make
use of the following trick. Consider spin chain of double size 2t and define analogous basis states

|•σm−2•〉(k) ≡ |•σm−2•〉(2k)
2t , or (72)

|• ◦ · · · ◦︸ ︷︷ ︸
`1−1

• ◦ · · · ◦︸ ︷︷ ︸
`2−1

• · · · • ◦ · · · ◦︸ ︷︷ ︸
`a−1

•〉(k)
=

1√
2t

2t−1∑
j=0

e
2πi
t kjΠ̄jσ−1 σ

−
`1+1σ

−
`1+`2+1 · · ·σ

−
m |↑ . . . ↑︸ ︷︷ ︸

2t

〉 (73)

spanning V (2k)
2t as defined by Eq. (34) for chain length 2t and momentum 2k. Here, Π̄ is a cyclic shift on (C2)⊗2t.

Now, let us define the map Q : V
(2k)
2t → V

(k)
t completely specified by its action on the basis states

Q |•σm−2•〉(k)
=


|•σm−2•〉(k)

t , m < t;

e
2πi(n+1+h)k

t |σ′′l • ◦ · · · ◦︸ ︷︷ ︸
2t−m

•σ′n〉
(k)
, h > t;

0, otherwise.

(74)

Here we wrote

σm−2 = •σ′n ◦ · · · ◦︸ ︷︷ ︸
h

σ′′l •, (75)

where h is the largest number of contiguous holes in σm−2 and n + h + l = m − 2. Writing the algebra generators
represented on the Hilbert space of spin chains of length 2t as M̄α and P̄± = 1

2 (1± Ū), it is easy to check that

QM̄α = MαQ , QP̄± = P±Q . (76)
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We shall write the corresponding linear operator algebra generated by P̄±, M̄± as K̄. For example, M̄±± now defined
as QM̄±± = M±±Q, then read consistently

M̄±± =

2t∑
τ=1

σ±τ σ
±
τ+1, with 2t+ 1 ≡ 1 . (77)

Below we shall show that |•〉(k) can be connected to any |•σm−2•〉(k), for m < t, by the action of some element
from K̄. It then follows trivially that |•〉(k) connects to |•σm−2•〉(k) by the corresponding element of K (just replacing
generators M̄±, P̄± by M±, P± in the generator representation of an element of K̄ or K).

We start by noting

P̄−M̄
+ |• • · · · •︸ ︷︷ ︸

m

〉(k)
= (1 + e

2πi
t k) |• • · · · •︸ ︷︷ ︸

m−1

〉(k)
P̄−M̄

− |• • · · · •︸ ︷︷ ︸
m

〉(k)
= (1 + e−

2πi
t k) |• • · · · •︸ ︷︷ ︸

m+1

〉(k)
. (78)

where the right hand sides are never zero for t odd. Moreover

P̄+M̄
+ |• • •〉(k)

= |• ◦ •〉(k)
. (79)

From these relations it follows that we can map |•〉(k) into any state of length m ≤ 3 and to any block state (43).
We now proceed using an inductive argument. Assuming that we can access every state |•σsn−2•〉

(k) of length

n < m and every state |•σrm−2•〉
(k) of length m and r < s holes we shall prove that we can access every state of

length m ≥ 4 and s ≤ m− 2 holes

|•σsm−2•〉
(k)

. (80)

We first show that the unique state with s = m − 2 holes is directly obtained from the block state of length m as
follows. First we note that

(P̄−M̄
+)m−3P̄+M̄

+ |• • · · · •︸ ︷︷ ︸
m

〉(k)
= |• ◦ · · · ◦︸ ︷︷ ︸

m−2

•〉(k)
+A |•〉(k)

. (81)

Here A |•〉(k) represents a combination of states of length strictly smaller than m, which by inductive assumption can
be obtained from |•〉(k) by applying an appropriate element of the algebra, A ∈ K̄. Since |• • · · · •︸ ︷︷ ︸

m

〉(k) is connected to

|•〉(k) by elements of the algebra we have

A |•〉(k)
= B |• • · · · •︸ ︷︷ ︸

m

〉(k) for some B ∈ K̄ . (82)

Then, defining(
(P̄−M̄

+)m−3P̄+M̄
+
)

red
= (P̄−M̄

+)m−3P̄+M̄
+ −B

(
(P̄−M̄

+)m−3P̄+M̄
+
)

red
∈ K̄ , (83)

we have (
(P̄−M̄

+)m−3P̄+M̄
+
)

red
|• • · · · •︸ ︷︷ ︸

m

〉(k)
= |• ◦ · · · ◦︸ ︷︷ ︸

m−2

•〉(k)
. (84)

Consequently, in the following we can restrict to s < m− 2.
Considering any state |•σm−3•〉(k) of length m− 1 we have

P̄σM̄
− |•σm−3•〉(k)

= e−
2πik
t |• • σm−3•〉(k)

+ |•σm−3 • •〉(k)
+

′′∑
p

|•σm−3,p•〉(k)
, (85)

where σ is chosen equal to + or − in order to maintain the number of “disconnected islands” of bullets when adding
the new one and the last term on the r.h.s. is a sum of states obtained from |•σm−3•〉(k) by adding a bullet in
position 1 < p < m−1. The allowed values of p are the positions of the holes σm−3 restricted by P̄σ. By the inductive
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assumption, the states |•σm−3,p•〉(k) can be accessed from |•〉(k) with an appropriate element of the algebra K̄. Since
|•σm−3•〉(k) is connected to |•〉(k) by elements of the algebra we can represent the last term on the r.h.s. as follows∑

p

|•σm−3,p•〉(k)
= C |•σm−3•〉(k)

, (86)

for an appropriate C ∈ K̄. Defining then

(P̄σM̄
−)red ≡ P̄σM̄− − C , (P̄σM̄

−)red ∈ K̄ , (87)

we have

(P̄σM̄
−)red |•σm−3•〉(k)

= e−
2πik
t |• • σm−3•〉(k)

+ |•σm−3 • •〉(k)
. (88)

Note that this relation alone is not sufficient to fix all the states of length m given those of length m − 1. It gives
2m−3 independent conditions while the total number of states is 2m−2.

Restricting (88) to states with s holes we have

(P̄σM̄
−)red |•σsm−3•〉

(k)
= e−

2πik
t |• • σsm−3•〉

(k)
+ |•σsm−3 • •〉

(k)
. (89)

An additional condition is found by using more of our inductive data: the states of length m and s − 1 holes.
Applying M̄+ we find

(M̄+)red |• • σs−1
m−3•〉

(k)
= |• ◦ σs−1

m−3•〉
(k)

+

′∑
p

|• • σsm−3,p•〉
(k)

, (90)

where (M̄+)red ∈ K̄ is defined as M̄+−B for an appropriate B ∈ K̄, this allows us to remove lower length states from
the r.h.s.. The string σsm−3,p is obtained by removing one of the bullets from σs−1

m−3 and the sum over p in the r.h.s.
of (93) is restricted to the positions of the bullets in σs−1

m−3. Analogously we find

(M̄+)red |•σs−1
m−3 • •〉

(k)
= |•σs−1

m−3 ◦ •〉
(k)

+

′∑
p

|•σsm−3,p • •〉
(k)

. (91)

Combining these equations we find

e−
2πik
t (M̄+)red |•σs−1

m−3 • •〉
(k)

+ (M̄+)red |•σs−1
m−3 • •〉

(k)
= e−

2πik
t |• ◦ σs−1

m−3•〉
(k)

+ |•σs−1
m−3 ◦ •〉

(k)

+

′∑
p

[
e−

2πik
t |•σsm−3,p • •〉

(k)
+ |• • σsm−3,p•〉

(k)
]
. (92)

The sum on the r.h.s. can be cancelled by summing (89) for a number of appropriate σsm−3, so we have

e−
2πik
t (M̄+)red |•σs−1

m−3 • •〉
(k)

+ (M̄+)red |• • σs−1
m−3•〉

(k)
−

′∑
p

(P̄σM̄
−)red |•σsm−3,p•〉

(k)

= e−
2πik
t |• ◦ σs−1

m−3•〉
(k)

+ |•σs−1
m−3 ◦ •〉

(k)
. (93)

At this point it is useful to separate two cases: (a) s = m−3 and (b) s < m−3. In the case (b) we can find additional
conditions by considering[

(P̄σ(M̄−−))red − ((P̄σM̄
−)2)red

]
|•σsm−4•〉

(k)
= −2e−

2πik
t |• • σsm−4 • •〉

(k)
, (94)

where we again defined (P̄σ(M̄−−))red (cf. Lemma 1) by appropriately subtracting operators in K̄ generating terms
with smaller m and s. Using this condition we also get

D |• • σs−1
m−4 • •〉

(k)
≡ (M̄+)red |• • σs−1

m−4 • •〉
(k)

+
1

2
e

2πik
t

′∑
p

[
(P̄σ(M̄−−))red − (P̄σM̄

−)2)red

]
|•σsm−4,p•〉

(k)
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= |• • σs−1
m−4 ◦ •〉

(k)
+ |• ◦ σs−1

m−4 • •〉
(k)

(95)

and

(M̄+)red

(
|• • σs−2

m−4 ◦ •〉
(k)

+ |• ◦ σs−2
m−4 • •〉

(k)
)
−

′∑
p

D |• • σs−1
m−4,p • •〉

(k)

= |• ◦ σs−2
m−4 ◦ •〉

(k)
, (96)

for some D ∈ K̄. To conclude the inductive step we show that in the case (b) the conditions (89), (93), (94), (95) and
(96) give a complete set of vectors in the sub-space spanned by (80), while in the case (a) a complete set of vectors is
given by (89), (93) and say (90). Let us start considering the case (a) and prove that the only vector in the subspace
orthogonal to all vector expressions of Eqs. (89), (90), and (93) is the zero vector, meaning that these equations give
a complete set. We write a generic vector in the subspace as

|g〉 =
∑

σ∈Ssm−2

aσ |•σ •〉(k)
. (97)

where we denoted by Ssm the set of all strings of • and ◦ with length m and s holes. Requiring (97) to be orthogonal
to (89), (90), and (93) we find the following conditions

aσ•e
− 2πik

t + a•σ = 0 , ∀σ ∈ Sm−3
m−3 , (98)

aσ◦e
− 2πik

t + a◦σ = 0 , ∀σ ∈ Sm−4
m−3 , (99)

a◦σ + a•◦ · · · ◦︸ ︷︷ ︸
m−3

= 0 , ∀σ ∈ Sm−4
m−3 . (100)

Considering σ = ◦ •
m−4︷ ︸︸ ︷
◦ . . . ◦ in (100) (note that since m ≥ 4 we can always consider such a string) and using (99) we

find

(1− e− 2πik
t )a•◦···◦ = 0 (101)

which for odd t gives

a•◦···◦ = 0 ∀m ≥ 4 . (102)

Then, using (98) and (99) we have that for some n ∈ N

aσ = e−
2πikn
t a•◦···◦ = 0 ∀σ ∈ Sm−3

m−2 . (103)

Let us now consider the case (b), s < m− 3. In this case the orthogonality conditions read as

aσ•e
− 2πik

t + a•σ = 0 , ∀σ ∈ Ssm−3 , (104)

aσ◦e
− 2πik

t + a◦σ = 0 , ∀σ ∈ Ss−1
m−3 , (105)

a•σ• = 0 , ∀σ ∈ Ssm−4 , (106)

a◦σ• + a•σ◦ = 0 , ∀σ ∈ Ss−1
m−4 , (107)

a◦σ◦ = 0 , ∀σ ∈ Ss−2
m−4 . (108)

Using (104), (105), (106), and (108) we see that if the string σ contains two subsequent • or two subsequent ◦ we
immediately have

aσ = 0 . (109)

So the only non zero coefficient is found for even m and s = m/2; the associated strings have the form ◦•◦ · · · •◦• or
•◦• · · · ◦•◦. Using (107) we then have

a•◦•◦···•◦•◦ = −a••◦•···◦•◦◦ = 0 a◦•◦•···◦•◦• = −a••◦•···◦•◦◦ = 0 . (110)

This proves the completeness of the conditions and concludes the inductive step.
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2. Proof of (2)

Let us now move to consider the zero momentum sector k = 0. First we note that the representation of the algebra
K in this sector is not generically irreducible. Indeed, since R commutes with all elements of K we have

(0) 〈•σ′m′−2 • |S+AS−| • σm−2•〉
(0)

=

= (0) 〈•σ′m′−2 • |S+S−A| • σm−2•〉
(0)

= 0 A ∈ K , m,m′ ≥ 3 ,∀σ′m′−2,σm−2 . (111)

In other words, elements of K cannot connect the two reflection symmetry sectors. Note that in the proof of the
previous section this is reflected by the fact that for k = 0 and m = 4, Eq. (101) becomes trivial and does not fix
anymore the coefficient a•◦.

This fact means that the representation of K can be irreducible only if one of the two reflection symmetry sectors
becomes the zero space. The latter situation arises for small enough chain lengths as described by the following lemma

Lemma 2. For 1 < t ≤ 5 the are no vectors odd under reflection symmetry. In other words the projector S− (cf. (45)),
restricted to V0, is the zero matrix. Instead, for t > 5 both S− and S+ are non-trivial.

Proof. We note that the non-reflection symmetric vectors |•σm−2•〉(0) with lowest m are given by

m = 4
{
|• • ◦ •〉(0)

, |• ◦ • •〉(0)
}
,

m = 5
{
|• ◦ • • •〉(0)

, |• • • ◦ •〉(0)
}
. (112)

These vectors are mapped into one another by R

R |• ◦ • •〉(0)
= |• • ◦ •〉(0)

, R |• ◦ • • •〉(0)
= |• • • ◦ •〉(0)

. (113)

To define such states we need at least t ≥ 4, so for 1 < t ≤ 3 our claim is obvious. The fact that no reflection
anti-symmetric state is present also for t = 5 follows from the observation that for t < 6 the states (112) with the
same length are equivalent (they correspond to the same vector in B0) and are then reflection symmetric.

Our strategy in the following is to show that

(i) Any pair of vectors even under reflection symmetry are mapped into one another by operators in K.

(ii) Any pair of vectors odd under reflection symmetry are mapped into one another by operators in K.

This proves that the momentum k = 0 representation of K is irreducible for t ≤ 5, while it is split in two irreducible
components for t > 5. Note that these representations are inequivalent, moreover they are both inequivalent to all
the representations in the non-zero momentum eigenspaces. This is seen by noting that the parity symmetric sector
contains a representation of SU(2), generated by M±,Mz, with spin t/2 while the highest weight representation of
SU(2) in the antisymmetric sector has spin t/2− 3.

Let us start with (i) and proceed as in the previous subsection. The operator A+
σ,σ′ , mapping the states

S+ |•σm−2•〉(0) and S+ |•σ′m−2•〉
(0) into one another, can be written as

A+
σ,σ′ = B+

σ |∅〉 〈∅| (B+
σ )† . (114)

Here |∅〉 is the ferromagnetic state with all spins down, (·)† is the Hermitian conjugation, and B+
σ is the operator

mapping |∅〉 to the state S+ |•σm−2•〉(0). Namely

B+
σ |∅〉 = S+ |•σm−2•〉(0)

. (115)

As before we have to prove that A+
σ,σ′ ∈ K. It is easy to prove that the projector |∅〉 〈∅| is in the algebra, as it can be

written as

|∅〉 〈∅| = M

t︷ ︸︸ ︷
+. . .+M

t︷ ︸︸ ︷
−. . .− , (116)

where the operator on the right hand side should be interpreted as an element of the representation of the algebra K
in the 0-momentum positive-parity subspace S+V0. To prove that A+

σ,σ′ ∈ K we then need to prove that the operator
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B+
σ (and so also (B+

σ )†) is in the algebra. In other words, we have to prove that we can map |∅〉 to any state in the
symmetric sector by using elements of the algebra. Again, to prove this statement we consider the basis (73) of the
double sized (2t) chain, including also the ferromagnetic states |∅〉 and |• . . . •〉 in the basis.

First we note that Eqs. (78) and (79) imply that we can map |∅〉 into any state of the form S̄+ |•σm−3•〉(0) with
length m ≤ 3 and into any block state (43) (which are even under reflection).

Let us now prove that acting with operators in K̄ on the state |∅〉 we can access every state of the form

S̄+ |•σsm−2•〉
(0)

, s = 0, . . . ,m− 2 , m = 3, . . . , t , (117)

assuming that we can access every state S̄+ |•σsn−3•〉
(0) of length n < m and every state S̄+ |•σrm−2•〉

(0) with r < s.
Using the relations (89), (90), and (93) we have

A |∅〉 = S̄+ |• • σsm−3•〉
(0)

+ S̄+ |•σsm−3 • •〉
(0)

, (118)

B |∅〉 = S̄+ |• ◦ σs−1
m−3•〉

(0)
+ S̄+ |•σs−1

m−3 ◦ •〉
(0)

, (119)

C |∅〉 = S̄+ |• ◦ σs−1
m−3•〉

(0)
+

′∑
p

S̄+ |• • σsm−3,p•〉
(0)

, A,B,C ∈ K̄ . (120)

As we did before we distinguish two cases: (a) s = m − 3 and (b) s < m − 3. Let us prove that in the case (a)
Eqs. (118), (119) and (129) form a complete set of vectors in the sub-space spanned by (117). To do that we show
that a generic linear combination of the vectors (117) is orthogonal to all (118), (119), and (129) only if is the zero
vector. The most general linear combination of states (117) can be written as

|g〉sym =

′∑
σ∈Ssm−2

aσ |•σ•〉(0)
, (121)

where aσ is subject to the constraint

aσ = aσR , (122)

and ·R denotes the reflection operation (reversal) of the string of bullets and holes. The orthogonality conditions read

aσ• + a•σ = 0 , ∀σ ∈ Sm−3
m−3 , (123)

aσ◦ + a◦σ = 0 , ∀σ ∈ Sm−4
m−3 . (124)

a◦σ + a•◦ · · · ◦︸ ︷︷ ︸
m−3

= 0 , ∀σ ∈ Sm−4
m−3 . (125)

We see that now the case m = 4 is fixed by either (123) or (125), indeed using (122) we have

a◦• + a•◦ = 2a◦• = 2a•◦ = 0 . (126)

For m > 4 we choose σ = ◦ ◦ •
m−5︷ ︸︸ ︷
◦ . . . ◦ in (125), and using (124) two times we find

a•◦...◦ = 0 . (127)

Then, using (123) and (124) we have

aσ = a•◦···◦ = 0 ∀σ ∈ Sm−3
m−2 . (128)

The case (b) is treated by considering the additional conditions originating from (94), (95) and (96), namely

D |∅̄〉 = S̄+ |• • σsm−4 • •〉
(0)

, (129)

E |∅̄〉 = S̄+ |• • σs−1
m−4 ◦ •〉

(0)
+ S̄+ |• ◦ σs−1

m−4 • •〉
(0)

(130)

F |∅̄〉 = S̄+ |• ◦ σs−2
m−4 ◦ •〉

(0)
, D,E, F ∈ K̄ . (131)
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The orthogonality conditions read as

aσ• + a•σ = 0 , ∀σ ∈ Ssm−3 , (132)

aσ◦ + a◦σ = 0 , ∀σ ∈ Ss−1
m−3 , (133)

a•σ• = 0 , ∀σ ∈ Ssm−4 , (134)

a◦σ• + a•σ◦ = 0 , ∀σ ∈ Ss−1
m−4 , (135)

a◦σ◦ = 0 , ∀σ ∈ Ss−2
m−4 . (136)

and are solved as in the above section giving

aσ = 0 ∀σ ∈ Ssm−2 , ∀ s < m− 2. (137)

Let us now consider the point (ii). In this case, the operator A−σ,σ′ , mapping the states S− |•σm−2•〉(0) and
S− |•σ′m−2•〉

(0) into one another, can be written as

A−σ,σ′ = B−σ S− |• ◦ • •〉
(0)(0)〈• ◦ • •|S−(B−σ )† . (138)

Here S− |• ◦ • •〉(0) is the parity-odd state with minimal length and B−σ is the operator mapping S− |• ◦ • •〉(0) to the
state S− |•σm−2•〉(0). Namely

B−σ S− |• ◦ • •〉
(0)

= S− |•σm−2•〉(0)
. (139)

Once again, we need to prove that A−σ,σ′ ∈ K. The projector S− |• ◦ • •〉(0)(0) 〈• ◦ • •|S− can be written as

S− |• ◦ • •〉(0)(0) 〈• ◦ • •|S− = ei
π
2 (Mx−t)M

t−4︷ ︸︸ ︷
z−. . .−zeiπ2 (Mx−t)P−M

t−4︷ ︸︸ ︷
z−. . .−z , (140)

and it is then an element of the algebra as a consequence of Lemma 1. The operator on the right hand side should be
interpreted as an element of the representation of the algebra K in the 0-momentum negative-parity subspace S−V0.
So, as before, to show that A−σ,σ′ ∈ K we need to show that B−σ (and so also (B−σ )†) is in the algebra, i.e., that acting
with operators of K on S− |• ◦ • •〉(0) we can access every state in the odd parity sector. Such states have the form

S− |•σsm−2•〉
(0)

, s = 1, . . . ,m− 3 , m = 3, . . . , t , (141)

where we considered values of s giving non-vanishing states.
We proceed once again by induction and consider the corresponding basis states (73) of the double sized (2t) chain

and finally use the projector Q (74) to obtain all the required mappings. Let us start by constructing the basis for
our inductive construction. Applying P̄+M̄

− on |• ◦ • •〉(0) we have

P̄+M̄
−S̄− |• ◦ • •〉(0)

= S̄− |• ◦ • • •〉(0)
, (142)

which is the only antisymmetric state of length 5 with one hole. We also have(
(P̄+M̄

−P̄+M̄
+)− 1

)
S̄− |• ◦ • •〉(0)

= S̄− |• ◦ ◦ • •〉(0)
, (143)

which is the only antisymmetric state of length 5 and two holes. So we explicitly constructed any antisymmetric state
(141) of length m ≤ 5.

Let us now show that if we can access every state S̄− |•σsn−3•〉
(0) of length n < m and every state S̄− |•σrm−2•〉

(0)

with r < s then we can access all the states (141) for m ≥ 6. To do this we need to distinguish three cases: (a) s = 1;

(b) 1 < s < m− 3; (c) s = m− 3. Let us start form the case (c): if we can get all the states S̄− |•σ1
m−2•〉

(0)
then we

consider

(P̄+M̄
+)m−4S̄− |• ◦ • . . . •︸ ︷︷ ︸

m−2

〉(0) − S̄− |• ◦ • •〉(0)
= S̄− |• ◦ . . . ◦︸ ︷︷ ︸

m−3

• •〉(0)
, (144)
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giving a vector with length m and m− 3 holes. The other conditions are found by projecting (93) on the parity odd
space

AS̄− |• ◦ • •〉(0)
= S̄− |• ◦ σm−4

m−3•〉
(0)

+ S̄− |•σm−4
m−3 ◦ •〉

(0)
, A ∈ K̄ . (145)

Let us show that these conditions give a complete set of vectors in the parity odd subspace. Once again we will prove
that by showing that only the zero vector is orthogonal to all of the vectors expressing the conditions. Considering a
generic vector of length m and s holes in the parity odd subspace with we have

|g〉antisym =

′′∑
σ∈Ssm−2

aσ |•σ•〉(0)
, (146)

where the coefficients are subject to the constraint

aσ = −aσR . (147)

The orthogonality conditions read as

aσ◦ + a◦σ = 0 , ∀σ ∈ Sm−4
m−3 , (148)

a◦ . . . ◦︸ ︷︷ ︸
m−3

• = 0 . (149)

Since using (148) we can always bring aσ in the form (149) we have

aσ = 0 , ∀σ ∈ Sm−3
m−2 . (150)

Let us now consider the case (a). Here we cannot use conditions from the states with s− 1 holes since there are none.
We then use

AS̄− |• ◦ • •〉(0)
= S̄− |• • σ1

m−3•〉
(0)

+ S̄− |•σ1
m−3 • •〉

(0)
, (151)

BS̄− |• ◦ • •〉(0)
= S̄− |• • σsm−4 • •〉

(0)
, A,B ∈ K̄ . (152)

The orthogonality condition then reads as

aσ• + a•σ = 0 , ∀σ ∈ S1
m−3 , (153)

a•σ• = 0 , ∀σ ∈ S1
m−4 . (154)

with the constraint (147). These conditions immediately fix

aσ = 0 , ∀σ ∈ S1
m−2 . (155)

Finally, let us consider the case (b). It is convenient to subdivide it in two additional cases: (b1) 1 < s < m− 4; (b2)
s = m− 4. The case (b1) is treated exactly as in the previous sections. Let us consider the case (b2). In this case we
have the following orthogonality conditions

aσ• + a•σ = 0 , ∀σ ∈ Sm−4
m−3 , (156)

aσ◦ + a◦σ = 0 , ∀σ ∈ Sm−5
m−3 . (157)

a◦σ +
∑
p

a•σp = 0 , ∀σ ∈ Sm−5
m−3 . (158)

together with the constraint (147). We remind the reader that the sum in (158) is over the positions of the two bullets
in σ and σp is the string obtained from σ by replacing the bullet at position p with a hole.

A generic coefficient aσ with σ in Sm−4
m−2 can be written as

aσ = a◦ . . . ◦︸ ︷︷ ︸
`1

•◦ . . . ◦︸ ︷︷ ︸
`2

•◦ · · · ◦︸ ︷︷ ︸
`3

(159)
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Using the relations (156), (157) and the constraint (147) we see that it can be non zero only if `1 + `3 and `2 are both
odd. In this case, however, we consider (158) with σ = ◦ . . . ◦︸ ︷︷ ︸

`1−1

• ◦ . . . ◦︸ ︷︷ ︸
`2

• ◦ · · · ◦︸ ︷︷ ︸
`3

. This gives

0 = a◦ . . . ◦︸ ︷︷ ︸
`1

•◦ . . . ◦︸ ︷︷ ︸
`2

•◦ · · · ◦︸ ︷︷ ︸
`3

+ a• ◦ . . . ◦︸ ︷︷ ︸
`1+`2−1

•◦ · · · ◦︸ ︷︷ ︸
`3

+ a•◦ . . . ◦︸ ︷︷ ︸
`1−1

•◦ . . . ◦︸ ︷︷ ︸
`2+`3

= a◦ . . . ◦︸ ︷︷ ︸
`1

•◦ . . . ◦︸ ︷︷ ︸
`2

•◦ · · · ◦︸ ︷︷ ︸
`3

. (160)

where we used that if `1 + `3 and `2 are odd, both the sets {`1 − 1, `2 + `3} and {`1 + `2 − 1, `3} contain an even
number. We then have

aσ = 0 , ∀σ ∈ Sm−4
m−2 , (161)

concluding the proof of (2).

3. Proof of (3)

To prove the point (3) we show that

(k) 〈•|M+| ••〉(k) (162)

has different absolute value for different values of momentum k ∈ {1, 2, . . . (t − 1)/2}. This is enough because the
states |•〉(k) and |••〉(k) are unique up to a phase. Namely they are the only states in the representation such that

Mz |•〉(k)
= (t− 2) |•〉(k)

, U |•〉(k)
= − |•〉(k)

. (163)

Mz |••〉(k)
= (t− 4) |••〉(k)

, U |••〉(k)
= − |••〉(k)

. (164)

This means that if (162) has different absolute value for two representations with momenta k and p, there cannot be
any transformation C fulfilling (33). Bringing (M+)k and (M+)p to the same form either makes different the form of
(Mz)k and (Mz)p or that of (U)k and (U)p. A direct calculation gives

(k) 〈•|M+| ••〉(k)
= 1 + e

2πik
t . (165)

So we have that (k) 〈•|M+| ••〉(k) and (p) 〈•|M+| ••〉(p) have the same absolute value if

| cos
πk

t
| = | cos

πp

t
| , k, p = 1, ..., t− 1 , (166)

which is fulfilled only for p = k and p = t− k. This concludes the proof.

III. RESULTS IN THE EVEN t CASE

Here we state a few properties and observations relevant for the case of even times t. We start by showing the
following simple Lemma (supplementing Lemma 2 of the previous section)

Lemma 3. For even t and t ≥ 4 both projectors S± (cf. (45)), restricted to momentum k = t/2 subspace Vt/2, are
non-trivial (non-zero matrices). For t = 2, V1 is one-dimensional and the projector S+ is non-trivial (with rank 1),
while the projector S− is a zero matrix.

Proof. For t ≥ 4, examples of non-vanishing elements of S±Vt/2 are S± |• ◦ • •〉(t/2). For t = 2, we have a single basis
element of V1, namely v = |• ◦〉(1), for which S+v = v, S−v = 0.

As a consequence, Yt/2 and Y ′t/2 are linearly independent for all even t ≥ 4, and Y1 + Y ′1 = 0 for t = 2.

Let us now state a few observations concerning eigenvectors of T of eigenvalues ±1 for even t.
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1. Additional eigenvectors with eigenvalue 1

We start by enumerating eigenvectors of eigenvalue 1, or equivalently, linearly independent operators A simulta-
neously commuting with {Mx,My,Mz, U}. Besides to the set of 2t operators {Yk, Y ′k; k = 0, 1, . . . , t − 1}, all having
ranks which grow exponentially with t (typically as ∼ 1

2t2
t) we generally have an additional rank one operator

Z = |ψ〉 〈ψ| (167)

such that Z2 = Z. Here the normalized state |ψ〉, is a particular scrambled fermi sea

|ψ〉 =
1

2t

t/2∏
τ=1

(
1− Pτ,τ+t/2

)
|↓, . . . , ↓︸ ︷︷ ︸

t/2

, ↑, . . . , ↑︸ ︷︷ ︸
t/2

〉 . (168)

It is straightforward to chek that this state is a spin singlet Mα |ψ〉 = 0. Moreover, it is an eigenvector of U,Π, R
satisfying U |ψ〉 = − |ψ〉, Π |ψ〉 = − |ψ〉, R |ψ〉 = (−1)t/2 |ψ〉. Thus, Z satisfies Property 2 with φ = 0, i.e. it commutes
with {U,Mx,My,Mz}, and is orthogonal to (hence linearly independent from) all other general solutions

ZYk = YkZ = ZY ′k = Y ′kZ = 0, ∀k. (169)

The states Z, for all even t, have momentum k = t/2 and are odd under reflection in the sense, ZΠ = ΠZ = −Z,
ZR = RZ = −Z. This operator is generically the only additional operator that we identify. For t = 8 and t = 10,
however, we find a further additional solution in the zero momentum sector.

For t = 8, the additional solution is a rank-3 projector

Z ′ =

1∑
β=−1

|ψβ〉 〈ψβ | , (170)

where {ψβ} is a triplet of states

|ψ1〉 =
√

2Y0 (|↑↑↓↑↓↓↓↓〉 − |↑↑↓↓↑↓↓↓〉+ |↑↑↓↓↓↑↓↓〉 − |↑↑↓↓↓↓↑↓〉) ,
|ψ0〉 = 2Y0 (|↑↑↓↑↓↑↓↓〉 − |↑↑↓↓↑↓↑↓〉) , (171)

|ψ−1〉 =
√

2Y0 (|↓↓↑↓↑↑↑↑〉 − |↓↓↑↑↓↑↑↑〉+ |↓↓↑↑↑↓↑↑〉 − |↓↓↑↑↑↑↓↑〉) .

One can check straightforwardly that Mz |ψβ〉 = −2β |ψβ〉, (M2
x +M2

y +M2
z ) |ψβ〉 = 8 |ψβ〉, meaning that |ψβ〉 indeed

form a spin-1 triplet, and U acts as a parity

U |ψβ〉 = −(−1)β |ψβ〉 . (172)

This solution, again normalized such that Z ′2 = Z ′, is independent from all the other solutions

ZZ ′ = Z ′Z = Z ′Yk = YkZ
′ = Z ′Y ′k = Y ′kZ

′ = 0, ∀k, (173)

and satisfies ΠZ ′ = Z ′Π = Z ′, RZ ′ = Z ′R = −Z ′.

For t = 10, the additional solution is again a rank-1 projector,

Z ′′ = |χ〉 〈χ| (174)

normalized as Z ′′2 = Z ′′, with

|χ〉 =
1√
30
S−Y0

(
|↑↑↑↑↓↑↓↓↓↓〉− |↑↑↑↑↓↑↓↓↓↓〉− |↑↑↑↓↑↑↓↓↓↓〉+ |↑↑↑↓↓↑↑↓↓↓〉− |↑↑↓↑↓↑↓↑↓↓〉− |↑↑↓↑↓↑↓↓↑↓〉

)
, (175)

again being a spin singletMα |χ〉 = 0, and an eigenvector of U,Π, R, satisfying U |χ〉 = |χ〉, Π |χ〉 = |χ〉, R |χ〉 = − |χ〉.
As in the above cases, it is easy to check the linear independence (orthogonality) with respect to the other solutions

ZZ ′′ = Z ′′Z = Z ′′Yk = YkZ
′′ = Z ′′Y ′k = Y ′kZ

′′ = 0, ∀k. (176)

For higher even t we have found no additional solutions besides (167), hence we conjecture that for t ≥ 11 we have
exactly 2t+ 1 independent eigenvectors of T with eigenvalue 1.
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2. Eigenvectors with eigenvalue -1

As we have shown, eigenvectors of T of eigenvalue -1 are only possible for even t. Here, however, we argue that
also for even t eigenvalues -1 are exceptional and can appear only in finitely many cases. For example, a linearly
independent pair of operators A± satisfying Property 2 with φ = π can be obtained with the ansatz

A+ = |ψ+〉 〈ψ−| , A− = |ψ−〉 〈ψ+| , (177)

where vectors |ψ±〉 are both spin singlets Mα |ψ±〉 = 0, and have opposite eigenvalues of U , U |ψ±〉 = ± |ψ±〉.
This happens in two cases

(i) t = 6; where the projector S−Y0 has rank one so it can be written as S−Y0 = |ψ+〉 〈ψ+|, while the second state
in the pair, |ψ−〉, is given by (168).

(ii) t = 10; where the first state |ψ+〉 = |χ〉 is given by (175), while the second state in the pair, |ψ−〉, is again given
by (168).

For higher even t up to t = 16, we have found no other rank-1 operators commuting with {Mx,My,Mz, U}, besides
(167), so no other eigenvalue −1 eigenoperators can be constructed. Thus we conjecture that there are no other
eigenvectors of eigenvalue −1.

Note that the explicit cases discussed above, together with Property 4, completely explain the empirical Table I
reported in the main text.

IV. DIAGONALIZATION OF THE INTEGRABLE (TRANSVERSE FIELD) KICKED ISING MODEL

In this section we consider a non-trivial integrable limit of the Floquet operator (3), namely the case h = 0. In
this case this operator can be written in terms of a free fermionic Hamiltonian. One defines the fermionic operators
through a Jordan-Wigner transformation as follows

c†l =

l−1∏
j=1

σxj σ
−
l , cl =

l−1∏
j=1

σxj σ
+
l . (178)

Here we introduced

σ−j =
1

2
(σzj − iσ

y
j ) , σ+

j =
1

2
(σzj + iσyj ) . (179)

In terms of these fermions the Floquet operator can be written as

UKI[0] = eiHeff (J,b) , (180)

with

Heff(J, b) =
eiπN + 1

2
He(J, b)

eiπN + 1

2
+
eiπN − 1

2
Ho(J, b)

eiπN − 1

2
, N =

L∑
i=1

c†i ci . (181)

Here (eiπN ± 1)/2 respectively projects on the sectors with even and odd number of particles. Note that in terms of
the spin operators {σαi } we have

eiπN =

L∏
j=1

(1− 2c†jcj) =

L∏
j=1

σxj , (182)

so eiπN corresponds to a spin-flip transformation. The Hamiltonians He(J, b), Ho(J, b) can be diagonalised by a
Bogoliubov transformation: the final result reads as

He(o)(J, b) =
∑

k∈NS(R)

ε(k)

(
b†kbk −

1

2

)
, (183)
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with NS(R) representing Neveu-Schwartz (Ramond) sectors

k ∈ R ⇒ k =
2π

L
n , n ∈ Z ∩ [0, L[ , (184)

k ∈ NS ⇒ k =
2π

L

(
n+

1

2

)
, n ∈ Z ∩ [0, L[ , (185)

and

ε(k) ≡ − cos−1(cos(2b) cos(2J) + cos(k) sin(2J) sin(2b)) mod 2π . (186)

A complete basis of the Hilbert space is constructed by defining two states

|0〉NS , |0〉R , (187)

such that

bk |0〉R = 0 if k ∈ R, bk |0〉NS = 0 if k ∈ NS . (188)

For L odd we have

eiπN |0〉NS = sign(b+ J) |0〉NS , eiπN |0〉R = sign(b− J) |0〉R , (189)

ΠL |0〉NS = (−1)θ(−b−J) |0〉NS , ΠL |0〉R = |0〉R , (190)

where ΠL is the shift operator (cf. Eq. (21) of the main text) on a chain of L sites and θ(x) is the step function. The
basis is constructed acting with the operators b†k on |0〉NS , |0〉R keeping only the vectors in the R sector with negative
eigenvalue of eiπN and those in the NS sector with positive eigenvalue of eiπN . In the case b < −|J | we find

|k1, . . . , k2n+1〉NS =

2n+1∏
i=1

ki∈NS

b†ki |0〉NS , |k1, . . . , k2m〉R =

2m∏
i=1

ki∈R

b†ki |0〉R , n,m ∈ N ∩ [0, L/2] , (191)

In the case −J < b < J we find

|k1, . . . , k2n〉NS =

2n∏
i=1

ki∈NS

b†ki |0〉NS , |k1, . . . , k2m〉R =

2m∏
i=1

ki∈R

b†ki |0〉R , n,m ∈ N ∩ [0, L/2] , (192)

In the case J < b < −J we find

|k1, . . . , k2n+1〉NS =

2n+1∏
i=1

ki∈NS

b†ki |0〉NS , |k1, . . . , k2m+1〉R =

2m+1∏
i=1

ki∈R

b†ki |0〉R , n,m ∈ N ∩ [0, L/2] , (193)

Finally for b > |J | we find

|k1, . . . , k2n〉NS =

2n∏
i=1

ki∈NS

b†ki |0〉NS , |k1, . . . , k2m+1〉R =

2m+1∏
i=1

ki∈R

b†ki |0〉R , n,m ∈ N ∩ [0, L/2] . (194)

For L even we have

eiπN |0〉NS = |0〉NS , eiπN |0〉R = sign(b+ J)sign(b− J) |0〉R , (195)

ΠL |0〉NS = |0〉NS , ΠL |0〉R = (−1)θ(−b−J) |0〉R . (196)

In the case b < −|J | we find

|k1, . . . , k2n〉NS =

2n∏
i=1

ki∈NS

b†ki |0〉NS , |k1, . . . , k2m+1〉R =

2m+1∏
i=1

ki∈R

b†ki |0〉R , n,m ∈ N ∩ [0, L/2] , (197)
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In the case −J < b < J we find

|k1, . . . , k2n〉NS =

2n∏
i=1

ki∈NS

b†ki |0〉NS , |k1, . . . , k2m〉R =

2m∏
i=1

ki∈R

b†ki |0〉R , n,m ∈ N ∩ [0, L/2] , (198)

In the case J < b < −J we find

|k1, . . . , k2n〉NS =

2n∏
i=1

ki∈NS

b†ki |0〉NS , |k1, . . . , k2m〉R =

2m∏
i=1

ki∈R

b†ki |0〉R , n,m ∈ N ∩ [0, L/2] , (199)

Finally for b > |J | we find

|k1, . . . , k2n〉NS =

2n∏
i=1

ki∈NS

b†ki |0〉NS , |k1, . . . , k2m+1〉R =

2m+1∏
i=1

ki∈R

b†ki |0〉R , n,m ∈ N ∩ [0, L/2] . (200)

A. Spectrum at the self dual points

Let us consider the self dual points J = sπ/4 and b = rπ/4 where r, s ∈ {±1}. For these points the dispersion
relation drastically simplifies

ε(k) = − cos−1(rs cos(k)) mod 2π =

(
rs|π − k| − π (rs+ 1)

2

)
mod 2π . (201)

Writing the quantisation conditions explicitly we have

ε(kn) =
2π

L

(
rs

∣∣∣∣L2 − n− σ

2

∣∣∣∣− L

2

(rs+ 1)

2

)
mod 2π , (202)

where σ = 1 in the NS sector and σ = 0 in the R sector. This form implies

ε(kn) =
2π

L

(
m+

σ

2
+ (Lmod 2)

(rs− 1)

4

)
, m ∈ N ∩ [0, L[ . (203)

In words, depending on the sector, on the parity of L, and on the sign of rs the rescaled dispersion Lε(kn)/2π is either
an integer or a semi-integer number in [0, L]. Using this expression and the basis constructed above we can explicitly
find the eigenvalues of the Floquet operator (3), it reads as

ϕm,r = e−iem,r , r ∈ {NS,R} , m ∈ {1, . . . , 2L−1} . (204)

Here we defined the quasi-energy

em,r =
2π

L
nm + Er +

{
0 L even
π(rs−1)

4L − π(rs−1)
4L ηr L odd

, nm ∈ N ∩ [0, L[ . (205)

where we introduced the variable ηr such that ηR = −1 and ηNS = 1. Moreover, we introduced the ground state
energies ER, ENS in the two sectors, defined by

Er = −1

2

∑
k∈r

ε(k) . (206)

These expressions are explicitly evaluated using the form (201) of the dispersion relation, the result reads as

Er =
πL

4
+

{
0 L even
rsπ
4L ηr L odd

. (207)
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Putting all together we have

em,r =
2π

L
nm +

πL

4
+

{
0 L even
π(rs−1)

4L + π
4Lηr L odd

, nm ∈ N ∩ [0, L[ . (208)

A direct consequence of (208) is that quasi-energy differences are given by

em,r − em′,r′ =
2π

L
(nm − nm′) +

{
0 L even
π

4L (ηr − ηr′) L odd
. (209)

V. NUMERICAL METHODS

Figure 2 is produced using direct time propagation of all basis states, namely we computed

〈s|U tKI|s〉 = 〈s|(UKUI)
t|s〉 , (210)

for each element |s〉 of the “computational basis” composed of joint eigenstates of {σzj }. UI is diagonal in the compu-
tational basis, so its entries are stored in a 2L-sized register and used to multiply vectors repeatedly. The kick part
UK can be expressed as a simple tensor product of 2× 2 matrices

UK =
∏
j

eibσ
x
j ≡ (1 cos b+ iσx sin b)⊗L, (211)

where for b = π/4

UK = 2−L/2

[
1 i

i 1

]⊗L
. (212)

The matrix element (210) can thus be computed in O(tL2L) operations, and the entire trace (spectral form factor)
in O(tL4L) operations, which is advantageous to full diagonalization for t� 2L. Using this algorithm we compute

K(t) =
∑

{sj∈{±1}}

〈s|U tKI[h]|s〉 , (213)

for specific realizations of disorder h = (h1, . . . , hL), and then average over many realizations of disorder.
Table I is produced by starting with a few random vectors of dimension 4t and acting on them repeatedly with the

transfer matrix T, as in the “power method”. The action of the transfer matrix can again be implemented efficiently as
a multiplication by the eigenvalues of the diagonal part and kicks. After enough iterations the vectors are projected
to the subspaces with the eigenvalues ±1. We extend this method to compute the gap shown in Fig. 3. We start with
the random vector, make it orthogonal to ±1 sectors and look how the norm of this vector shrinks. After n iterations,
for large enough n, the norm changes by a factor of |λ|n, where λ is the second largest eigenvalue.


