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Exact Symbol Error Probability of
Hybrid/Integrated Satellite-Terrestrial
Cooperative Network

Sokchenda Sreng, Benoit Escrig, Member, IEEE, and Marie-Laure Boucheret

Abstract—In this paper, we study the Symbol Error Probability
(SEP) performance of a hybrid/integrated satellite-terrestrial
cooperative network. In particular, we focus on the case of
mobile relays that forward the satellite signal to a masked
mobile destination node. The Selective Decode-and-Forward
(SDF) transmission scheme is implemented and only the relay
nodes which can successfully decode the satellite message are
selected to retransmit the signal. The destination node exploits
the spatial diversity advantages by implementing a typical
Maximum Ratio Combining (MRC) technique. The closed-form
expressions for the exact average SEP of the arbitrary M-ary
phase shift keying and M-ary quadrature amplitude modulation
signaling with MRC diversity reception over independent but not
necessarily identically distributed fading channels are derived
using a Moment Generating Function (MGF) approach. These
closed-form expressions are represented in terms of a finite
sum of Lauricella hypergeometric functions. The analytical
expressions show excellent agreement with the simulation results.
Numerical results show that for a system using QPSK under the
frequent heavy shadowed fading condition, the diversity gain of
approximately 7 dB can be obtained at the SEP of 10~! with
respect to the direct transmission, when only one relay is used.
It increases to around 12 dB in the case of 3 relays.

Index Terms—Symbol Error Probability (SEP), Land Mobile
Satellite (LMS) channel, Mobile Satellite Systems (MSSs), hy-
brid/integrated satellite-terrestrial cooperative network, mobile
relay, Selective Decode and Forward (SDF), Maximum Ratio
Combining (MRC), Lauricella hypergeometric function, Moment
Generating Function (MGF).

I. INTRODUCTION

ATELLITE systems are used in the context of broad-

casting, navigation, rescue, and disaster relief since they
allow the provision of services over a wide coverage area.
However, this coverage area is limited by the masking effect
caused by obstacles that block the Line-Of-Sight (LOS) link
between the satellite and a terrestrial user. The masking effect
becomes more severe in case of low satellite elevation angles
or when the user is indoor. This is the main limitation of
Mobile Satellite Systems (MSSs). To tackle this problem,
hybrid/integrated satellite-terrestrial cooperative systems have
been proposed [1], [2].
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The concept of the integrated satellite-terrestrial systems has
been introduced in [3] with the aim of integrating the satellite
with the terrestrial cellular systems for future multimedia
services while hybrid systems have been proposed for satellite-
based Unlimited Mobile TV systems using the Digital Video
Broadcasting- Satellite to Handheld (DVB-SH) standard [4].
The main difference between hybrid and integrated systems
is on whether both space and terrestrial segments use a
common network and spectrum. In a hybrid network, the
terrestrial gap fillers are used to relay the satellite signal
independently from the satellite and do not necessarily operate
in the same frequency band whereas the ground component of
an integrated system is a complementary part of the satellite
system and is controlled by the satellite resource and network
management system. In the integrated system, the ground
component uses the same portions of MMSs frequency bands
as the associated satellite component.

In a hybrid/integrated satellite-terrestrial cooperative sys-
tem, the mobile user can exploit the advantages of spatial
diversity by receiving signals from both satellite and terrestrial
components. Fixed or mobile gap-fillers are used to relay the
satellite signal by implementing Amplify-and-Forward (AF),
Fixed Decode-and-Forward (FDF) or Selective Decode-and-
Forward (SDF) transmission schemes [5], [6]. In the AF trans-
mission scheme, the relay amplifies both the source messages
and the channel noise which leads to some performance degra-
dations. In the FDF transmission scheme, all relays decode
the source messages (demodulate) first and then re-encode
(re-modulate) the signals before forwarding to the destination
node while in the SDF transmission scheme, only the relays
that can decode the source messages correctly are allowed to
retransmit the signals. This SDF transmission scheme prevents
the retransmission of erroneous messages to the destination
node. Most of satellite broadcasting systems have been imple-
mented using fixed gap-fillers. However, mobile gap-fillers are
needed in emergency cases when the fixed infrastructure is not
available. In emergency scenarios (e.g., fire, earthquake, flood
and explosion), the existing terrestrial infrastructure has been
destroyed. So, a hybrid satellite-terrestrial cooperative system
is appropriate for updating the information. This allows the
rescuers to operate efficiently and in a safe way [7], [8]. In
particular, a fast and flexible implementation is needed and this
could be provided by deploying mobile gap fillers (vehicle or
mobile handheld).

Several cooperative scenarios for hybrid satellite-terrestrial



systems have been proposed for this context. In [9], the
delay diversity technique for a hybrid satellite-terrestrial DVB-
SH system has been studied. In this scenario, user stations
receive different versions of the same signal with different
delays: one signal from the satellite and other signals from
terrestrial relays. No combiner is implemented. In [10], space-
time codes and rate compatible turbo codes have been imple-
mented to achieve diversity gains and additional coding gains.
Recently, hybrid satellite-terrestrial systems employing mobile
gap fillers have been presented in [11], [12]. In [11], a hybrid
solution based on a cooperative ad-hoc networking approach
has been proposed for terrestrial links while the DVB-SH
and the Next Generation Universal Mobile Satellite Telecom-
munications Systems (S-UMTS) standards are considered for
forward (satellite broadcasting) and return (user terminal to
satellite) links respectively. In [12], a two time-slot scenario
has been presented. The satellite broadcasts the information
to terrestrial users in a first time slot and in a second time
slot, non-masked terminals are used to relay the information
toward masked terminals. The Symbol Error Probability (SEP)
performance has not been studied yet in [11], [12]. However,
most of the previous articles on hybrid/integrated satellite-
terrestrial cooperative systems have provided only the SEP
performance based on the simulations [9], [10] and the SEP
based on the numerical calculations [13] for the case of
AF transmission schemes. The exact closed-form SEP of
hybrid/integrated satellite-terrestrial cooperative systems has
not been derived yet.

A Land Mobile Satellite (LMS) channel model is needed
to evaluate the performance of MSSs. The most popular LMS
models are Loo’s model [14]-[17], Lutz’s model [18], and
Perez-Fontan’s model [19]-[21]. In Loo’s model, the ampli-
tude of the LOS component is assumed to be lognormally
distributed while the multipath interference has a Rayleigh
distribution. The Lutz’s model differs from the Loo’s model.
The latter model is a single state model whereas the Lutz’s
model is described by two states, good state (Rice model)
and bad state (Suzuki model). The Perez-Fontan’s model
consists of three states, LOS, moderate shadowing and deep
shadowing. Moreover, each state of the Perez-Fontan’s model
is described by the Loo’s model. Recently, [22] has proposed
a new LMS model which is an alternative to the Loo’s model.
The difference between the two models is that the lognormal
distribution in the Loo’s model is replaced by the Nakagami
distribution. It has been shown that this new model provides
a similar fit to the experimental data as the Loo’s model but
with significantly less computational burden. In the following
sections, we will use this new LMS channel model to derive
the average SEP of the system.

In this paper, we investigate the performance of a hy-
brid/integrated satellite-terrestrial cooperative system using
mobile relays over independent but not necessarily identically
distributed fading channels. In the first phase, the satellite
broadcasts its signal to all mobile relay nodes' and the
destination node. In the second phase, the non masked mobile
relay nodes forward the satellite signal to the destination node
using the SDF transmission scheme. By using an approach

The mobile relay nodes can be vehicles or mobile handhelds.

based on the Moment Generating Function (MGF), the exact
closed-form of the SEP is evaluated. Such closed-form solu-
tions are highly desirable because they allow for rapid and
efficient evaluation of the system performance. Furthermore,
the diversity analysis is also provided. It is shown that the
diversity order of L 4+ 1 can be obtained when the total
number of relays is equal to L. The analytical results are then
confirmed using Monte Carlo simulations.

The rest of this paper is organized as follows. The system
and channel models are discussed in Section II. In Section III,
the MGF and the average SEP are derived for different types
of modulation schemes. The simulation and numerical results
are presented in Section IV. The conclusion is finally drawn
in Section V.

II. SYSTEM AND CHANNEL MODELS

Consider a hybrid/integrated satellite-terrestrial cooperative
system where a satellite (s) transmits information to a desti-
nation node (d), with the assistance of L mobile relay nodes
r1, T2, ..., 7, as shown in Fig. 1. The transmission is divided
into two phases. In the first phase (broadcasting phase), the
satellite broadcasts its signal to the set of L relay nodes and
the destination node. The baseband received signal at the
destination and the relay r; can be modeled, respectively, as

Ysd = mhsdz + Nsa
Ysr; = mhsrix + Ngr;

where Ej is the average transmitted energy per symbol of the
satellite, hsq is the channel gain between the satellite and the
destination, hg,., is the channel gain between the satellite and
the relay r;, x is the transmitted symbol with unit power, nsq
and ng,, are the Additive White Gaussian Noise (AWGN) of
the satellite-destination link and at the satellite-relay r; link
respectively.

We define the decoding set C' (with cardinality |C]) as the
set of relays that can decode the satellite message correctly.
The relay node is said to belong to the decoding set provided
that the received Signal-to-Noise Ratio (SNR) on a channel
between the source and the relay node is high enough to allow
for successful decoding. We have |C| < L. In the second phase
(relaying phase), only the relay nodes which belong to the
set C' are allowed to forward the re-modulated signals to the
destination node using orthogonal channels?. In the following
analysis, we assume that both satellite and terrestrial links use
the same modulation scheme. The baseband received signal at
the destination from the relay r; can be modeled as

/By, hr;a® + nypq, when r; € C
Yrid = .
0, otherwise

ey

@

where E,, is the average transmitted energy per symbol of
the relay 7;, h,,q is the channel gain between the relay r; and
the destination, Z is the decoded symbol at the relay r; with
unit power and n,,q is the AWGN of the relay 7;-destination
link. In SDF schemes, the estimated symbol Z is assumed to

2These orthogonal channels can be allocated to the relays using Frequency
Division Multiple Access (FDMA), Time Division Multiple Access (TDMA)
or Space Time Coding (STC).
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Fig. 1. Hybrid satellite-terrestrial system with L relays and one destination.

be error free, i.e., = x. This can be achieved by allowing
the decoding of the satellite message only when the received
SNR allows for a successful decoding or by using a Cyclic
Redundancy Check (CRC). Then the destination combines the
direct and the relay links signals using the Maximum Ratio
Combining (MRC) technique.

We assume that the channels are frequency-flat, slow fading
and independent but not necessarily identically distributed fad-
ing channels. The condition for the relays having independent
fading channels is on the minimum separation distance be-
tween each relay’s antenna. In general, this minimum distance
is in the order of \/2, where A is the carrier signal wavelength.
We also assume that the Channel State Information (CSI)
is perfectly known at the receiver and not known at the
transmitter>. Furthermore, we assume that the AWGN terms of
all links have zero mean and equal variance Ny. The statistics
of the channel models are defined as follows.

o The satellite-destination and the satellite-relays link are
modeled as LMS fading channels [22]. The probability
density function (PDF), f,_.|2(y) of the power channel

gain, |hs,|?, is given in [22] as
1 2bgs Mgy Mea y
Sine2(y) = 2bss (2bsxmw + Ql) P < 2bsx)
Qsry
F; s 1; i 0
i <m 2bsa (Qbsxmsx + st)) oy
3

where the second subscript z = d and z = r; when we
deal with the satellite to the destination and the satellite
to the relay r; channels respectively. The parameter
Q. is the average power of the LOS component, 2b,
is the average power of the multipath component, and
ms, 1S the Nakagami parameter ranging from 0 to oo.
When mg, = 0, the PDF of |hg,| becomes a Rayleigh
PDF and when mg,, = oo, it becomes a Rice PDF.
The function 1 F (a; b; 2) is the confluent hypergeometric

3Because of the slow fading, accurate channel estimation is possible at
receivers.

function defined in [23] as

(a)n 2"

(b)n, n!

1F1(as b;2) = Z

n=0

where (2), = z(z + 1)...(x + n — 1).

e The i'" relay-destination link is modeled as a Rayleigh
fading channel. The PDF, fj;, . .2(y) of the power chan-
nel gain, |h,,q 2 is defined in [24] as the exponential
distribution

1
fihea2(y) = 57— exp | — V) fory>0 (4
v Qb”d

2b7‘7‘,d
where 2b,.4 is the average power of the multipath com-
ponent of the i*" relay-destination link.

III. PERFORMANCE ANALYSIS

In this section, we analyze the performance of the
hybrid/integrated satellite-terrestrial cooperative network in
terms of SEPs for general MPSK and MQAM modulation
schemes. We first express the SEP of the direct link and then
the exact closed-form expression of the cooperative network
is derived.

A. Average SEP of the Direct Link

The instantaneous received SNR of the direct link at the
receiver is given by

)

Vsd = |hsd|2 X Wsd

where 7,; = FE,/No, is the average transmitted SNR per
symbol of the satellite-destination link. So, the PDF of ~44
can be written as

1
Jreay) = ¥ X fhgal? <%>

1 ( 2bsdmsd )de ( Yy )
= — exp | — —
2bsd73d 2bsdmsd + Qsd 2bsd73d
Qsdy >
X 1F) | msa; 1; — ,for y > 0.
s ( WeaT sq(2bsamad + ea) ) Y ©

Hence, the MGF of 44 can be evaluated as follows

Gry(s) =E ] = /0 e ¥ f. . (y)dy 7

where E [ . ] is the mathematical expectation operation. By

using the table of integrals in [23], ¢-,,(s) can be expressed
as below

(Qbsdmsd)m'gd (1 + ZbSdWSdS)nLSd_l
[(Qbsdmsd + Qsd) (]- + 2bsd73d5) - Qsd}de (8)
Using the MGF-based analysis method [24], we will, in the
following parts, derive the closed-form error rates for several
modulation schemes in uncorrelated fading channels.

Pyea (S) =



1) M-ary Phase-Shift Keying (MPSK): The average SEP of
the direct link for coherent MPSK signals is given by [25]

1 [
Pigmpsk (E) = */ (o (gMPSK> do
0

T sin’ 6

1 (2 JMPSK 1 /W"Wl (gMPSK>
. o+ do
s /0 gb%d ( sin2 0 > ™ T ¢’Y5d SiIl2 0

If,dMPSK I;fiAIPSK
&)
where gnrpsix = sin’ (m/M). The first integral
1 [ JMPSK
e = 7/ e 10
R A G S L ()

can be calculated by replacing (8) into (9) and changing the
variable ¢t = cos?(f) and using the table of integrals in [23],

1
/ 11— )" N (1 — 0t) TP (1 — vt)2dt (1n
0

= 7)F1(a,b1,bg;c;v,u), Re(c) > Re(a) >0
where Fi(a, b1, ba; c; v, v) is the Appell hypergeometric func-

tion, I'(n) = (n—1)! is the gamma function and Re(.) denotes
the real part. Hence, I ffiM psk can be obtained as

Msd ~NMsq—1
(2bsamsa) Gy Pk

sd
Il,MPSK = AGMsd
2, MPSK (12)
1 1 2bsaMsd
XFI _;1_msd;msd;2; )
(2 Gimpsk G2,MPSK
where  G1 vpsk = L + 2bsqVsq9mpsk  and

Gompskx = 2bsamsd + 2bsaVsqgrmpsk (2bsamsq + Qsq).
The second integral I;?M psi can be rewritten as

s 1 (% IMPSK
Ié:iMPSK = /w Dea <> dg. (13)
™M

sin® 6

Using variable transform ¢ = cos? () / cos® (w/M), we have
the closed-form for I;fiM psrk as shown below

Vw (2bsqmsa)™ GTJS\?}_D;K

IQS,dMPSK = TGMed
2,MPSK
1 1 3 w 2bsqMmsqw
XF(B) —,_—,1_ms s Msds 53 W, ’ ° :
bo\2" 2 dsdr g G1,mPSK G2,MPS(I{4

where w = 1 — gypsk and FJ(DS) is the Lauricella function
[26] defined as

Fén)(a,bl,...,bn;c;xh...7:L'n)
“+oo n i
L Z EC))%H_ +f H(bj)ifﬁ’ max{|z;|}ie, <1
i1yees in=0 11+ Fin j=1 g

1 ! -
e — ot = T = b)Yt
S [ - [0 -wa

Re(c) > Re(a) > 0, (15)

where (a); = T'(a + i)/T'(a) is the Pochammer symbol for
i > 0, B(a,b) & T'(a)T'\(b)/T(a + b) denotes the Beta
function, and Re(.) denotes the real part. When the number
of variables n is equal to one, Fl(jl) reduces to a gaussian

hypergeometric function o Fy (a, by; ¢; 1) and when n is equal
to two, Fg) reduces to an Appell hypergeometric function
Fi(a,b1,be; c;x1,22). So, the average SEP of the direct link,
Psq mpsk (E) is finally given as in equation (16).

2) M-ary Quadrature Amplitude Modulation (MQAM):
The average SEP of the direct link for coherent MQAM
signals is given by [25]

1q [F |
P nigan (B) = = / Pr.a <w) do
0

Q sin? @
) . Ils,dIMQAIW 17
_4gm [ é <9MQAM> ”
™ T\ sin? 6
I2S,dJ\/IQA]M

where gyroanm = 3/2(M —1) and g = (1 — 1/\/M>. Using
the same computation as in (10), the first integral

4q [ IMQAM
d _
Bvigam = ?/0 - <m db (18)
can be obtained as
sd q (2bsamsa) ™" G300
I1,MQAM = GMad
2, MQAM (19)
1 1 2bsdTnsd )
XF _717md7m(d;2; s
' (2 e Gimgan GomQam

where G pam = 1 + 2bsaVsq9mqanm  and
Govgam = 2bsqmsa + 2b5s¢Y sq9nQanm (2bsamsa + Qsa)-
Making the change of variable t = 1 — tan? 6 in the second
integral

. 442 (7 IMQAM
Izé,dMQAM = 7/0 P4 <7 o

sin® 6

(20)

we can find the closed-form as shown below

2‘12 (Qbsdmsd)msd LTﬂ?é}AM
37TL;T}15\3QAM
5 1 Gim@am GQ,MQAM)
2" 2" Li,m@am Lovoam
(21

Isd _
2 MQAM =

x F) <17 1,1 — mad, Mad;

where L1 pQam = 1+ 4bsaV,q9moam  and
Lo vgam = 2bsamisa + 4bsa¥sq9nm@an (2bsamsa + Qsa).
So, the average SEP of the direct link, Psg pgan(E) is
finally given by (22).

B. Average SEP of SDF Hybrid/Integrated Satellite-Terrestrial
Cooperative Network

In this subsection, we evaluate the closed-form SEP of the
SDF hybrid/integrated satellite-terrestrial cooperative network.
The MGF of the total instantaneous received SNR at the MRC
output is first derived. Then, we use this MGF to evaluate the
average SEP.



2b m Msd Gde 1 1 1 2b
Peampsk(E) = (2he Sd)m SRR <71 — Migdy Misd; 2 e )
4Gy i psk 2 G1 mprsk Gompsk 16)
Vw (2bsamisq)™ G;n;\;i[Pé'K F(s) (_ 1 1 — Mg, Mag: § w Qbsdmde>
TGy 3 psk 27 2 s Medi 9 G mpsk Gampsk
q (2bsamsa)™* G540 1 1 9%
de,JLIQAM (E) - ( 735(1 P 4 <_’ 1 —msa, msa; 2; Y )
Gy iigam 2 Gimoam’ Gamgam @2)

B 262 (2bsamsa)™ " L340 anr PO

37”:3 MQAM

1) MGF of the total received SNR: The instantaneous
received SNR at the MRC combiner output is given by

= Vsd + Z Yrid

ieC

SDF
YMRC (23)
where C' is the decoding set with the cardinality |C| < L.
Actually, it will be difficult to find the MGF of 'yfﬁ{g given
in (23) because the decoding set C' is unknown. To treat this
problem we invoke the technique described in [27], where the
system in Fig. 1 can be considered as a communication system
consisting of L + 1 effective paths between the satellite and
the destination. Let path number O be the s to d direct link
and path ¢ be the s — r; — d relayed link where ¢ = 1, ..., L.
Let x; be the instantaneous received SNR of the relayed link
1 at the destination which takes into account both the s to r;
link and the 7; to d link. Therefore, the PDF of y; can be
obtained as

in (y)

= in\ri Decodes Incorrectly(y)Pr [ri Decodes Incorrectly]

+ in |r; Decodes Correctly (y)PT [Ti Decodes Correctly}(.24)

The conditional PDF fx,-,|m Decodes Incorrectly (y) is given by

in\ri Decodes Incorrectly (y) = 5(y) (25)

where d(y) is the Dirac Delta function. And the conditional
PDF fx,,-,|r,,-, Decodes Correctly (y) is given by

Yy
f)(1 |7; Decodes Correctly (y) T f 2 ( %)

1
= ———exp| 57—
2b7‘id7md P ( 2b7‘z‘d7nd>

where 2b,.,4 represents the average channel power gain of the
Rayleigh fading and 7, ; = E.., /Ny is the average transmitted
SNR per symbol of the relay r; to destination link. So,
equation (23) can be rewritten as

L
= Vsd + ZXz
=1

The probability that the relay 7; decodes incorrectly is the
average SEP, P, of the satellite-relay r; link. And the
probability that the relay r; decodes correctly is (1 — Ps,).
This Ps,, can be calculated by using the same approach as in
(9) for the MPSK modulation scheme and as in (17) for the
MQAM modulation scheme. The expressions of Ps,, are given

(26)

Ve 27)

5 1 Gimoam Gamoam
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by equations (28) and (29) for MPSK and MQAM modulation
schemes respectively where

Ur,mpsk =1+ 2bsr Vg, gMPSK 5
Uz, mpsi = 2bsy,mer,
+ 2051 Vs, G PSK (2bsr;Mesr, + Q)
Ui mgam =1+ 2bsr Vg, gMQAM 5
Us v@am = 2bsr,mesy,
+ 2bsr Y or, M QAM (2050, Mgy, + Qi ),

Vimgam =1+ 4bsr V. gMQAaM,
‘/Q,MQA]VI - 2bs7‘imsri
+ 4bsr1;75”gMQA]VI(2bsm Mgy, + an)'

P ( ) - (30)

Therefore, equation (24) is given as

- PS’M,) ex

(1 Y
2b7‘i dﬁrid

= Py, 0(y) + T

frx:(y)

The MGF of y; is expressed as

-1

¢Xi (8) = Py, + (1 - }DST;;) (1 + 2bn‘dimds) (€2
So the MGF of 7§27, is finally obtained as
r38(5) = 1.4 (5) H D (s)- (32)

2) M-ary Phase-Shift Keying (MPSK): The average SEP
of the SDF hybrid/integrated satellite-terrestrial cooperative
systems for coherent MPSK signals is given by [25]

pSDE (E) = 1 /ﬂfﬁ b onn [IMPSK
vire,mpsk(E) = — :
) T Jo YMRC sinZ @

) do (33)

where garpgx = sin® (w/M). By using the same manipulation
as in (9), we can get P21l (E) as shown in equation
(34) where H; prpsk = 1+ Psr; mpsK 20,47y, q9M s and
Kivpsk =1+ 2br,d7,.q9MPSK-

In the case of independent and identically distributed (i.i.d)
fading channels, all relays are experiencing the same fading
environment, i.e., Mg, = Mgy, bsp, = bgr, Qgp, = Qg
and b,q = brq for all i € L. And we assume that 7, ; =
Vrd ~ for all i« € L. So, Hi,MPSK Hypsk and
K; mpsk = Kupsk for all ¢ € L. By using the properties
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of the Lauricella function as shown below

FSL’LN)(a,bl,...,bN,d,e,...,d,e;c
STy INL Y, 2y Yy 2

e SIS
=Ip (a,b1,...,bn,Ld, Le;c; w1, ..., TN, Y, 2),

for |y| <1 and |z| < 1,

the average SEP, Py/2F. 1/ pgr (E) can be simplified as in
equation (36) which indicates that a full diversity order of
L + 1 is obtained when the number of participating relays is
L (see appendix A).

3) M-ary Quadrature Amplitude Modulation (MQAM):
The average SEP of the SDF hybrid/integrated satellite-
terrestrial cooperative systems for coherent MQAM signals
is given by [25]

4q [2 IGMQAM
P MRC, MQAM(E) = */ %;@%@ (SiI?Q 0 ) do
37

gMQAM
/ ¢7MRC< sin? 0 >d6

where gyoan = 3/2(M — (1 - 1/\/M).
Pf’,[%g Moanm can be calculated by using the same approach
as in (17). Hence, the average SEP P32, 11 aa is given by
equation (38) where

1) and ¢

Hi yigam = 1+ Pory @AM 200,V a9MQAM
Ki mganv = 1+ 2br,a% . q9MQAM,
Wimgam =1+ Por, mQaMAbr, a7V adMQAM
Zivgam = 1+ 4by, a7V, a9MQAM -

In the case of i.i.d fading channels, all relays are expe-
riencing the same fading environment, i.e., mgs,, = Mgy,

9 9 b b PR ]
Gimpsk Govmprsk Himpsx Kimpsk

¥ )
b
Hy vpsk Krmpsk

bsr; = bsr, Qsr, = Qgp and by,q = byq for all i € L. And we
assume that 7, ;, = 7%,; =7 for all ¢ € L. So, H; ygam =
Hygam, Kivgam = Kyogan, Wivigam = Wugawm
and Z; yroam = Zmgam for all @ € L. By using the
properties of the Lauricella function as shown in (35), the
average SEP, P50 MQ an (E) can be simplified as in equation
(39) which again indicates that a full diversity order of L + 1
is obtained when the number of participating relays is L (see
appendix B).

IV. SIMULATION RESULTS

In this section, simulations and numerical results of the
average SEP of a hybrid/integrated satellite-terrestrial cooper-
ative network are evaluated. The SEP curves are plotted versus
the average transmitted SNR normalized to the long term path
loss for different number of relays L = 0,1,2,3,4,5 (L =0,
corresponds to the direct transmission only). In order to show
the diversity order, we assume that the average transmitted
SNR per symbol of the satellite-destination link is equal to
the one of the relay-destination links (Fs /Ny = E,., /Ng). The
numerical values for the LMS channel are shown in Table I
and the relay-destination links are Rayleigh fading channel
with the average channel power gain equal to unity. We
can observe from the figures that our analytical results show
excellent agreement with the simulation results for both MPSK
(Figs. 2 and 3) and MQAM (Fig. 4) modulation schemes and
for all cases of fading channels. This confirms the accuracy
of our performance analysis. We also compare SEPs of our
proposed SDF system with the regular FDF system as shown
in Figs 2, 3 and 4. These three figures shows that our proposed
SDF system outperforms the regular FDF system in terms of
SEP.
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TABLE I
LMS CHANNEL PARAMETERS [22]

Data set
bsx Msa Qs
Frequent heavy shadowing | 0.063 | 0.739 | 8.97 x 10~4
Average shadowing 0.126 10.1 0.835
Infrequent light shadowing | 0.158 19.4 1.29

Fig. 2 shows the average SEP of QPSK hybrid/integrated
satellite-terrestrial cooperative systems when both direct link
and satellite-relay links experience the frequent heavy shad-
owed fading environment. Moreover, the diversity gain in-
creases as a function of the number of participating relays.
For example, we can achieve the diversity gain around 7 dB
at the SEP of 10~! when only one relay is used. In addition,
this diversity gain does increase to approximately 12 dB when
L =3 and 14.5 dB when L = 5.

Fig. 3 plots the average SEP of 8PSK hybrid/integrated
satellite-terrestrial cooperative systems when the direct link is
under the frequent heavy shadowed fading condition and the
satellite-relay links are under the average shadowed fading
condition. We can observe from the figure that the 3-relay
system gains 5.8 dB for SEP = 10! over the 1-relay system

2q% (2bsamsa)™ LTE\ZQZM (WMQAM ) L
ZMQAM

5 1 Giyvgam Gomgam Hugam KMQAM)
272 Iy moam Lo voan Wauoanm™ Zyoam
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Fig. 2. The average SEP of QPSK versus the average transmitted SNR,
Es/No, when both direct and satellite-relay links experience the frequent
heavy shadowing.

while the 5-relay system gains 7.8 dB over the 1-relay system
for the same SEP.



Symbol Error Probability (SEP)
>

O  SDF (Simulation)
SDF (Analytical)

. —+=- FDF
1074 L L L
0 5 10 15 20
E/N_, dB
s 0
Fig. 3.  The average SEP of 8PSK versus the average transmitted SNR,

E5/No, when the direct link experiences the frequent heavy shadowing and
satellite-relay links experience the average shadowing.
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Fig. 4. The average SEP of 16QAM versus the average transmitted SNR,

E5/Ng, when the direct link experiences the frequent heavy shadowing and
satellite-relay links experience the infrequent light shadowing.

Furthermore, Fig. 4 illustrates the average SEP of 16QAM
hybrid/integrated satellite-terrestrial cooperative systems when
the direct link experiences the frequent heavy shadowing and
the satellite-relay links are under the infrequent light shadowed
fading condition. We can see in the Fig. 4 that the 3-relay
system gains 6 dB for SEP = 10~ ! over the 1-relay system
and the 5-relay system gains 8 dB over the 1-relay system for
the same SEP.

Fig. 5 plots the theoretical SEP curves of 16PSK-SDF
and 16QAM-SDF hybrid/integrated satellite-terrestrial coop-
erative systems while Fig. 6 plots the theoretical SEP curves
of 64PSK-SDF and 64QAM-SDF hybrid/integrated satellite-
terrestrial cooperative systems when the direct link experi-
ences the frequent heavy shadowing and satellite-relay links
experience the infrequent light shadowing. Although both
modulation schemes provide the same diversity order, the

T T

Symbol Error Probability (SEP)

- —%— 16PSK-SDF
—b>— 16QAM-SDF

1074 L 1 L - L *
0 5 10 15 20 25 30 35 40
E/N_,dB
s 0
Fig. 5. Theoretical SEP curves of 16PSK and 16QAM versus the average

transmitted SNR, E's /Ng, when the direct link experiences the frequent heavy
shadowing and satellite-relay links experience the infrequent light shadowing.
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Fig. 6. Theoretical SEP curves of 64PSK and 64QAM versus the average

transmitted SNR, E5 /No, when the direct link experiences the frequent heavy
shadowing and satellite-relay links experience the infrequent light shadowing.

MQAM-SDF outperforms the MPSK-SDF in terms of SEP
for the same number of constellation points M in the high-
SNR regime. From Fig. 5, we can see that the 16QAM-SDF
provides 3 dB of diversity gain over the 16PSK-SDF for
SEP = 10~!. From Fig. 6, we can also notice that 64QAM-
SDF provides 8 dB of diversity gain over the 64PSK-SDF for
SEP = 10~!. These results are consistent with known results
on the power efficiency of these modulation schemes.

V. CONCLUSION

In this paper, we studied the performance in terms of SEP
of a hybrid/integrated satellite-terrestrial cooperative network.
The SDF transmission scheme has been implemented. In
the first phase, the satellite broadcasts its signal to all relay
nodes and the destination node. In the second phase, only
relays that can decode the satellite message correctly are



allowed to forward the satellite message to the destination finally given as

node. The exact closed-form expressions for the average

SEP of the general MPSK and MQAM hybrid/integrated Dy ypsk =—_lim —
satellite-terrestrial cooperative systems over independent but . 7--+ee log(7)
not necessarily identically distributed fading channels have 1 &)

been derived. The results have shown that a full diversity log (A1) + log (%) +log (%) +log (Aa)
order of I + 1 can be obtained when the total number of (42)
relays is equal to L. Moreover, it can be seen from the

SEP curves that our analytical expressions show excellent

agreement with the simulation results. The obtained SEP APPENDIX B

expressions will provide valuable insight into the design of ASYMPTOTIC DIVERSITY ORDER OF Py/¢: 11 anr (E)
the hybrid/integrated satellite-terrestrial cooperative systems
especially in the emergency communication systems.

X =L+1.

In order to show the diversity order, we assume that

Wsd = Wsm = W'r‘,;d = W

The asymptotic  diversity order Dy aygan  of
P26 aran (E) is given in [28] as

APPENDIX A
ASYMPTOTIC DIVERSITY ORDER OF P2 oo (E) - -
7 D — — lim log Pyi e vqam ) 43)
In order to show the diversity order, we assume that 9:MQAM o log(?) )

75(1 = 737‘1 = 77‘1(1 = 7
The asymptotic  diversity order Dy apsk of
Pﬁ}%gMPSK(E) is given in [28] as

By using the equation (39), the asymptotic diversity order
Dy vganm can be rewritten as

_ D - lim —
_ log PERE vrpsi (7) QAN =5 W Tog () (44)
Dq,]\/IPSK = —7hrn — . (40)
’ y—+oo log(’y) X log (Bl X By x B3 x By — C1 x Uy x O3 % 04)
By using the equation (36), the asymptotic diversity order mag—1
D, mpsk can be rewritten as where By = q (2bsqmsa)™ ", By = W’
2, MQAM
D =— i log (A1 x Az x Ay x A , o
gupsk == _lim oo x og (A1 x Az x Az x Ayg) B, — (HMQAM>
(41) Kyqam
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At the high SNR regime, we obtain At the high SNR regime, we have that
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where the symbol &~ denotes the approximation for the high ~ Ci ~ FS) (1, 1,1 —msa, msa, —L, L; 5; %7 %7 %, es, ;)
SNR regime and ¢; (¢+ = 1,2,3,4) is a constant value.

We observe that in the high SNR regime, A4 converges to where e; (i = 1,2,3,4,5) is a constant value. We observe
a constant value. So, the asymptotic diversity Dy ppskx is  that in the high SNR regime, B, and C4 converge to constant



values. So, the asymptotic diversity D arganr is given as
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