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1 Introduction

The study of nonlinear sigma models in two-dimensional spacetime has a long history,

dating back to the 70’s, when it was discovered [1–4] that this class of theories shares

common non-trivial features with four-dimensional non-abelian gauge theories, while being

easier to handle and sometimes even exactly solvable. For example, for the O(N + 1) 2D

σ-model the exact S-matrix can be constructed relying on the integrability of the model,

see ref. [5] for a review.

Furthermore, it was demonstrated in refs. [6, 7] that the deformation of an integrable

theory by the irrelevant composite operator T T̄ , built with the components of the energy-

momentum tensor, can be regarded as a peculiar kind of integrable perturbation [8–13]

(see e.g. ref. [14] for a pedagogical review).
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In the present paper we consider the deformation of the integrable O(N + 1) (with the

field on the sphere SN ) 2D σ-model by the most general operators of the mass dimension

four. The theory deformed in this way loses its integrability property. For the most general

deformation of the theory scattering amplitudes acquire leading log (LL) corrections which

spoil the factorization property of the S-matrix. In the case of the non-deformed 2D σ-

model the corresponding LL corrections can be absorbed into the running coupling constant

by the renormalization group (RG) methods, see discussion in chapter 5 of ref. [5]. However,

the generally deformed theory is non-renormalizable; therefore, the RG methods can not

be applied to it directly.

Our goal is to perform the exact summation of the LLs for the 2 → 2 scattering

amplitude in the non-renormalizable O(N + 1) 2D σ-model deformed by the most general

dimension-four composite operators. The theory we consider is defined by the following

action:

S =

∫

d2x

(

1

2
∂µ~n · ∂µ~n − g1(∂µ~n · ∂µ~n)(∂ν~n · ∂ν~n) − g2(∂µ~n · ∂ν~n)(∂µ~n · ∂ν~n)

)

(1.1)

with fields ~n ∈ SN of the radius F , i.e. satisfying the constraint
∑N+1

A=1 nAnA = F 2. The

coupling constants g1, g2 and F have the mass-dimensions

[g1] = [g2] = −2, [F ] = 0. (1.2)

The action (1.1) corresponds to the deformation of the O(N + 1) 2D σ-model by the most

general dimension-4 operators. It can be rewritten in the form:

S =

∫

d2x

(

1

2
∂µ~n · ∂µ~n − 4λ det (Tµν) − 1

G
(∂µ~n · ∂ν~n)(∂µ~n · ∂ν~n)

)

, (1.3)

where λ = g1 is the coupling describing the T T̄ perturbation to the O(N + 1)-symmetric

σ-model. The operator

Tµν = ∂µ~n · ∂ν~n − 1

2
ηµν(∂α~n · ∂α~n), (1.4)

is the energy-momentum tensor of the O(N + 1) symmetric σ-model, ηµν = diag(1, −1) is

the Minkowski tensor in 2D. The coupling

1

G
= g1 + 2g2; [G] = 2 (1.5)

describes a deviation from the T T̄ perturbed theory. The limit G → ∞ corresponds to the

T T̄ -deformed σ-model that was studied e.g. in ref. [15].

In the limit of zero curvature of the field manifold SN (F → ∞) the theory (1.3)

corresponds to the O(N)-symmetric free field theory deformed by generic dimension-4

operators which was recently considered in refs. [16, 17].1 In [16] we performed the all-loop

exact summation of the leading logs for the 2 → 2 scattering amplitude in the deformed free

1In these references the corresponding theory was named as the bissextile or bi-quartic model. The

relation to T T̄ deformations was not discussed in these references.
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field theory. First, it was found that the LLs contribution do not depend on the coupling

constant λ in (1.3). This reflects the fact that the T T̄ -deformed theory enjoys integrability

of the undeformed theory. Second, the explicit non-trivial solutions for the scattering

amplitude in the LL-approximation were obtained. It was shown that the corresponding

solutions exhibit non-trivial analytical structure in the variable s
4πG ln(µ2/s) giving the

first example of the non-trivial S-matrix beyond the T T̄ deformation. In this paper we

perform the all-order exact summation of LLs for finite radius of the field manifold SN .

It is known that the general deformation of the QFT by irrelevant operators

(dimension-4 in our case) usually requires an infinite number of the counterterms to com-

pute a physical quantity. This precludes one from the direct use of the RG-equations for

large logarithmic contributions to the physical quantities. A generalization of the RG-

equations for the summation of leading logs in a wide class of non-renormalizable theories

(deformed by irrelevant operators) was developed in refs. [18–21]. An adaptation of this ap-

proach for the special case of 2D non-renormalizable QFTs was considered in refs. [16, 17].

It is worth mentioning that similar equations, although in a different context, were derived

in refs. [22–27].

Generically, a physical observable (say 2 → 2 scattering amplitude) in the theory (1.1)

at the (n + m − 1)-th loop order with n vertices ∼ g1, g2 and m vertices ∼ 1/F 2 at low

energies acquires a contribution of large LLs of the type:

∼
(

E2

4πG

)n (
1

4πF 2

)m

ωn,m lnn+m−1

(

µ2

E2

)

. (1.6)

Here E is the typical energy scale for a physics observable under consideration; µ is an ar-

bitrary mass scale introduced to perform ultraviolet (UV) renormalization. The numerical

coefficients ωn,m depend only on the basic parameters of the theory, like the dimension of

the field manifold N . It is remarkable that the constants g1 and g2, which describe the

general dimension-4 irrelevant deformation of the 2D σ-model, enter the answer only in

the combination g1 + 2g2 = 1/G. Equivalently, it is stated that the coefficients ωn,m are

independent of the dimensionless combination λG. The constant λ which describes the

T T̄ deformation of the theory (1.3) does not enter the LLs contributions. In the following

sections we demonstrate explicitly the above statements within the theory (1.3) comput-

ing the leading log coefficients ωn,m for 2 → 2 scattering amplitude and performing the

all-order summation of the LL-contributions.

2 Scattering amplitude in deformed theory

The goal of the current paper is to study the 2 → 2 particle scattering of the O(N + 1)-

symmetric theory (1.3):

Φa(p1) + Φb(p2) → Φc(p3) + Φd(p4) (2.1)

in the leading logarithmic approximation. Here the Φ-fields are the local coordinates of

the theory (1.3) related to the ~n-fields through the standard parametrization

~n =

(

Φ1, . . . ΦN ,

√

F 2 − ~Φ2

)

, (2.2)
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where F is the radius of the field manifold SN = O(N + 1)/O(N). The 2 → 2 scattering

amplitude is a function of the Mandelstam variables

s = (p1 + p2)2 ; t = (p1 − p4)2 ; u = (p1 − p3)2 . (2.3)

The O(N) group (to which we refer as the isospin) indices are projected over the irreducible

representations as

Mabcd(s, t, u) =
2
∑

I=0

P I
abcdMI(s, t, u). (2.4)

Here MI are the invariant amplitudes satisfying the following crossing symmetry relations:

MI(s, t, u) = CIJ
st MJ(t, s, u);

MI(s, t, u) = CIJ
su MJ(u, t, s);

MI(s, t, u) = CIJ
tu MJ(s, u, t). (2.5)

The definitions and properties of the projection operators P I
abcd and the crossing matrices

CIJ
st , CIJ

su and CIJ
tu can be found in appendix A.

In 2D it is possible to further simplify the scattering amplitude by introducing the

reflection (R) and transmission (T ) amplitudes

MI,T (s) = MI(s, t = 0, u = −s);

MI,R(s) = MI(s, t = −s, u = 0). (2.6)

From a general dimensional analysis, the leading logarithmic contributions to the 2 → 2

transmission and reflection scattering amplitudes can be parametrized as follows:

M(s)I,T/R = 4πs
+∞
∑

n,m=0,n+m≥1

(

s

4πG

)n ( 1

4πF 2

)m

ωI,T/R
n,m lnn+m−1

(

µ2

s

)

(2.7)

+ O(NLL).

Here O(NLL) stands for the contributions of the next-to-leading logs. From general di-

mensional considerations the LL coefficients are functions of the group order parameter N

and of the dimensionless combination of couplings λG of the theory (1.3). For example, the

tree-level LL-coefficients (corresponding to n+m = 1, zero number of loops) have the form:

ω0,T
1,0 = ω0,R

1,0 =
1

2
λG(3N + 1) +

1

2
(N + 3);

ω1,T
1,0 = −ω0,R

1,0 = −5

2
λG +

1

2
;

ω2,T
1,0 = ω2,R

1,0 =
1

2
λG +

3

2
;

ω0,T
0,1 = ω0,R

0,1 = N − 1;

ω1,T
0,1 = −ω1,R

0,1 = 1;

ω2,T
0,1 = ω2,R

0,1 = −1. (2.8)
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Indeed, we observe that the tree-level coefficients depend on both N and λG. However,

the explicit calculation of the one-loop Feynman graphs demonstrates that the corre-

sponding coefficients ωn,m (with n + m = 2) are independent of λG. For higher loops

the λG-independence of ωn,m (with n + m ≥ 2) follows from the recursion equations we

discuss below.

Following the derivation detailed in section V of ref. [20] for an arbitrary even spacetime

dimension > 2, and in appendix A of [16] for 2D QFTs, we obtain the system of recurrence

relations for the ω
I,T/R
n,m coefficients:

ωI,T
n,m =

1

n + m − 1

n
∑

i=0

m
∑

j=0

1

2

(

δIJ − (−1)nCIJ
su

) [

ωJ,T
i,j ωJ,T

n−i,m−j + ωJ,R
i,j ωJ,R

n−i,m−j

]

;

ωI,R
n,m =

1

n + m − 1

n
∑

i=0

m
∑

j=0

1

2

(

δIJ − (−1)nCIJ
st

) [

ωJ,T
i,j ωJ,R

n−i,m−j + ωJ,R
i,j ωJ,T

n−i,m−j

]

. (2.9)

It is important to note, that the repeated isospin indices of the ω-coefficients in (2.9) do

not imply summation. The initial conditions for the recurrence relations are given by

the tree-level results summarized in eq. (2.8). A remarkable property of above recurrence

relations is that the initial conditions (2.8) with terms ∼ λG only provide zero solutions

for ωn,m. Therefore, we confirm that the LL coefficients in expansion (2.7) are independent

of the parameter λ of T T̄ perturbation. This finding reflects the integrability of the T T̄

deformation. We can speculate here that the search of the initial conditions providing “zero

solutions” of the recurrence relations of the type (2.9) in various deformed theories can be

used to identify other than T T̄ integrable deformations of the theory.

The recurrence relations (2.9) can be further simplified employing the Bose symmetry:

ωI,T
n,m = (−1)IωI,R

n,m; (2.10)

and the crossing symmetry:

ωI,T
n,m = −CIJ

su ωJ,T
n,m for even n;

ωI,T
n,m = CIJ

su ωJ,T
n,m for odd n. (2.11)

This eventually leads to the relations

ω1,T
n,m

ω0,T
n,m

=















1

N − 1
, n − even;

− 1

N − 1
, n − odd;

ω2,T
n,m

ω0,T
n,m

=















− 1

N − 1
, n − even;

N − 2

(N − 1)(N + 2)
, n − odd.

(2.12)

Using the above relations we manage to close the recurrence relation for the transmission

amplitude involving only the I = 0 isospin channel:

ω0,T
n,m =

1

m + n − 1

n
∑

k=0

m
∑

l=0

(

A0 + (−1)nA1 + (−1)kA2

)

ω0,T
k,l ω0,T

n−k,m−l (2.13)
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with the coefficients

A0 = 1+
1

(N +2)(N −1)
, A1 = − N +1

(N +2)(N −1)
, A2 = − 2

(N +2)(N −1)
. (2.14)

We introduce the generating function for the LL coefficients ω0,T
n,m:

Ω(z, w) =
∑

n,m=0,n+m≥2

ω0,T
n,mzn+m−1wm. (2.15)

Note that the function Ω(z, w) contains only the loop contributions because of the con-

straint of the summation n+m ≥ 2; therefore, we will call the function Ω(z, w) as the “loop

function”. We can express all LL amplitudes (different isospins, transmission, reflection) in

terms of the universal function Ω(z, w). For example, the isospin-0 transmission amplitude

in the LL approximation has the form:2

M0,T (s) =
s

F 2
(N − 1) + s2

(

λ

2
(3N + 1) +

1

2G
(N + 3)

)

+
s2

G
Ω

(

s

4πG
ln

(

µ2

s

)

,
G

sF 2

)

.

(2.16)

All other isospin amplitudes (transmission and reflection) can also be expressed in terms

of the function Ω(z, w), corresponding expressions are summarized in appendix B.

We can further simplify the recurrence relation (2.13) by introducing the rescaled

coefficients fn,m:

ω0,T
n,m = fn,m

(

(N − 1)(N + 2)

N

)n

(N − 1)m (2.17)

leading to the master recurrence relation:

fn,m =
1

n + m − 1

n
∑

k=0

m
∑

l=0

(

A0 + (−1)nA1 + (−1)kA2

)

fk,lfn−k,m−l, (2.18)

with the initial conditions:

f0,0 = 0, f1,0 = 1, f0,1 = 1. (2.19)

Below, we reduce this discrete equation to the non-linear differential equations for the

generating function (loop function) (2.15) and present some of its exact solutions.

3 Generalizing RG-equations: non-linear differential equations for the

LL-amplitude

The recurrence relation (2.18) can be reduced to the non-linear differential equation which

takes the form of the equation of motion of the “equivalent mechanical system”. It cor-

responds to a “particle” moving in 1D in a potential with the form depending on the

dimension of the field manifold N . The details of the reduction to the “equivalent me-

chanical systems” in the limit G → ∞ (m = 0 case in eq. (2.18)) are presented in ref. [16].

2We report a missing factor 1

2
in the arguments of the Ω-functions in the eq. (2.21) of ref. [16].
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Here we review only the main steps of the derivation and provide the result for a more

complicated case of the recurrence relations (2.18).

In order to reduce the recurrence relations (2.18) to the differential equation we intro-

duce the generating function:

Φ(z, w) =
∞
∑

n,m=0

fn,mzn+m−1wm. (3.1)

From the initial conditions (2.19) we obtain:

Φ(0, w) = 1 + w. (3.2)

We can express the generating function for the loop amplitudes Ω(z, w) through the func-

tion Φ(z, w). Indeed, the relation (2.17) and the definition of the loop function (2.15) imply:

Ω(z, w) =
(N + 2)(N − 1)

N

(

Φ(z′, w′) − 1 − w′) , with (3.3)

z′ =
(N + 2)(N − 1)

N
z; w′ =

N

N + 2
w.

The next step is to split the generating function Φ(z, w) into the sum of functions with

specific symmetry with respect to z → −z and w → −w:

Φ(z, w) = Φ++(z, w) + Φ+−(z, w) + Φ−+(z, w) + Φ−−(z, w). (3.4)

The subscripts in (3.4) refer to evenness/oddness of the corresponding function with respect

to the arguments z and w. E.g. Φ+−(z, w) is even in the argument z and is odd in the

argument w. From (3.2) and the symmetry properties of the functions Φ±±(z, w) one can

conclude that:

Φ−+(0, w) = Φ−−(0, w) = 0, and Φ++(0, w) = 1, Φ+−(0, w) = w. (3.5)

Further, differentiating eq. (3.4) in z and employing the recurrence relation (2.18) one can

obtain the system of coupled differential equations for the functions Φ±±(z, w) with the

initial conditions provided by (3.5). Collecting terms with the same symmetry properties

under z → −z and w → −w we obtain the system of coupled non-linear differential

equations for the functions

u(z, w) = Φ++(z, w) + Φ−−(z, w), and v(z, w) = Φ+−(z, w) + Φ−+(z, w). (3.6)

The resulting differential equations have exactly the same form as those considered in

ref. [16] (see eq. (3.6) of that paper):






∂
∂z v(z, w) = (A0 + A1 − A2)u2(z, w) + (A0 + A1 + A2)v2(z, w);
∂
∂z u(z, w) = 2(A0 − A1)u(z, w)v(z, w);

(3.7)

but with the different initial conditions:

u(0, w) = 1; v(0, w) = w. (3.8)

– 7 –
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Obviously:

Φ(z, w) = u(z, w) + v(z, w). (3.9)

In the limit of zero curvature of the field manifold (F → ∞, or, equivalently, w → 0) we

obtain exactly the same equations as in ref. [16]. For the more general system (3.7) we can

repeat, with small modifications, the derivation of the equivalent mechanical system. Here

we provide only the final result, the main calculations steps are well described in ref. [16]

(see also ref. [28]). The generating loop function Ω(z, w) can be obtained in the form:

Ω(z, w) =
(N + 2)(N − 1)

N

(

1

q(z, w)
− 1 − N

N + 2
w

)

− N − 1

2N

∂

∂z
ln(q(z, w)), (3.10)

where the function q(z, w) can be formally viewed as the trajectory obtained from the

equation of motion for a particle of the mass

m =
1

2N2
(3.11)

and the total energy E = 1 in one dimension (along the coordinate q):

m

2
q̇(t, w)2 + (1 − w2)q(t, w)γ = 1, (3.12)

where

γ =
N + 2

N
(3.13)

is the exponent of the potential. The initial conditions corresponding to t = 0 are the

following:

q(0, w) = 1; q̇(0, w) = −2Nw. (3.14)

As it must be in the limit w → 0 (zero curvature limit of the field manifold) the equivalent

mechanical system (3.12) is reduced to that considered in ref. [16]. In that paper a number

of interesting solutions were found. In the next section we analyze in details the solutions

of the mechanical system (3.12), (3.14) with w 6= 0 and present the resulting LL scattering

amplitudes.

4 Approximate solutions for the LL-scattering-amplitude

4.1 Solution for pure T T̄ deformed 2D σ-model

The pure T T̄ deformation of the 2D O(N + 1) σ-model corresponds to the limit G → ∞,

see eq. (1.3). In terms of the variables z, w it corresponds to the limits: w → ∞, z → 0,

wz → y with fixed y. Performing this limit for the loop function Ω(z, w) we obtain the

loop function within the T T̄ theory:

ΩT T̄ (y) = lim
w→∞

z→0,wz=y

1

w
Ω(z, w). (4.1)

– 8 –



J
H
E
P
0
5
(
2
0
2
1
)
2
6
6

In terms of this function the LL amplitude3 takes the form:

M(s) =
s (N − 1)

F 2
+ s2 λ

2
(3N + 1) +

s (N − 1)

F 2
ΩT T̄

(

1

4πF 2
ln

(

µ2

s

))

. (4.2)

The function ΩT T̄ (y) can be obtained by solving the equivalent mechanical system (3.12)

in the limit w → ∞. For this issue, we rescale the time variable t = y/w and take the limit

w → ∞ in eq. (3.12). This results in the simplified equation:

m

2

(

d

dy
q(y)

)2

= q(y)γ , (4.3)

where m and γ are defined in (3.11), (3.13). Taking into account the initial conditions (3.14)

this equation can be solved with the result:

q(y) =

(

1 −
√

2

m

(

1 − γ

2

)

y

)
2

2−γ

. (4.4)

Having the general solution we can with help of eq. (3.10) obtain the loop function in the

T T̄ theory as:

ΩT T̄ (y) = (N − 1)
(N − 2)y

1 − (N − 2)y
, (4.5)

which with help of eq. (4.2) leads to the following LL resummed scattering amplitude for

arbitrary N :

M(s) = s2 λ

2
(3N + 1) +

s

F 2
(N − 1)





1

1 − (N−2)
4πF 2 ln

(

µ2

s

)



 (4.6)

= s2 λ

2
(3N + 1) +

s

F 2(s)
(N − 1).

We verify that the LL resummed amplitude in the T T̄ deformed theory coincides with the

tree-level amplitude, in which the coupling constant F is replaced by the corresponding

running coupling constant F (s). This demonstrates that our generalization of the RG

equations (RGE) is reduced to the usual RGE for the case of renormalizable theories.

However, there is a subtlety here. The β-function4 corresponding to the running of the

coupling in eq. (4.6) is:

β

(

1

F 2

)

=
N − 2

4π

1

F 4
+ O

(

1

F 6

)

, (4.7)

whereas the β-function obtained from UV renormalization of the O(N + 1) 2D σ-model [1]

contains the factor (N − 1) instead of (N − 2) in above equation. The reason for this

discrepancy is that the 2D σ-model is suffering from the infrared (IR) divergencies that

can be regularized introducing the mass term to the action (1.3). In the theory with the

3We consider only the transmission amplitude with the isospin I = 0; results for other amplitudes can

be obtained using the relations summarized in appendix B.
4The β-function is defined as d

(

1

F 2

)

/d(ln(µ2)).
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mass term the scattering amplitude obtains logarithmic corrections of the type ∼ ln(µ2/s)

and ∼ ln(µ2/mg), where mg is the mass of (pseudo)Goldstone boson. The method of RG

equations sums up both types of the corrections, whereas our method based on analyticity

of the amplitude in the variable s performs the summations only of the first type of LLs. It

was shown by the explicit one-loop calculation in ref. [29] that the contribution of the mass

logs to the scattering amplitude corresponds to the shift of the coefficient of the β-function

in eq. (4.7) by one unity, thus bringing it to the correct value. This study will be published

elsewhere.

4.2 Expansion around the T T̄ deformation of the 2D σ model

In the previous section we considered the exact limit of G → ∞ corresponding to the pure

T T̄ theory. Now we can systematically compute 1/G corrections to the amplitude. This

expansion corresponds to the kinematical domain

1

4πF 2
ln

(

µ2

s

)

≫ s

4πG
ln

(

µ2

s

)

, (4.8)

in which we sum up exactly the logs proportional ∼ 1/F 2 and perform perturbative ex-

pansion to the finite n-th order in logs ∼ 1/G. Therefore, the corresponding expansion

around the T T̄ theory can be obtained by expanding the loop function in small z and large

w (with fixed wz = y):

z

y
Ω

(

z,
y

z

)

= ΩT T̄ (y) + ΩT T̄
1 (y)z + ΩT T̄

2 (y)z2 + . . . , (4.9)

where the zeroth order amplitude ΩT T̄ (y) (4.5) was computed in the previous section. The

higher order functions ΩT T̄
n (y) describe the corrections due to the non-integrable deforma-

tion of the theory. The functions ΩT T̄
n (y) can be found by solving the mechanical system

perturbatively at large w. The mechanical equations after the rescaling of time t = y/w

have the form:

m

2

(

d

dy
q(y)

)2

= q(y)γ +
1

w2
(1 − q(y)γ), with

d

dy
q(0) = −2N. (4.10)

The above equation can be solved by perturbation in small 1/w starting from the zeroth

order solution (4.4). Alternatively, one can obtain the recurrent differential equations for

ΩT T̄
n (y) directly from (2.18). The corresponding differential equations are linear and can

be easily integrated. Below we provide the final result for the corrections.

The first correction has the following loop function:

ΩT T̄
1 (y)

N − 1
=

(N + 2)

N

1

y





1

(1 − (N − 2)y)
2N

N−2

− 1



 . (4.11)

The higher loop functions (for n ≥ 2) are expressed as:

ΩT T̄
n (y)

N − 1
=

1

yn
Ξn((N − 1)y)

[

(N + 2)

N

]n

, (4.12)
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where Ξn(y) can be computed iteratively as the integral (n ≥ 2):

Ξn(y) =
1

(1 − β0y)
2βn
β0

∫ y

0
dȳ [1 − β0ȳ]

2βn
β0

n−1
∑

k=1

A(n, k)Ξn−k(ȳ) Ξk(ȳ), (4.13)

with the starting function:

Ξ1(y) =
1

(1 − β0y)
2β1
β0

. (4.14)

The coefficient function A(n, k) is defined as:

A(n, k) =
(

A0 + (−1)nA1 + (−1)kA2

)

, (4.15)

with coefficients A0,1,2 given in eq. (2.14) in terms of the group order parameter N . Even-

tually, the coefficients βn in eq. (4.13) are defined as:

βn =
1

2
(A(n, 0) + A(n, n)) . (4.16)

This gives:

βeven =
N − 2

N − 1
; βodd =

N

N − 1
. (4.17)

Note that the complete loop function for N = −2 does not have corrections in 1/G, i.e.

the corresponding amplitude coincides with the amplitude in T T̄ theory. It means that the

most general deformation of the 2D O(N + 1)-symmetric σ-model (1.3) remains integrable

for N = −2. In what follows we will also obtain this result from the exact summation of

the LLs in the limit N → −2.

The explicit form of the amplitude5 to the first order in the perturbation around the

T T̄ theory is the following:

M(s) = s2 λ

2
(3N + 1) +

s

F 2
(N − 1)





1

1 − (N−2)
4πF 2 ln

(

µ2

s

)



 (4.18)

+
s2

G









(N + 3)

2
+

(N − 1)(N + 2)

N









1
[

1 − (N−2)
4πF 2 ln

(

µ2

s

)]
2N

N+2

− 1

















+ O

(

1

G2

)

.

Here the first line corresponds to the amplitude in the pure T T̄ theory (4.6).

4.3 1/N expansion

The O(N +1)-symmetric model in the large-N limit in an arbitrary space-time dimension is

equivalent to a renormalizable field theory, see e.g. discussion in [30]. Our generalization of

the RG equations (3.7) in the N → ∞ limit are reduced to the following simple differential

equation:

∂

∂z

[

1

N
Ω(z, w) + (1 + w)

]

= N

[

1

N
Ω(z, w) + (1 + w)

]2

, with Ω(0, w) = 0, (4.19)

5We consider only the transmission amplitude with isospin I = 0, results for other amplitudes can be

obtained using relations in appendix B.
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which has the form of the usual one-loop RG equation with the one-loop β-function coef-

ficient equal to N . The corresponding equation can be easily solved with the result:

Ω(z, w) =
N(1 + w)

1 − N(1 + w)z
− N(1 + w). (4.20)

This solution has a typical analytical structure for a solution of one-loop RG equations —

it contains a single Landau pole.

5 Exact solutions for the LL-scattering-amplitude

In the previous section we computed the LL amplitudes in the theory (1.3) employing

several types of approximations. Now we discuss the results of the exact summation of the

leading logs.

5.1 Amplitude at the special kinematic point

The coupling constant ratio G/F 2 has the mass dimension 2 and provides the natural

mass scale for the theory. In this subsection we consider the LL-resummed amplitude at

the special kinematic point:

s = s0 =
|G|
F 2

→ 0, (5.1)

which corresponds to w = ±1, where the sign coincides with the sign of G. The limit (5.1)

ensures that we stay in the low energy domain where the log contributions which we sum up

are large. Physically, the limit (5.1) corresponds to either the case of the strong deviation

from the T T̄ deformation, or, equivalently, the case of the field manifold with a small

curvature (F ≫ 1).

For w = ±1 the mechanical system (3.12) describes the motion with a constant velocity:

q(t) = 1 ∓ 2Nt. (5.2)

With help of eq. (3.10) we obtain the loop function with a single pole in the z-plane:

Ω(z, +1) =
4(N2 − 1)z

1 − 2Nz
;

Ω(z, −1) =
4(N − 1)z

1 + 2Nz
. (5.3)

Employing eq. (2.16) we establish the following expression for the LL-approximation am-

plitude:6

Mloops(s0) =
G

F 4

4(N2 − 1)

1 − 2N
4πF 2 ln

(

µ2F 2

|G|

) · 1

4πF 2
ln

(

µ2F 2

|G|

)

, for G > 0;

Mloops(s0) =
|G|
F 4

4(N − 1)

1 − 2N
4πF 2 ln

(

µ2F 2

|G|

) · 1

4πF 2
ln

(

µ2F 2

|G|

)

, for G < 0. (5.4)

6Mloops stands for the contribution into the LL amplitude starting from the one-loop order. We consider

only the transmission amplitude with isospin I = 0. Other amplitudes can be obtained using the relations

summarized in appendix B.
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Note the remarkable property of the above amplitudes: they possess a pole if the coupling

constants of the theory are related by:

G

F 2
= µ2e−4πF 2/(2N). (5.5)

Since the amplitude at the point s = s0 is exactly solvable one can easily construct

the systematic expansion of the amplitude around this point. As an example we present

here the first correction to the amplitude for s = s0 + δs with δs/s0 ≪ 1 (we give result

for G > 0):

Mloops(s0 + δs) =
G

F 4

4(N2 − 1)

1 − 2N
4πF 2 ln

(

µ2F 2

|G|

) · 1

4πF 2
ln

(

µ2F 2

|G|

)

(5.6)

− δs
N(N − 1)

F 2

[

1 − N
4πF 2 ln

(

µ2F 2

|G|

)]

[

1 − 2N
4πF 2 ln

(

µ2F 2

|G|

)]2 · 1

4πF 2
ln

(

µ2F 2

|G|

)

.

5.2 Solutions for N = 2: infinite number of equidistant poles

The theory (1.3) for N = 2 is of special interest as it can have many applications for

descriptions of physical systems like magnets, also this theory (in Euclidean space) possesses

the conserved topological charge.

In ref. [16] the loop function in the zero curvature limit (F → ∞, or w = 0) was found

to have a remarkably simple, but non-trivial form:

Ω(z, w = 0) = −2 +
2

cos(4z)
+ tg(4z), (5.7)

exhibiting infinite number of equidistantly distributed poles in the variable z.

For the general — non-zero curvature — case the loop function can be also easily found

because the equivalent mechanical system (3.12) corresponds to the harmonic oscillator.

Note, however, that for the general case the form of the harmonic potential depends on w,

and the motion of the equivalent mechanical system is of a qualitatively different nature

for |w| < 1 and |w| > 1. As a consequence the corresponding solution for the loop function

has essentially different pole structure in the z-plane for |w| < 1 and |w| > 1.

• For |w| < 1 we define w = sin(α) with α ∈ [−π/2, π/2]. The loop function has the

following form:

Ω(z, w) =
2 cos(α)

cos(α + 4z cos(α))
+

sin(4z cos(α))

cos(α + 4z cos(α))
− 2. (5.8)

We see that in this case the loop function has equidistantly distributed poles along

the real axis of the variable z.

• For |w| > 1 we define w = ±ch(α) with α ∈ [0,∞]. The corresponding loop function is:

Ω(z, w) =
2sh(α)

sh(α ∓ 4z sh(α))
+

sh(4z sh(α))

sh(α ∓ 4z sh(α))
− 2. (5.9)

In this case the equidistantly distributed poles lie on the imaginary axis in the complex

z plane.
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In both cases the distance between poles is increasing as w approaches 1. Therefore, all

poles move to the infinity in this limit, only one pole at z = 1/4 remains at a finite position

for w = 1. This corresponds to the N = 2 case for the one-pole solution (5.3) presented in

section 5.1.

5.3 Other solutions in terms of elementary functions

Below we list the exact solutions for the loop function Ω(z, w) in terms of elementary

functions.

5.3.1 N = −2

In ref. [16] it was shown that the LLs are absent in the theory with N = −2 for F = ∞
(deformation of the free field theory). In the case of the field manifold with non-zero

curvature (1/F 6= 0) the equivalent mechanical system (3.12) for N = −2 corresponds to

a motion with constant velocity. The general solution reads:

q(t) = 1 + 4wt. (5.10)

The corresponding loop function has the form:

Ω(z, w) =
12w2z

1 + 4wz
. (5.11)

Such loop function corresponds to the LL amplitude of the form:

Mloops(s) =
3s

F 2



1 − 1

1 + 4
4πF 2 ln

(

µ2

s

)



 . (5.12)

We conclude that the LL amplitude for N = −2 is indeed independent of G confirming

the findings of section 4.2, where the perturbation around the T T̄ theory was considered.

The exact summation of the LLs for the amplitude gives the amplitude of the T T̄ theory

in which the LLs can be absorbed into the running coupling constant. Indeed, the above

expression for the LL amplitude can be put into the tree-level form replacing the coupling

constant F by the corresponding running coupling constant, as discussed in section 4.1.

The amplitude (5.12) possesses an UV Landau pole; and hence the theory (1.3) is IR

asymptotically free for N = −2. We can speculate that this feature of the theory at N = −2

is related to the fact that the O(N + 1)-symmetric theory at negative N is equivalent to

a fermionic theory with Nferm = −N/2 Grassmann fields. In the corresponding fermionic

theory with Nferm = 1 all operators of dimension 4 are identically zero due to the Grassmann

nature of fields. This correspondence will be elaborated elsewhere.

5.3.2 N → 0

Exact summation of all-loop logs can also be performed for the theory (1.3) in the limit

N → 0. In this limit the equivalent mechanical system (3.12) can be easily solved providing

the result:

q(t, w) =
1

[w sh(2t) + ch(2t)]N
, (5.13)
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where the leading in N → 0 result is shown. Further with help of eq. (3.10) we obtain the

corresponding loop function:

Ω(z, w) = −2 ln [ch(2z) + w sh(2z)] − (1 − w2) th(2z)

1 + w th(2z)
. (5.14)

We note that, in contrast to previously considered exact solution, the position of the

singularities in the variable z does not change qualitatively when the variable w crosses

unity. This observation is in accordance with the analysis of section 5.1: the exact solution

for the special point w = 1 obtained in this section corresponds to non-singular loop

function for N = 0.

5.4 A solution in terms of elliptic functions

As was shown in ref. [16], in the limit of zero curvature of the field manifold (1/F 2 → 0,

or, equivalently, w = 0) the equivalent mechanical system (3.12) possesses solutions ex-

pressed in terms of elliptic (meromorphic, doubly-periodic) functions, leading to scattering

amplitudes with a doubly-periodic structure of poles. Here we argue that this interesting

class of solutions extends to the case of a more general equivalent mechanical system with

w 6= 0. Prominently the case with N = 1 corresponds to m = 1
2 and γ = 3, leading to the

differential equation

q̇(t, w)2 + 4(1 − w2)q(t, w)3 − 4 = 0; q(0, w) = 1; q̇(0, w) = −2w. (5.15)

• We first consider the case 0 < w < 1. To work out the solution of (5.15) we define

w = sin(α) and introduce the time-shifted equivalent mechanical system Q(t, w) =

q(t − t0, w) described by the following differential equation

1

4
Q̇(t, w)2 + cos2(α)Q(t, w)3 = 1, Q(0, w) = cos− 2

3 (α), Q̇(0, w) = 0 (5.16)

with zero initial velocity. The solution of (5.16) can be obtained in terms of the well

known Weierstraß elliptic ℘-function with the invariants g2 = 0, g3 = −4:

Q(t, w) =
1

cos
2
3 (α)

℘
(

cos
2
3 (α)t; 0, −4

)

− 2

℘
(

cos
2
3 (α)t; 0, −4

)

+ 1
. (5.17)

This function has one real period

ω3(w) = π3
1

2
1
3

cos− 2
3 α (5.18)

and two complex periods

ω1(w) =
1

2

ω3(w)

2
− i

√
3

2

ω3(w)

2
; ω2(w) =

1

2

ω3(w)

2
− i

√
3

2

ω3(w)

2
, (5.19)

where the constant π3 can be computed as

π3 = 3

∫ 1

0

dy

(1 − y3)
2
3

= B

(

1

3
,

1

3

)

=

√
3

2π
Γ3
(

1

3

)

, (5.20)

where B is the Euler beta function.
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To obtain the solution q(t, w) = Q(t + t0, w) for the initial mechanical system (5.15)

one can employ the familiar addition theorem for the Weierstraß ℘-function (see

e.g. [31])

℘(t + t0) = −℘(t) − ℘(t0) +
1

4

(

℘′(t) − ℘′(t0)

℘(t) − ℘(t0)

)2

(5.21)

together with the relations

℘(cos
2
3 (α)t0; 0, −4) =

2 + cos
2
3 (α)

1 − cos
2
3 (α)

;

℘′(cos
2
3 (α)t0; 0, −4) =

−6 sin(α)

(cos
2
3 (α) − 1)2

(5.22)

established from the initial conditions of (5.15). Note that for w = 0 we indeed repro-

duce the familiar Flajolet’s [32, 33] solution written in a form quoted in refs. [16, 17].

• For the case w > 1 the substitution w = ch(α) leads to the time-shifted solution

Q(t, w) =
−1

sh
2
3 (α)

℘(sh
2
3 (α)t; 0, −4) − 2

℘(sh
2
3 (α)t; 0, −4) + 1

. (5.23)

The corresponding real period is given by

ω3(w) = π3
1

2
1
3

sh− 2
3 α. (5.24)

The solution for the mechanical system (5.15) can again be obtained via (5.21) and

℘(sh
2
3 (α)t0; 0, −4) =

2 − sh
2
3 (α)

1 + sh
2
3 (α)

;

℘′(sh
2
3 (α)t0; 0, −4) =

6ch(α)

(sh
2
3 (α) + 1)2

. (5.25)

Figure 1 shows the function q(t, w) for the values w =
√

3
2 (1a), w = 1

2 (1b),w = 2 (1c)

and w = 5 (1d). It can be seen, that the loop function possesses periodically located poles

in the complex t-plane. The variable w controls the distance between these poles, the

higher values of |1 − w| result in the smaller distances between poles.

6 Conclusions

In this paper we performed the all-order summation of leading logs in the two-dimensional

O(N + 1)/O(N) σ-model deformed by the most general dimension-four operators, see

eq. (1.3). This theory includes both renormalizable and non-renormalizable interactions.

As a special case, it contains the T T̄ -deformation that is of particular interest. For the

special case of the T T̄ -deformation the LL amplitude vanishes for all N , validating its

integrability property. For the most general deformation of the theory by the irrelevant
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(b) w = 1
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(d) w = 5

Figure 1. The function |q(t, w)| in the case N = 1 is plotted for different values of w. It can

be seen that it exhibits a double periodic pole structure, where the distance between the poles is

controlled by the variable w.

dimension-four operators (see eq. (1.3)) we established non-linear differential equations

for the LL amplitude to arbitrary loop order. These equations can be viewed as the

generalization of RGE for the case of 2D non-renormalizable field theories.

The corresponding equations allowed us to build a systematic expansion of the LL

amplitude around the T T̄ -deformation of the theory. In the theory (1.3) the corresponding

expansion is governed by the small parameter 1/G. The developed method allows to obtain

the all-loop resumed scattering amplitude to a given order in 1/G, thus providing a tool to

study the properties of the theory deformed by the most general dimension-four irrelevant

operators.

For several values of the group parameter N the exact LL amplitude is obtained,

without the expansion in the perturbation around the T T̄ -deformed theory, i.e. for arbitrary

value of 1/G. The obtained exact results for the 2 → 2 LL amplitude provide new examples
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of the quasi-renormalizable field theories introduced in [17]. The 2 → 2 LL amplitude in

these cases turns to be a non-trivial meromorphic function of variable z = s
4πG ln

(

µ2/s
)

which we found explicitly for the cases N = −2, 0, 1, 2, ∞.

Probably the most interesting and physics relevant is the case of N = 2. The LL

amplitude for N = 2 possesses an infinite number of equidistant poles in the variable z.

Interestingly enough, the location of these poles qualitatively changes when the variable

w = G/(sF 2) crosses unity: for w < 1 they are located equidistantly along the imaginary

z-axis, while for w > 1 along the real z-axis. The distance between poles increases as

w → 1. It would be extremely interesting to understand the physical implications of

this qualitative change of the regime for physical systems described by the corresponding

non-linear σ-model.
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A Notes on the O(N)-group

The fundamental representation of the O(N) group can be decomposed into three irre-

ducible subspaces according to the projection operators

P I=0
abcd =

1

N
δabδdc; P I=1

abcd =
1

2
(δadδbc − δacδbd) ;

P I=2
abcd =

1

2
(δadδbc + δacδbd) − 1

N
δabδcd;

(A.1)

satisfying the completeness relation

P I=0
abcd + P I=1

abcd + P I=2
abcd = δadδbc. (A.2)

The crossing symmetry mixes the different isospin channels and can be formulated as

MI(s, t, u) = CIJ
st MJ(t, s, u);

MI(s, t, u) = CIJ
su MJ(u, t, s);

MI(s, t, u) = CIJ
tu MJ(s, u, t),

(A.3)

where the crossing matrices are defined as

CIJ
su =

1

dI
P I

abcdP J
bdac; CIJ

st =
1

dI
P I

abcdP J
cbad; CIJ

tu =
1

dI
P I

abcdP J
bacd (A.4)

with the corresponding dimensions of invariant subspaces

dI = P I
abba =

{

1,
N(N − 1)

2
,
(N + 2)(N − 1)

2

}

. (A.5)
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The explicit form of the crossing matrices reads

Csu =







1
N

1−N
2

N2+N−2
2N

− 1
N

1
2

N+2
2N

1
N

1
2

N−2
2N






; Cst =







1
N

N−1
2

N2+N−2
2N

1
N

1
2 −N+2

2N
1
N −1

2
N−2
2N






;

Ctu =







1 0 0

0 −1 0

0 0 1






. (A.6)

B Expression of LL scattering amplitudes through the loop function

Ω(z, w)

Here we provide the expressions for the transmission (T ) and reflection (R) LL amplitudes

for all isospin channels in terms of the loop function Ω(z, w) (2.15).

MI=0, T (s) =
s

F 2
(N −1)+

s2

2
λ(3N +1)+

s2

2G
(N +3)+

s2

G
Ω

(

s

4πG
ln

(

µ2

s

)

,
G

sF 2

)

;

MI=1, T (s) =
s

F 2
− 5s2

2
λ+

s2

2G
− s2

(N −1)G
Ω

(

− s

4πG
ln

(

µ2

s

)

,− G

sF 2

)

; (B.1)

MI=2, T (s) = − s

F 2
+

s2

2
λ+

3s2

2G

− 2s2

(N +2)(N −1)G

[

Ω

(

s

4πG
ln

(

µ2

s

)

,
G

sF 2

)

− N

2
Ω

(

− s

4πG
ln

(

µ2

s

)

,− G

sF 2

)]

;

MI, R(s) = (−1)I MI, T (s).
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