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SUMMARY 

It is demonstrated that a certain class of nonlinear differential equations of 
second-order, representative of various physical situations, possesses exact 
periodic solutions which are subharmonics of the forcing frequency. Conditions 
for the asymptotic stability and, thereby, the physical existence of these sub-
harmonics are also obtained. 
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1. Introduction 

An asymptotically stable linear system forced by a sinusoidal input will, 
after the decay of the transient motion, possess a sinusoidal output whose 
amplitude and phase angle will, in general, differ from that of the input, but 
whose frequency will be the satne. Under similar conditions the behaviour of 
nonlinear systems is usually very different in that the output may not even be 
periodic and when it is it may have a waveform containing the fundamental forcing 
frequency together with higher harmonics and, less often, subharmonics, i . e . 
oscillations having frequencies which are rational proper fractions of the 
fundamental. 

Theoretical investigations of subharmonic resonance have been limited to 
a restricted class of nonlinear differential equations. Most of the known results 
are concerned with Duffing's equation. Van der Pol's equation and modest general-
izations of these. The conditions for the existence of subharmonic solutions to 
Duffing's equation 

x + b x + c x + c x ' =Q Sin ut , b > 0, Eq. 1.1 

where x = dx/dt, have been discussed by Stoker in Bef. 1, Chapter 4, whilst the 
same problem for a slightly more general class of second-order equation has 
been very fully exaniined by Hayashi in Ref. 2, Chapters 7 and 9. An analysis 
of subharmonic resonance associated with the forced Van der Pol equation 

X - //(I - x ')x + X = Q Sin ait, u > 0, Eq. 1.2 

often referred to as subharmonic frequency entrainment, is given by Minorsky 
in Ref. 4, Chapter 17 and also by Hayashi in Ref. 2, Chapter 12. Experimental 
verification of the existence of such subharmonic oscillations in physical systems, 
both mechanical and electrical, has been obtained by Ludeke, Ref. 3 and Hayashi, 
Ref. 2. In addition Hayashi presents extensive analogue computer solutions of 
Eq. 1.1 and Eq. 1. 2 showing the nature of subharmonic resonance. 

As far as the author is aware, in all previous theoretical studies the sub-
harmonic solutions obtained refer to equations in which the nonlinear terms were 
implicitly small e.g. c , « c, inEq. 1.1 and ^« 1 in Eq. 1.2. Further, 
these solutions were not exact. That is to say the solution, which was approximate, 
consisted of the sum of subharmonic, fundamental and higher harmonic terms, 
implying that the waveform was not of pure subharmonic form. In the present 
study a more general nonlinear equation, 2 . 1 , is considered and the magnitudes 
of the coefficients b , , b^, c, and c , are determined in such a manner that they 
produce a prescribed subharmonic oscillation of frequency one-third of that of 
the forcing frequency. The existence of such an oscillation in a physical system 
will, of course, depend on its asymptotic stability and appropriate stability criteria 
are derived for the case when the oscillation amplitude or frequency is large. 

2. An exact subharmonic solution 

Consider the equation 

X + (b, + bj x'')x+ c x+ c^x' = i Q Sin 3wt, Eq. 2.1 
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which when b > 0, b = 0 reduces to Duffing's form and when b , < 0, b^ > 0, 
c, > 0, Cj = 0 reduces to Van de r P o l ' s fo rm. The object of the following analys is 
is to demons t ra te that with the c o r r e c t choice of coefficients b, , b j , c, and Cj , 
Eq . 2 .1 p o s s e s s e s a solution of the form 

x = A Sinu t + B Cos u t Eq . 2 .2 

Such a solution is c l ea r ly a pure subharmonic of one- th i rd of the forcing 
frequency 3u. 

Differentiating Eq. 2 .2 with r e spec t to t gives 

X = w(A Cos ut - B Sin ut) Eq. 2 .3 

and 

X = -u* (A Sin wt + B Cos ut) Eq. 2 .4 

Squaring and cubing Eq. 2. 2 gives 

X* = i(A* + B*) + A B Sin 2 u t - è(A* - B* ) Cos 2ut Eq. 2 .5 

and 

X» = |A(A^ + B') Sin ut + | B(A'' + B ' ) Cos ut 

+ ïA(3B* - A*) Sin 3 u t - ïBCSA" - B ' ' ) C o s 3 u t Eq. 2 .6 

Multiplying Eq. 2 .5 and Eq. 2 .3 gives 

x'x = - iuB(A* + B*) S inu t + iwA(A'' + B*) Cos ut 

+ iuB(3A' ' - B") Sin 3(üt + iu)A(3B* - A ' ) Cos 3ut Eq. 2 .7 

Substituting the proposed solution 2 .2 into 2 . 1 , util izing E q s . 2 . 3 , 2 . 4 , 2 .6 
and 2 . 7 , and equating coefficients of the dist inct t e r m s , i . e . S i n u t , Cos ait, 
Sin 3ut and Cos But respec t ive ly , gives r i s e to the following re la t ions : 

(c, - u * ) A - b , u B - i bjUB(A' + B") + I c,A(A'' + B*) = 0 Eq. 2 .8 

(c^ - u * ) B + b^uA + i b^wA(A» + B*) + | CjB(A* + B» ) = 0 Eq. 2 .9 

i bgUB(3A* - B*) + i CjA(3B'' - A») = ^ Q Eq. 2,10 

i hjjUA(3B* - A'') - i CjB(3A' - B*) = 0 Eq, 2,11 

El iminat ing Cj between Eq. 2.10 and 2.11 gives 

B^OA^ -B')' + A''(3B=^ - A")^ = i Q B(3A^ - B " ) ï b , u 

or b^ = Q . B(3A' - B ' ) Eq. 2 .12 

" (A* + B'^)' 



and in a s i m i l a r manner 

c = Q. A ( 3 B ' - A ' ) 

(A^ + B ^ ) ' 

Eq. 2 .13 

Substituting for b and c in Eq, 2. 8 and Eq . 2. 9 then gives 

(c^ - U^ )A - b ^UB + i Q f^(A, B ) = 0 

and 

Eq . 2.14 

(c - U * ) B + b^uA + i Q f^(A. B) = 0 Eq. 2 .15 

where 

and 

f / A , B) = ( - 3 A ' + 6 A ' B * + B*)/(A* + B*) ' 

f^(A, B) = 8 A B ' / ( A ' + B ' ) ' 

Eq. 2,16 

El iminat ing (c - u ) and ub in tu rn between Eq, 2.14 and Eq. 2 .15 then gives 

', = 0 . [ Bf^(A, B) -Af^(A, B) 1 / ( A ' + B ' ) 

4u 

= Q_ . B(-3A* - 2 A ' ' B ' ' + B ' ' ) / ( A ' ' + B*) ' 

4u 

or b^ = - Q _ . B ( 3 A ' - B * ) 

4u (A* + B ' ) * 

Eq. 2,17 

and 

c - w« = - 3g . A ( 3 B ' - A ' ) 

4 (A* + B*)* 

Eq, 2 ,18 

It follows that 

b = -4b /(A* + B*) 

and c = -4 (c - u*)/(A* + B*) 
3 

Eq. 2.19 

Eq, 2 .20 

Special Cases 

Cer ta in important specia l c a se s a r i s e in the following ways. 

Case 1, b = b = 0 . 
— — — 1 a 

F o r this condition to be so , it follows from Eq. 2,17 and Eq, 2,19 that 
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e i ther B = O or B* = 3A*. Cons ider then the two s u b - c a s e s , 

Case 1(a). B = 0. 

Then c^ - u* = 3Q/4A and c , = -Q /A* . The or iginal differential equation 
becomes 

x + ( u " + 3Q/4A)x - Q / A * . x ' = i Q Sin 3ut Eq, 2.21 

with a solution 

X = A Sin wt Eq . 2 .22 

It will be observed that Eq . 2 . 21 i s in the form of Duffing's equation without 
damping. 

Case 1(b). B* = 3 A ' . 

Then c - w* = -3Q/8A and c = Q / 8 A ' , and the equation becomes 

X + («« - 3Q/8A)x + Q / 8 A ' .X» = i Q Sin 3wt E q . 2 .23 

with a solution 

- -i 

X = A(Sinwt + 3 ^ . Cos wt) = B(3 * Sin wt + Cos ut) Eq . 2 .24 

This equation is again in Duffing's fo rm. 

Case 2. c , = 0, c , = w* . 
This condition impl ies that e i the r A = 0, or A* = 3B*. Cons ider t he se 

s u b - c a s e s . 

C a s e 2(a). A = 0. 

Then b^ = Q/4wB and b^ = - Q / W B ' , and the equation becomes 

x + Q / 4 w B , (1 - 4 / B ' X " ) X + u*x = i Q Sin 3ut Eq . 2 .25 

with a solution 

x = B Cos wt Eq. 2.26 

C a s e 2(b). A ' = 3B*. 

Then b^ = - Q / 8 u B and b = Q / 8 w B ' , and the equation becomes 

X + Q/8wB (-1 + 1 /B*.x»)x + u«x = i Q Sin 3ut Eq . 2 .27 

with a solution 

X = B(3 Sinwt +.Cos wt) = A(Sinwt + 3 ' Cos wt) Eq . 2 .28 
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Eq. 2. 27 with Q > O and B > O is in the form of a forced Van der Pol equation. 

It is clear that the analysis above provides an interesting range of exact 
subharmonic solutions to Eq. 2.1 which may be utilized in various ways, however, 
the existence of such oscillations in a physical system will depend on their 
asymptotic stability and thought m.ust now be given to the determination of stability 
criteria which will distinguish the physically observable (e.g. by using an analogue 
comiputer) oscillations from the others. 

3. Stability criteria 

One method of determining the stability of the solutions of Eq. 2.1 is by the 
use of the "variational equation" defined in Ref. 5, p. 322. Writing Eq, 2,1 in 
the vector form 

j Eq. 3.1 
y, = y^ =F , (y.) 

y, = i Q Sin wt - (b^ + b^y^)y^ - ĉ  ŷ  - c^yj = F^(y^ , y^) 

where y. = x. + £. and x is given by Eq. 2.2, the variational equation is given by 

i = F (x).g Eq. 3,2 

where F is the Jacobian matrix whose coefficients are 
X 

dFjax^ = 0 . aF , /3x^ = 1, 

9F, /ax, = -2b,x,x , - c, - 3C3X ,̂ aF^ Idx^ = -(b + b ^x )̂ 

The variational equation becomes 

0 1 € 

Eq. 3-, 3 

-<S + 2b,x,x^ + 3c,x ' ) -(b, + b,x*) 5^ 

or in scalar form 

g + (b, + h^x')i + (c, + 3CjX* + 2b^xx)e = 0, Eq. 3.4 

where x = x, is given by Eq. 2.2. 

On substituting from Eq. 2.2, 2.3 and 2. 5 into 3.4 this equation becomes 

+ [ fb, + |bj(A* + B*) I + bg AB Sin 2ut - i (A ' - B")COS 2wt 

+ r fc ,+ 3C3(A* + B*)"! + rwb^(A* - B*) + 3c^AB~| Sin 2wt 

] 

2wb AB - 3 c,(A' - B») Cos 2wt 
2 ' I -> 

0, 
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which upon writing z = ut and substituting from Eqs, 2,19 and 2. 20 becomes 

4 ' +5 = e [ [^'*'' Sin 2z + a, Cos 2z 5 + [-*-, Sin 2z 

+ a^ Cos 2z 
J '̂] Eq. 3.5 

where 

e =Q/w*(A* + B*) ' 

a, = - I A(A* + B*) ( 3 B " - A*) 

a , = B ' ( 5 A * + B*) 

a^ = i A(3A* + 5B*) 

a^ = - i B(A* + B ' ) (3A* - B*) 

â , = - AB*(3A* - B ' ) 

â  = i B(A* - B " ) (3A* - B*) 

and 5' = dg/dz. 

From Ref. 5, Chapter 13, Theorem 2.1 it will follow that the solution Eq. 2.2 
of Eq. 2 . 1 , with b , , b^, c , and c^ given by Eqs. 2.17, 2,19, 2,18 and 2, 20 
respectively, will be asymptotically stable provided the variational Eq. 3.5 is 
asymptotically stable. The form of the solution of Eq. 3. 5 is known from Floquet's 
theorem, Ref. 5, Chapter 3, Theorem 5 .1 , and as shown in Refs. 6 and 7 the stability 
is determined by the signs of the 'characteristic exponents', In the case when the 
periodic terms in the coefficients are small compared with some of the constant terms 
the approximate evaluation of the characteristic exponents is possible by a method 
given in Ref. 6, Chapter 8 and used in Ref, 7, It will be observed in Eq, 3, 5 that for 
general values of A, B and u the coefficients e^ , ea , ' ' ' ' , ea , of the periodic 
terms are not small compared with unity, the coefficients of the 5 and 5* terms on 
the left hand side of the equation. Thus the characteristic exponents may not be 
evaluated by this method for general values of A, B and u , However, when A + B 
or w* is sufficiently large, all the coefficients * a , , ' " ' ' , e a will be small com-
pared to unity and the approximate values of the characteristic exponents may be 
evaluated by the method of Ref. 6, Chapter 8. In this case e may be looked upon as 
the appropriate 'small parameter ' . 

Eq. 3. 5 may be written in system form as 

5' = C5+ e*(z)5, Eq, 3,6 

where 

& = col (5 ,6 ), the column vector, 

0 1 
C = 
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« ( z ) 

O O 

f i fa 

and 

f = - ( a + a^ Sin 2z + a^ Cos 2z) 

f = - ( a + a Sin 2z + a., Cos 2z) 
2 * B « 

The c h a r a c t e r i s t i c equation of C is 

det (C - XE) = O, Eq, 3,7 

which has the roots X = ± i. Reduction of C to diagonal form is then achieved 
1 »2 ° 

by means of the sinailari ty t ransformat ion 

T C T = diag (+ i , - i) = D, 

where 

T = 
1 - i 

1 i 

and 

T"^ = i i 

1 - 1 

Trans fo rming Eq, 3, 6 by means of this t ransformat ion gives 

y ' = Dy + e*(z)y, 

where 

-Kz) = T * ( Z ) T ' ^ 

F r o m E q s , 3 , 9 , 3,10 and 3.12 

*(z) = e l 

or 

•(z) = H 

f l -i 

1 1 

""-f, - if, 

_ f, + ifa 

0 0 

f, ^ 
u. _J 

-f, + if ," 

f, - ^ ^ _ 

- 1 - 1 

1 - 1 

Eq . 3 .8 

Eq. 3,9 

Eq. 3.10 

Eq, 3,11 

Eq, 3.12 

Eq. 3.13 

As in Ref. 7, if y be any finite complex number then the reduction to 



- 8 -

Standard form is achieved by means of the t ransformat ion 

y = exp (X + ey)z. exp (D - X E)z . w, Eq. 3,14 

where w i s a two vec to r . Applying this t ransformat ion to Eq. 3.11 yields 

- eyw+ e exp [ - diag (0, -2i) z . « ( z ) . w 

exp diag (0, - 2 i ) z . w 

which upon substi tut ion from Eq. 3.13 gives 

w 
2iz , 

•ey w + 2 61 diag ( 1 , e ) 
if. 

L 
f, + if, 

f, + if, 

f + if 
1 a 

Eq. 3.15 

,. , , -2iz. 
diag ( 1 , e ).w, 

which, upon multiplying the m a t r i c e s , becomes 

w' = -ey w + e r (z ) , w , 

where 

r(z) = i i 
- f . if. 

e (f + if ) 

-2iz , , . . . 
e ( -f , + i f j 

f - if 

Eq, 3.16 

Eq. 3.17 

Eq. 3,16 is now in the requi red s tandard form appropr ia te to the "totally degene ra t e" 
case where all the c h a r a c t e r i s t i c roots of C a r e imaginary , 

If y can be determined in such a way that Eq. 3.16 has a per iodic solution of 
period T =»r, the period of *(z), then th is solution h a s , from Eq. 3 .14 , the form 

y = exp (X, + ey)z . p(z), Eq. 3,18 

where p(z) i s of period ir. This impl ies that X + ey is a cha rac t e r i s t i c exponent 
of Eq. 3 . 1 1 . The cha rac t e r i s t i c exponent i s unchanged under a s imi l a r i ty t r a n s -
formation such as Eq. 3 . 8 so that X + ey is a l so a cha rac t e r i s t i c exponent of 
Eq. 3.6 and hence of Eq. 3 . 5 . 

The solution for y in the f i rs t approximat ion may be obtained in a closely 
s i m i l a r manner to that used in Ref. 7, pp. 17-18, F o r th is purpose define the 
ma t r i x 

G(y, e = 0) = 
G 

/ 
r ( z ) d z , Eq. 3.19 

T o 
21 aa 

where T is the per iod , t h e n y may be evaluated from the de te rminanta l equation 

de t [G(y. 0) -E ] - Eq. 3.20 
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F r o m E q s . 3.17 and 3.19 the coefficients of G a r e a s follows: 
IT 

o 

1 I (a + a Sin 2z + 
2v i 

( - f - if )dz 1 a 
2ir 

° IT 
a Cos 2z) - i(a, + a. Sin 2z 

2ir i 

a^ Cos 2z) dz 
IT 

(a^ - ia , )dz = - | (a^ - i a , ) , 

o 

G, , = - H a ^ + i a ^ ) . 
n 

G = i f e" ^^ (-f, + if , )dz 

(Cos 2z - i Sin 2z) ( - f + if^)dz 

1 / [ - ( f S i n 2 z + f Cos 2z) + i(f Sin 2z - f Cos 2z) j dz 
2ir 

1 
2ir 

2ir i 

I [ (â j - ia^) Sin' 2z + (â  + ia^) Cos' 2z j dz 

= 1 j 1̂  (a, - ia, ) + (a^ + ia,) Jdz 
4ir o 

= J_ [<a^+aj + i(a,-a,)] , 

= 1 r(a + a ) - i(a - a ) 1 

4 

G 
' • 4 

Substituting into Eq. 3 .20 gives 

y * - (G + G )y - i - (G G - G G ) = 0, E q . 3.21 
' 1 1 a a ' ^ i i a a l a a i ^ 

where 

^ 1 1 +<^aa = -^4 ^"i- 3 - 2 2 

and 

G , , G - G , , G , 
1 1 2 2 12 3 

= 1 (a' + a') - 1 r(a +a )' + 
' T ' * Ï6 L ^ * 

(a^ - a ^ ) * l Eq. 3.23 
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Eq . 3.21 has the roo t s 

-1, +G„) ± [(G,, +G„)' -4(G,,G„ -G,, G„ ) ] ^ J 

^ [ ^ 1 +G„) i [(G„ - G , / + 4 G „ G „ ] ' j 

y = è i (G. 
I f a 

or 

, , = i[-a, i r-:-^( (a, + a^ ) + (a 3 - aj ) ]*) Eq. 3.24 

One c h a r a c t e r i s t i c exponent of Eq . 3 .5 i s , t he re fo re , in the f i r s t 
approximat ion 

X + ey = i + 
1 

ie[ -â  . r-a;.i( (a + a )* + 

(a, - a , ) ' )V] Eq, 3 ,25 

A second c h a r a c t e r i s t i c exponent i s the complex conjugate of the above exp res s ion . 
The asymptot ic s tabi l i ty of the var ia t ional equation is de termined en t i re ly by the 
sign of the r ea l par t of the c h a r a c t e r i s t i c exponent, i , e , in the p resen t case the 
r e a l par t of y. Now 

a, + a^ = B ' ( 5 A ' + B ' ) + è B ( A ' - B ' ) ( 3 A ' - B ' ) 

= _3_ B(A' + B ^ ) ' 
2 

and 

a , - a^ = I A(3A* + 5B*) + A B ' ( 3 A ' - B ' ) 

= _3_ A ( A ' + B ' ) % 

2 

giving 

' j _ r(a, + a j * + (a, - a )̂ * 1 = _9. (A' + B ' ) ' 
4 L J 16 

Also 

a* = _9_ A'(A» + B ' ) ' ( 3 B * - A M ' 
16 

= _9_ (A* + B ' ) ' ( 9 A ' B * - 6A*B* + A ' ) 
16 

and, the reby , 

2 2 3 

(A + B ) J_ r (a, + a j * + (a, - a, ) ' 1 - a * = _9_ (A* + B ') * f 
4 •- -J 16 *-

- 9A' 'B* + 6 A * B ' - A* I 
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= _9_ (A* + B * ) * B ' ( 3 A ' - B * ) * Eq. 3.26 
16 

This expression is real and positive and, therefore, y must be real . Since e is 
also real and positive then the condition for asymptotic stability becomes y < 0 or 

. *- [<^± [ K + % ) ' + < S - ^ ) ' ] ] ' <O 

o r 

o r 

l ^ l > l [ - a > J _ [ ( a , + a j * + ( a 3 - a , ) ' ] ] 

' + K-± [ K +»,)' +(a, - a j ' ^ > 0. a + a 
4 

4 
which upon substitution from Eq, 3,26 and for a becomes 

J_ B ' ( A * + B*) ' ( 3 A ' - B ' ) ' - _9_ B ' ( A * + B * ) ' ( 3 A ' - B*)* > 0 
16 16 

or 

- i B*(A* + B ' ) ' (3A* - B*)* > 0 Eq, 3.27 

The expression on the left-hand side of Eq, 3, 27 is clearly negative and the 
inequality cannot be satisfied. It follows that for the conditions postulated, i , e , 
A + B or u sufficiently large, the solution Eq, 2,2 is asymptotically unstable 
and, therefore, not physically observable as a steady oscillation. 

4. Discussion 

The analysis of the previous sections is unsatisfactory in that only a limited 
discussion of the stability has been possible and it is not known whether any of the 
subharmonic oscillations for moderate A + B and u, such as to make e >1, are 
asymptotically stable. Some confirmation of such stable solutions can be obtained 
from Ref. 2, p. 304, Figure 12,12, which shows the regions in which physically 
observable subharmonic solutions to the forced Van der Pol equation were obtained 
on an analogue computer. Taking u = 1, B = 1 and Q = 32 in Eq. 2,27 corresponds 
to a point, on the above figure, in a region where physically observable subharmonics 
of the appropriate frequency occur. The value of e in this case is 0. 5 and is clearly 
not in a region for which the stability criteria of Section 3 are valid. 

Another comparison which may be made is with the result given by Stoker in 
Ref. 1, p. 106, Éq. 7 .11, from which it follows that no subharmonic of order 5 can 
exist with a frequency equal to that of the free oscillation of the linear system 
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(fi = O in Stoker's notation). From Eqs. 
of the linear system would be 

(w* ± 3Q/4A)^ , 

2.21 and 2.23 the corresponding frequency 

whereas the frequency of the forced subharmonic is u. For finite A the two 
frequencies cannot coincide unless Q = 0. The present analysis, therefore, 
agrees with Stoker on this point. 

A technique which is often used to obtain periodic solutions of equations 
such as 2.1 is that due originally to Galerkin, in which the solution is taken in the 
form of a Fourier series whose greatest period is equal to that of the forcing 
frequency. Substitution into the equation and comparison of the coefficients then 
allows a determination of the coefficients of the Fourier ser ies . The validity of 
this technique as a means of generating exact solutions has been demonstrated in 
particular cases by Cesari in Ref. 8. It is clear, however, that such a process 
is not valid, at least not without modification, for values of b, , b, , c, and c , for 
which subharmonic solutions exist. The present results should help in defining 
the values for which the Galerkin process has to be modified. 

Finally, the fact that the present solutions have a pure subharmonic wave-
form should allow a simpler physical (e .g. analogue computer with cathode ray 
oscilloscope display) demonstration of the existence of subharmonics. 

References 

Stoker, J . J , 

Hayashi, C. 

Ludeke, C.A. 

Minorsky, N. 

Coddington, E.A. 
Levins on, N. 

Hale, J .K. 

Christopher, P . A . T . 

Cesari , L. 

Nonlinear vibrations in mechanical and electrical 
systems. 
Interscience Publishers, New York (1950), 

Nonlinear oscillations in physical systems, 
McGraw-HiU (1964), 

Resonance. 
Journal of Applied Physics, Vol. 13, 1942. 

Introduction to nonlinear mechanics. 
J.VV. Edwards, Ann Arbor (1947). 

and Theory of ordinary differential equations. 
McGraw-Hill, New York (1955). 

Oscillations in nonlinear systems. 
McGraw-HiU, New York (1963). 

Stability of the periodic solutions to Duffing's 
equation and other nonlinear equations of second-
order. 
College of Aeronautics Report Aero, 180 (1965), 

Functional analysis and periodic solutions of 
nonlinear differential equations, 
Contributions to Differential Equations, Vol. 1, 
No. 2, pp. 149-187. John WUey (1963). 


