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We obtain exact expressions for the Casimir forces between arbitrary materials using the concept of sur-
face impedance. We verify their consistency with the well known expressions for perfect conductors and with
Lifshitz formula for semi-infinite local homogeneous media. As an application we present a full and rigor-
ous calculation of the Casimir force between two metallic half-spaces described by a hydrodynamic non-local
dielectric response.

PACS numbers: 12.20.Ds

I. INTRODUCTION

In recent years experimental studies of Casimir vacuum
forces between metallic surfaces have reached the necessary
accuracy to test in detail the theoretical predictions [1–6]
posed originally by Casimir in 1948 for perfectly-conducting
parallel plates [7]. Indeed, detailed properties of the materials
such as absorptivity, rugosity, or finite temperature effects [8–
10] have become very relevant due to the accuracy reached in
the experiments. The study of vacuum forces between realis-
tic materials was pioneered by Lifshitz in 1956, who proposed
a macroscopic theory for semi-infinite slabs described by a
frequency ω dependent dielectric function ε

�
ω � [11]. Lifshitz

formula, which reduces to the Casimir result in the limiting
case of perfect conductors, has been successfully employed in
a number of experimental situations. Different authors have
elaborated alternative derivations of Lifshitz formula that per-
mit a simpler, more transparent approach to vacuum forces
in realistic materials [12]. Among several proposals to cal-
culate the Casimir force, the impedance approach was em-
ployed for the first time by Mostepanenko and Trunov [13] to
derive the Lifshitz formula in an approximate fashion. In a
series of investigations of vacuum forces in realistic materi-
als, both at zero and finite temperature, Klimchitskaya [14] et
al. have found small discrepancies in the spatial behaviour
of the forces when calculated according to the impedance
or the Lifshitz approach. In those papers it is argued that
the discrepancies arise from the approximate nature of the
impedance concept. Indeed, within the particular context of
the optics of metals, the surface impedance is usually derived
by taking approximations valid only for good conductors be-
low their plasma frequency, and it is interpreted in terms of
induced surface currents [15]. However, such approximations
are unnecessary and the concept of surface impedance can be
straightforwardly applied to arbitrary materials [16–18]. In an
equivalent framework, Kats [22] introduced the reflection am-
plitude coefficients rα

a (α � s � p) for metallic media to derive
also an approximate version of Lifshitz formula to study the
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influence of non-locality on van der Waals interactions in a
semi-quantitative way. Noticeably, he stated incorrectly that
the reflection coefficient cannot be expressed merely in terms
of the surface impedance for dielectrics. Recently, a more rig-
orous derivation of the Casimir force in terms of the reflection
amplitudes was discussed by Reynaud and collaborators [23]
using a S-matrix formalism.

The surface impedance Z of any planar surface may be de-
fined as the ratio of the complex electric and magnetic tan-
gential field components at the surface [16, 17]. For an s-
polarized wave incident on a planar surface z � z0 moving
at an angle θ towards the positive z direction, the impedance
boundary condition is

E
�
z  0 �!� Zs � H �

z  0 �#" ẑ ��� (1)

while for a p-polarized wave, the corresponding definition is

ZpH
�
z  0 �$� ẑ " E

�
z  0 ��� (2)

where ẑ is a normal vector pointing inside the surface, and
z  0 denotes a position immediately before the z � z0 inter-
face. A main advantage of this concept is that it relates only
the tangential fields outside of the material, without the need
of involving the internal degrees of freedom of the material,
which are taken into account through the value of Zs and Z p.
Equations (1) and (2) are functional definitions of the surface
impedance, so that they are exact and valid, not only for per-
fect conductors, but also for real metals and insulators. In-
deed, from these definitions the exact reflection coefficients
for light impinging on a system (a) from vacuum (0) are

rs
a � Zs

a % Zs
0

Zs
a & Zs

0
� rp

a � Zp
0 % Zp

a

Zp
0 & Zp

a
� (3)

with Zα
a and Zα

0 the corresponding surface impedances for α �
s or p polarization. For a local homogeneous semi-infinite
medium with dielectric response εa, Zs

0 � q ' k, Z p
0 � k ' q, Zs

a �
q ' ka and Z p

a � ka ' εaq exactly, yielding the classical Fresnel
coefficients [16].

rs
a � k % ka

k & ka
� rp

a � εak % ka

εak & ka
� (4)
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where q � ω ' c, ω is the frequency, c the speed of light, and
ka ��� εaq2 % Q2 and k � k0 ��� q2 % Q2 are the wavevec-
tor projections normal to the surface. However, the surface
impedances are more general and are useful even for spatially
dispersive systems, for which the Fresnel relations are not ap-
plicable [17, 18]. Spatial dispersion (or non-locality) is an
important part of a full optical characterization of a system
needed for a precise comparison between theory and exper-
imental data [6]. The non-locality of the dielectric response
means that the polarization induced at a given position r de-
pends not only on the electric field applied at that point r,
but also at nearby points r � . Thus, the non-local dielectric
response of a material is characterized by a function of both
space and time coordinates, ε

�
r � r � � t % t ��� , where t % t � is the

delay between the time t � at which an excitation is applied and
the time t at which the response is observed. Manifestations
of non-local behavior are the anomalous skin effects [19], ad-
ditional bulk waves in semiconductors [20], excitonic effects
[21], and plasma oscillations in conductors. Spatial dispersion
effects add further energy-transport mechanisms that have an
effect on the optical properties of materials.

In section II of this paper we obtain exact resuts for the
Casimir forces valid for a wide class of materials using Eqs.(1)
and (2). As a non-trivial application of the surface impedance
approach, in section III we calculate the Casimir force be-
tween two semi-infinite slabs with a non-local dielectric re-
sponse. Finally, we present our conclusions in section IV.

II. THEORY

Consider a system S consisting of two slabs a � 1 � 2 par-
allel to the x % y plane within free space and separated by a
vacuum cavity V of length L along the z-direction, with inner
boundaries at z1 � 0 and z2 � L as shown in Fig. 1. We as-
sume that the slabs are non-chiral, translational invariant and
isotropic within the x % y plane, but otherwise they may be ar-
bitrary. A given photon within V impinging upon a slab a may
be reflected with a probability amplitude rα

a which depends on
its polarization α, acquiring a phase kL as it moves on to the
other slab. Otherwise, it may be transmitted into the material
with a probability T α

a � 1 %�� rα
a � 2 where it can be absorbed,

exciting electronic or vibrational degrees of freedom, or it can
be transmitted into the vacuum beneath the slab, in any case,
becoming lost forever (multiple reflections within the slab are
implictly accounted for by the reflection amplitudes rα

a ). In
thermodynamic equilibrium there would be photons coming
from the outer vacuum and photons radiated by the materi-
als themselves that would compensate exactly for the photons
from V lost through absorption and transmission, appearing
with a probability T α

a with no definite phase relation to the lost
photons. Thus, the equilibrium radiation within the cavity V
depends exclusively on its geometry, characterized by L, and
on its reflection amplitudes rα

a . Therefore, if we construct an
auxiliary fictitious system S � made of two infinitesimal sheets
at z � za, and we postulate that their reflection amplitudes are
given exactly by the same amplitudes as those of the original
slabs, we assure that the radiation field within the fictitious

cavity V � corresponds to the real one. We further assume that
in S � a photon may be transmitted from V � into the vacuum
outside with an amplitude tα

a . By choosing � rα
a � 2 & � tα

a � 2 � 1
we make certain that energy is conserved without having to
account for any internal degrees of freedom of the fictitious
sheets, even when the real system is dissipative.

We study first the case of s-polarized waves. The trans-
lational invariance implies that the wavevector projection Q
onto the x % y plane is a conserved quantity. Thus, the inci-
dent electric field of a normal mode can be written as E

�
r � t ���

E0ei � Qx  ωt � φ � z � , with amplitude E0 � �
0 � Ey � 0 � , where we

have chosen, temporarily and without loss of generality, x % z
as the plane of incidence The magnetic field B � �

Bx � 0 � Bz � , is
determined by Maxwell equations: % iqBx � ∂zEy, and qBz �
QEy. The field component Ey satisfies a one-dimensional
wave equation within V � . The solution satisfying the boundary
condition (1) at the interface of slab 2 (z � L  ) is

E �y �
z �#� eik � z  L � & rs

2e  ik � z  L �
	 (5)

The corresponding solution satisfying the boundary condition
at slab 1 (z � 0 � ) is

E �y �
z �!� e  ikz & rs

1eikz � (6)

where the reflection amplitudes rα
a are given by Eqs.(3) and k2

plays the role of eigennumber.
The electric Green’s function can now be calculated as

GE
k2

�
z � z � �!� E �y �

z � � E �y �
z � �

W
� (7)

where z � and z � are the smaller and larger of z and z � , re-
spectively, and W is their Wronskian. The magnetic Green’s
function is obtained by replacing Ey 
 Bx and rs

a 
 % rs
a in

Eqs. (5)-(7). We do not consider Bz separately, as it is simply
proportional to Ey. Therefore, for each Q, the local density of
states per unit k2 is given by [24]

ρs
k2

�
z �!� %

1
2π

Im � GE
k̃2

�
z � z � & GB

k̃2

�
z � z ���#� (8)

with
�
k̃ � k & i0 �$� . By substituting Eqs. (5),(7) and its mag-

netic analogues we obtain

ρs
k2 � 1

2πk̃
Re

�
1 & rs

1rs
2e2ik̃L

1 % rs
1rs

2e2ik̃L � � (9)

which is independent of z. Given the symmetries of the prob-
lem, the p-polarization density of states ρp

k2 may be derived
similarly, by replacing Bx 
 % Ex, and Ey 
 By. The fi-
nal expression is simply given by Eq.(9) after replacing all
the superscripts s 
 p. Finally, the total density of states is
ρk2 � ρs

k2 & ρp
k2 .

Take now given values of α and Q and consider a photon
in a state characterized by k2. Its momentum and velocity
along the z direction are � h̄k and � ck ' q, where the upper
sign applies if it moves towards slab 2 and the lower if it
moves towards slab 1. In either case, its contribution to the
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momentum flux towards the slab 2 is h̄ck2 ' q. Denoting by
f
�
k � � N � k � & 1 ' 2 the photon occupation number of state k,

the total momentum flux is obtained by summing over k2, Q
and α, yielding

∑
α � QdQdk2 h̄c

k2

q
f ρα

k2
	 (10)

There is a similar contribution coming from the semi-infinite
vacuum on the other side of the slab, obtained by substituting
rα

2 
 0 above and reversing the flux direction z 
 % z. The
total force per unit area is obtained by adding the contributions
from both sides,

F
�
L �

A
� h̄c

2π2 � ∞

0
dQQ � q � 0

dk
k3

q
f Re

1

k̃ � 1
ξs % 1 &

1
ξp % 1 � �

(11)
with ξα � �

rα
1 rα

2 exp
�
2ik̃L � �  1. The integral over k runs from

iQ to 0 and then to ∞, so that q remains real and positive.
This expression depends only on the reflection coefficients or,
equivalently, on the surface impedances of the system and the
slab separation. Lifshitz formula is recovered upon substitu-
tion of the local Fresnel amplitudes Eqs.(4), whereas for per-
fect mirrors (rα

a � � 1) Eq.(11) yields the expected Casimir
expression.

III. PLASMA OSCILLATIONS IN CONDUCTORS

A non-trivial application of the impedance approach is the
calculation of the Casimir force between two spatially dis-
persive conductors. Kats [22] studied non-local effects in an
approximate way, and as he stated, it is necessary to spec-
ify correctly the dependence of the dielectric function on the
wave vector and frequency. Furthermore, he studied the spa-
tial dispersion due to the anomalous skin effect. Here, we are
interested in the non-local screening effects due to excitation
of plasma oscillations in metallic systems. In a conductor, the
normal component of an incident p-polarized wave pushes the
conduction charge towards or away from the surface creating
an excess charge. When the frequency of the electromagnetic
wave is above the plasma frequency ωp, this charge propa-
gates as a longitudinal wave (plasmon). Thus, at a surface,
p-polarized waves couple to bulk plasmons which carry away
energy from the inicident wave, reducing the reflection ampli-
tudes. Thus, conductors support both longitudinal and trans-
verse oscillations.

Translation invariance within the bulk of homogeneous sys-
tems implies that its non-local dielectric function ε depends
on the separation r % r � between the excitation and obser-
vation positions r and r � only, and not on r and r � sepa-
rately. Thus, the Fourier transformed response ε

�
ka � ω � de-

pends on the wavevector ka and frequency ω of the field
within the medium. Within an isotropic system there is no
prefered direction beyond that of ka, so that the non-local
response may be characterized by two scalar functions, the
longitudinal εl

�
ka � ω � and transverse εt

�
ka � ω � dielectric func-

tions, describing the response to longitudinal El and trans-
verse Et fields, parallel and perpendicular to ka respectively.

The total field is the sum of the longitudinal and transverse
parts E � El & Et . Taking x % z as the plane of propa-
gation, within a metal we can have transverse waves with
wave vectors kt �

�
Q � 0 � kt � satisfying the dispersion relation

k2
t � εt

�
kt � ω � q2 % Q2 and longitudinal waves with wavevec-

tors kl �
�
Q � 0 � kl � that obey the dispersion relation εl

�
kl � ω � �

0. The former relation is consequence of the electromagnetic
wave equation while the latter may be obtained from Gauss
law in the absence of external charges. From our discussion
above, we expect p-polarized waves to couple to plasmons at
surfaces, where translational invariance is lost. Notice that in
order for plamons to propagate, i.e., for their frequency to de-
pend on their wavevector, the longitudinal dielectric function
has to be spatially dispersive. On the other hand, transverse
waves do not require spatial dispersion to propagate. Thus,
to illustrate the effects of plasmon excitation at surfaces it is
enough to choose a non-local εl

�
kl � ω � and a local transverse

dielectric function εt
�
ω � .

The most simple model of the response of a metal ex-
hibiting spatial dispersion and coupling to plasmons at sur-
faces is the hydrodinamic model[25]. In it, the transverse
dielectric function is chosen as a local Drude function εt �
1 % ω2

p '
�
ω
�
ω & iγ � � , where ωp is the plasma frequency and γ

the damping. For the longitudinal part we consider a hydro-
dynamic dielectric function [25] given by

εl � ka � ω �!� 1 %
ω2

p

ω2 & iωγ % β2
�
Q2 & k2

a �
� (12)

where β2 � 3v2
f ' 5 with v f the Fermi velocity of the metal

[25]. In this model, the compressibility of the electron gas β
is responsible for the spatial dispersion [26].

To calculate the surface impedance for p-polarized waves
we have to account for the non-homogeneity of the surface.
Since we now have an additional longitudinal field, this can
be done most simply by postulating an additional boundary
condition (ABC) [27], not derivable from Maxwell equations.
Charge conservation and the physical impossibility of infinite
charge densities suggest the ABC jzl & jzt � 0, i.e., the normal
component of the total current should vanish at the surface.
Although much more realistic models of a metallic surface
which don’t require ABC’s are available [28], our choice is
adequate to illustrate the effects of spatial dispersion. Within
our model, the surface impedance is simply

Zp � Ex � & Ex � �
By

� kt c
εt ω &

�
εt % 1 � Q2c

εt klω
� (13)

and substitution into (3) yields

rp � εt k % kt %
�
εt % 1 � Q2 ' kl

εt k & kt &
�
εt % 1 � Q2 ' kl

� (14)

while rs agrees with its local counterpart [Eq.(4)].
The Casimir force between two semi-infinite conductors

described by the HD model can now be calculated again us-
ing Eq. (11). In Fig. 2 we present the normalized difference
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between the Casimir force for the local case(FL) with that ob-
tained with non-local effects (FNL), i.e. ∆ � �

FL % FNL � ' FL
calculated at zero temperature ( f � 1 ' 2) for three different
metals (K, Au, Al) as a function of the separation between
their surfaces in units of the plasma wavelength of the metal
L ' λp � ωpL ' 2πc. The parameters for each metal (ωp � γ � v f )
are taken from the literature [29, 30]. As expected the non-
local effects become important for separations of the order of
the plasma wavelength λp, and the difference between them
can be significant for separations less than λp. For these
separations the vacuum modes that contribute mainly to the
Casimir force have a frequency larger than ωp thus exciting
propagating modes withinin the metals. Furthermore the bet-
ter the conductor the higher the difference between the local
and non-local cases.

The disagreement reported between the Casimir forces as-
sociated to the Lifshitz and the impedance approach Refs.[14]
can be traced back to the introduction of an approximate ex-
pression for the impedance. In the original work of Mostepa-
nenko and Trunov [13], they employed an expression for the
impedance Z

�
ω ��� 1 ' � ε

�
ω � , valid only for small values of

the electromagnetic wavevector Q, parallel to the surface of
incidence. However, by introducing the definitions (1) and
(2) in the same formalism, then the exact expression for the
Casimir force (Eq.(11)) is obtained by just replacing Z 
 Z p

in Eq.(41) of Ref.([14]), and Z 
 Zs in Eq.(42) of the same
reference.

IV. CONCLUSIONS

We have shown that with the correct definitions for the sur-
face impedances, an exact expression for the Casimir force is
obtained. This result is very general as no assumption about
the nature of the system was made, beyond that of transla-
tional invariance and isotropy along the surfaces. Thus, it
may be applied to homogeneous semi-infinite systems, finite
layered heterostructures, metals, insultators, etc. As a case
study, we calculated the surface impedance and Casimir force
between homogeneous semiinfinite conductors with a non-
local optical response. We employed an approximate hydrod-
inamic model for the dynamical response of the metals, as it
is the simplest one that describes the coupling at surfaces of
p-polarized light to bulk plasmons. Within this model, non-

local effects arise from Pauli’s principle, which yields a finite
compressibility of the conduction electron gas due to the fi-
nite velocity of its electrons even at zero temperature, of the
order of the Fermi velocity v f � 10  2c. Correspondingly, we
found that non-local effects become relevant for separations
of the order of the plasma wavelength of the slab, for which
they produce corrections of the order of 1%, and they grow
substantially as the separation is further diminished. The non-
local effects allow plasmons to take away energy from the in-
cident electromagnetic wave, reducing the values of the re-
flectance and of the Casimir force. Correspondingly, a lo-
cal calculation predicts a higher value of the force. As seen
in recent experiments, it is at close separations that the dif-
ference between theory and experiment become larger. The
hydrodinamic model employed here ignores many aspects of
the dynamics of electrons close to metal surfaces such as the
presence of Landau damping through the decay of plasmons
into electron-hole pairs, the fact that the self-consistent elec-
tronic profile is smooth, and that the dynamic electronic den-
sity peaks outside instead of within the nominal metal surface.
However, these additional effects may be accounted for within
our formalism by replacing within our formulae (Eqs. (3) and
(11) the approximate hydrodinamic expressions for the sur-
face impedances (13) by more accurate expressions [28]. This
constitutes work in progress.

In summary, we have derived expressions for the Casimir
force of a very large classs of systems employing an exact
surface impedance formalism. Our expressions allowed us to
make a calculation of nonlocal effects in the Casimir force be-
tween metals. We used a simple hydrodinamic model whichs
accounts qualitatively for the excitation of plasmons by elec-
tromagnetic fields at surfaces. We found that non-local cor-
rections to the Casimir force are of the order of 1% at separa-
tions L � λp and increase as L decreases, so they should not
be ignored at small distances.
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FIG. 1: Cavity V of width L between two metals with dielectric response functions ε1 and ε2 with surfaces at z1 and z2. Transverse modes
with wavevector kt � �

Q � 0 � kt � and p-polarized electric field Et are coupled at the surface of non-local conductors to longitudinal modes with
field El and wavevector kl � �

Q � 0 � kl .
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FIG. 2: Normalized difference ∆ � �
FL � FNL � �

FL between the Casimir force in the local and the non-local cases. The separation between the
slabs is normalized to the plasma wavelength λp of the metals. The curves correspond to Au, Al and K. The horizontal line is a visual aid to
indicate where both calculations differ by 1%.


