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Abstract When permutation methods are used in practice, often a limited number
of random permutations are used to decrease the computational burden. However,
most theoretical literature assumes that the whole permutation group is used, and
methods based on random permutations tend to be seen as approximate. There exists
a very limited amount of literature on exact testing with random permutations, and
only recently a thorough proof of exactness was given. In this paper, we provide an
alternative proof, viewing the test as a “conditional Monte Carlo test” as it has been
called in the literature. We also provide extensions of the result. Importantly, our
results can be used to prove properties of various multiple testing procedures based
on random permutations.
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1 Introduction

Permutation tests are nonparametric tests that are used in particular when the null
hypothesis implies distributional invariance under certain transformations (Fisher
1936; Lehmann and Romano 2005; Ernst et al. 2004). Apart from permutations, other
groups of transformations can be used, such as rotations (Langsrud 2005).
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When the set of transformations used is not a group, a permutation test can be very
conservative or anti-conservative. The first author who explicitly assumed a group
structure is Hoeffding (1952). The role of the group structure has recently been empha-
sized (Southworth et al. 2009; Goeman and Solari 2010). Southworth et al. (2009) note
that in particular the set of ‘balanced permutations’ cannot be used, since it is not a
group.

Often it is computationally infeasible to use the whole group of permutations, due to
its large cardinality. In that case, random permutations are used, as was first proposed
by Dwass (1957). Often a permutation p value based on random permutations is simply
seen as an estimate of the permutation p value.

It is known that naively using random permutations instead of all possible permuta-
tions can lead to extreme anti-conservativeness (Phipson and Smyth 2010), especially
when combined with multiple testing procedures. Therefore, sometimes the iden-
tity permutation, which corresponds to the original observation, is included with the
random permutations (Ge et al. 2003; Lehmann and Romano 2005). Lehmann and
Romano (2005) (p. 636) state that when the identity is added, the estimated p value
is stochastically larger than the uniform distribution on [0, 1] under the null. Phipson
and Smyth (2010) note that adding the identity can make the permutation test exact,
i.e. of level « exactly. They do not mention the role of the underlying group structure.
Instead, they view the permutation test as a Monte Carlo test, which is known to be
exact in some situations if the original observation is added.

Referring to Monte Carlo is not sufficient, because despite being related, a Monte
Carlo test is very different from a permutation test. Monte Carlo samples are drawn
from the null distribution. In the permutation context, the random permutations of
the data are instead drawn from a conditional null distribution, i.e. the permutation
distribution. Hence, the proof by Phipson and Smyth (2010) is incomplete and it
remained unclear what assumptions (e.g. a group structure) are essential for the validity
of random permutation tests. For example, it is unclear from Phipson and Smyth that
random sampling from balanced permutations would lead to invalid tests.

In Hemerik and Goeman (2017), a test is given based on random transformations.
In the present paper, we extend this work, investigating fundamental properties of ran-
dom permutation tests. Our main focus is on the level of tests. Other properties, e.g.
consistency, do not generally hold, but can be established for more specific scenar-
ios (Lehmann and Romano 2005; Pesarin 2015; Pesarin and Salmaso 2013) by using
results presented here. Our results are general and can be used to prove properties of
various multiple testing methods based on random permutations, such as Westfall and
Young (1993), Tusher et al. (2001), Meinshausen and Biihlmann (2005) and Mein-
shausen (2006). In the literature, there are two approaches to proving permutation tests
with fixed permutations: a conditioning-based approach (Pesarin 2015) and a more
direct approach (Hoeffding 1952; Lehmann and Romano 2005). We will give proofs
with both approaches.

The structure of the paper is as follows. In Sect. 2, we review known results on
the level of a permutation test based on a fixed group of transformations. The con-
cepts and definitions from Sect. 2 are used throughout the paper. Testing with random
permutations is covered in Sect. 3. In Sect. 3.1, permutation tests are contrasted with
Monte Carlo tests. Estimation of p values is discussed in Sect. 3.2. Exact tests and
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Exact testing with random permutations 813

p values based on random transformation are given in Sects. 3.3 and 3.4. In Sect. 4,
some additional applications of these results are mentioned.

2 Fixed transformations

Here we discuss tests that use the full group of transformations.

2.1 Basic permutation test

Let X be data taking values in a sample space X'. Let G be a finite set of transformations
g : X — X, such that G is a group with respect to the operation of composition of
transformations. This means that G satisfies the following three properties: G contains
an identity element (the map x — x); every element of G has an inverse in G; for all
ai,ay € G, aj oay € G. This assumption of a group structure for G is fundamental
throughout the paper, since it ensures that Gg = G for all g € G, i.e. that the set G is
permutation invariant.

Considering a general group of transformations rather than only permutations is
useful, since in many practical situations the group consists of, for example, rotations
(Langsrud 2005; Solari et al. 2014) or maps that multiply part of the data by —1
(Pesarin and Salmaso 2010, pp. 54 and 168). We write g(X) as gX. Consider any
test statistic 7 : X — R. Throughout this paper, we are concerned with testing the
following null hypothesis of permutation invariance.

Definition 1 Let H, be any null hypothesis which implies that the joint distribution
of the test statistics T(gX), g € G, is invariant under all transformations in G of X.
That is, writing G = {ay, ..., asc}, under H,

d
(T(@X),....T(asX)) = (T(@1gX), ..., T(asgX)) (H
forall g € G.
Note that (1) holds in particular when for all g € G
xLex.

Composite null hypotheses are usually not of the form H,,, but for specific scenarios,
properties of tests of such hypotheses can be established using results in this paper.
The most basic permutation test rejects Hp when T (X) > T7® (X), where

TV < =T*OX)

are the sorted test statistics 7(gX), g € G,and k = [(1 — o)#G] witho € [0, 1). As
is known and stated in the following theorem, this test has level at most «.
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Theorem 1 Under Hy, P{T(X) > T®(X)} < a.

We now give two proofs: a conditioning-based approach and an approach without
conditioning. Both approaches are more or less known. The conditioning-based proof
is similar to that in Pesarin (2015), but the setting is more general. For each x € X,
define O, to be the orbit of x, which is the set {gx : g € G} C X.

Proof Let A = {x € X : T(x) > T® (x)} be the set of elements of the sample space
that lead to rejection. Suppose Hy, holds. By the group structure, Gg = G forallg € G.
Consequently, T® (gX) = T® (X) forall g € G. Thus, #{g € G : gX € A} =

#geG:TgX)>TP(gX) =#{geG:TgX) > TPX)} < a#G.

Endow the space of orbits with the o-algebra that it inherits from the o -algebra on
X. Analogously to the proof of Theorem 15.2.2 in Lehmann and Romano (2005), we
obtain

1
P(X € A| Ox) = z=#lg € G :gX € A}

By the argument above, this is bounded by «. Hence,
P(X € A)=E{P(X € A| Ox)} <«

as was to be shown. O

We now state a different proof without conditioning. A similar proof can be found
in Hoeffding (1952) and Lehmann and Romano (2005) (p. 634).

Proof By the group structure, Gg = G for all g € G. Hence, T® (gX) = T® (X)
forall g € G. Let h have the uniform distribution on G. Then, under Hp, the rejection
probability is
PIT(X) > T® X))}
=P{T(hX) > TP 0X)}
=P{T(hX) > TP (X))}

The first equality follows from the null hypothesis, and the second equality holds since
7% (X)) = 7% (hX). Since h is uniform on G, the above probability equals

E[(#G)—l #{geG:TgX) > T<’<>(X)}] <a

as was to be shown. O

The test of Theorem 1 is not always exact. When the data are discrete, then the
basic permutation test is often slightly conservative, due to a nonzero probability of
tied values in X. Under the following condition, which is often satisfied for continuous
data, but usually not for discrete data, the test is exact for certain values of «.
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Condition 1 There is a partition {G1, ..., G;;,} of G withid € Gy and#G| = --- =
#G ,, such that under H,, with probability 1 forall g, g’ € G, T(gX) = T(g'X) if
and only if g and g’ are in the same set G;.

Proposition 1 Under Condition 1, the test of Theorem 1 is exact if and only if o €
{0,1/m,...,(m—1)/m}.

The proof of this result is analogous to the proof of Theorem 1. As an example
where Condition 1 holds, consider a randomized trial where X € R?" and the test

statistic is
n 2n
TX)=)Y Xi— Y X, )
i=1

i=n+1

where X1, ..., X, arecasesand X, 41, . .., X2, are controls and all X; are independent
and identically distributed under the null. Let

()

m= .

n

If the observations are continuous, then the set of « for which the test is exact is
{O, I/m,...,(m—1)/ m}, reflecting the fact that there are m equivalence classes of
size n'n! of permutations that always give the same test statistic.

The test of Theorem 1 is often conservative when the data are discrete, since then
Condition 1 is usually not satisfied. Moreover, in many cases, the value 0.05 is not in
the set mentioned in Proposition 1, and hence, the permutation test for « = 0.05 is
conservative, even if Condition 1 is satisfied. The test can be adapted to be exact by
randomizing it, i.e. by rejecting Hy, with a suitable probability a in the boundary case
that 7(X) = T® (Hoeffding 1952). Here

a#G — M1 (X)

a:a(X): MO(X) )

(3)
where

MY (X):=#{ge G:TgX)>TPX),
MOX) =#{ge G :T(gX) =TYX)).

This adaptation has the advantage that it is always exact. Even if Condition 1 is
satisfied, the adaptation can be useful to guarantee that the level of the test is exactly
the nominal level «. On the other hand, this test is less reproducible than the test of
Theorem 1, since its outcome may depend on a random decision. Which test is to be
preferred would depend on the context.

When the set G is not a group, the test can be highly anti-conservative or con-
servative. For example, the set of balanced permutations is a subset of the set of all
permutations, but is not a subgroup. These permutations have been used in various
papers since they can have an intuitive appeal. They are discussed in Southworth et al.
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(2009), who warn against their use since they lead to anti-conservative tests. The fact
that permutations have been used incorrectly illustrates that more emphasis should be
put on the assumption of a group structure.

Intuitively, the reason why a group structure is needed for Theorem 1 is the fol-

lowing. Suppose for simplicity that H,, implies that X 4 gX for all g € G. The
permutation test works since under H,, for every permutation ¢ € G the proba-
bility P{T(gX) > T®(X)} is the same. The reason is that under Hp, for every
g € G, the joint distribution of gX and the set GX, i.e. of (gX, GX), is the
same. Indeed, since G = Gg (group structure), the set GX is a function of gX,
namely GX = f(gX), with f given by f(x) = Gx. Thus, for g, ¢’ € G,

(gX,GX) = (gX, f(gX)) 4 (g'X, f(g’X)) = (g’X, GX). When G is not a group,
the joint distribution of gX and the set GX is not generally independent of g.

2.2 Permutation p values

Permutation p values are p value based on permutations of the data. Here we will
discuss permutation p values based on the full permutation group. p values based on
random permutations are considered in Sect. 3.4.

It is essential to note that there is often no unique null distribution of 7'(X), since
H), often does not specify a unique null distribution of the data. Correspondingly,
T® (X) should not be seen as the (1 — «)-quantile of the null distribution.

When atest statistic ¢ is a function (which is not random) of the data and has a unique
distribution under a hypothesis H, then a p value in the strict sense, Py (t > t,p5), 1S
defined where 7,5 is the observed value of ¢. Since under H), T'(X) does not always
have a unique null distribution, often there exists no p value in the strict sense based
on this test statistic. However, under Condition 1 the statistic

D=#{geG:T(gX)>TX)}

does have a unique null distribution. Thus, a p value in the strict sense based on —D
is then defined. Denoting by d the observed value of D, we have under H,,

P(—D > —d) =P(D <d) =P|{T(X) > T*D(Xx)} = %.
This is indeed what is usually considered to be the permutation p value. This equality
holds under Condition 1. In other cases, such as when the observations are discrete,
the null hypothesis often does not specify a unique null distribution of D. Thus, there
is not always a p value in the strict sense based on D.

When H), does not specify a unique null distribution of any sensible test statistic,
as a resolution a ‘worst-case’ p value could be defined. However, sometimes better
solutions are possible, e.g. the randomized p value p’ in Sect. 3.4.In general, a p value in
the weak sense can be considered, i.e. any random variable p satisfying P(p <c¢) <c¢
for all ¢ € [0, 1] for every distribution under the null hypothesis. For Hp,, D/#G is
always a p value in the weak sense.
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3 Random transformations

In Sect. 3, we extend the results of the previous section to tests based on random
transformations. Since permutation testing with random permutations is often con-
fused with Monte Carlo testing, in Sect. 3.1 the differences between the two are made
explicit. Since random permutations are often used for estimation (rather than exact
computation) of p values, estimation of permutation p values is discussed in Sect.
3.2. Exact tests and p values are given in Sects. 3.3 and 3.4, respectively. These two
sections contain most of the novel results of the paper.

3.1 Comparison of Monte Carlo and permutation tests

In a basic Monte Carlo experiment, the null hypothesis Hy is that X follows a spe-
cific distribution. A Monte Carlo test is used when there is no analytical expression
for the (I — «)-quantile of the null distribution of 7'(X), such that the observed
value of 7'(X) cannot simply be compared to this quantile. To test Hp, indepen-
dent realizations X, ..., X, are drawn from the null distribution of X. Assume that
T(X),T(X2),...,T(Xy) are continuous. Writing X; = X, let

B =#{l<j<w:T(X))=TX)

and let b’ denote its observed value. It is easily verified that under Hy, B’ has the
uniform distribution on {1, ..., w}.

The Monte Carlo test rejects Hy when 7 (X) > T(k/), where k¥’ = [(1 — o)w] and
TD < ... < TW are the sorted test statistics T(X;),1 < j < w.Note that T®) ig
not the exact (1 — «)-quantile of the null distribution of 7' (X), but nevertheless the
test is exact. The reason is that the null distribution of B’ is known. The test rejects Hy
if and only if — B’ exceeds the (1 — a)-quantile of its null distribution. Equivalently,
it rejects when the Monte Carlo p value

Py, (B <b') =b"/w,

where b’ is the observed value of B, is at most «.

The validity of a random permutation test is not as obvious. Let g2, ..., gy be
random permutations from G. (There are various ways of sampling them, which we
discuss later.) One permutation, gi, is fixed to be id € G, reflecting the original
observation. Then, similarly to a Monte Carlo test, the permutation test rejects Hjp
if and only if 7(X) > T%*)(X), where now T < ... < T™) are the sorted test
statistics T'(g;X), 1 < j < w.

Note that contrary to the Monte Carlo sample Xy, ..., X,,, the permutations
g1X,...,gwX are not independent under the null. Thus, the random permutation
test is not analogous to the Monte Carlo test. To prove the validity of the test based on
random permutations, we must use that g1 X, . . ., g, X are independent and identically
distributed conditionally on the orbit Ox. It is, however, not obvious what properties
G should have in order that g; X = X can be seen as a random draw from Oy condi-
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tionally on Oy. It will be seen that it suffices that G is a group. In that case, the test
can be said to be a ‘conditional Monte Carlo test’.

3.2 Estimated p values

In practice, it is often computationally infeasible to calculate the permutation p value
based on the whole permutation group, D /#G. To work around this problem, there are
two approaches in the literature. In both approaches, random permutations are used.
The first approach is calculating (rather than estimating) a p value based on the random
permutations. This is discussed in Sect. 3.4. The second approach is estimating the p
value D/#G, which we discuss now.

In practice, the p value p = D/#G is often estimated using random permutations.
The random permutations are typically all taken to be uniform on G and can be drawn
with or without replacement. The estimate of p is often taken to be p = B/w, with
B as defined above. This is an unbiased estimate of p, i.e. Ep = p, and usually
limy— o0 p = p.

A more conservative estimate p = (B + 1)/(w + 1) is sometimes also used. This
formula is discussed in Sect. 3.4.

Using the unbiased estimate p = B/w can be very dangerous, as Phipson and
Smyth (2010) thoroughly explain. The reason is that p is almost never stochastically
larger than the uniform distribution on [0, 1] under H,,. This is immediately clear from
the fact that p usually has a strictly positive probability of being zero. Consequently,
if H, is rejected if p < ¢ for some cut-off c, then the type I error rate can be larger
than c¢. Often this difference will be small for large w. However, when c is itself
small due to, for example, Bonferroni’s multiple testing correction, then P(p < ¢)
can become many times larger than ¢ under Hp. This is because this probability does
not converge to zero as ¢ |, 0 for fixed w. Thus, as Phipson and Smyth (2010) note,
using p in combination with, for example, Bonferroni can lead to completely faulty
inference. Appreciable anti-conservativeness also occurs if very few (e.g. 25-100)
random permutations are used [as in, for example, Byrne et al. (2013) and Schimanski
et al. (2013)].

When possible, computing exact p values is always to be preferred over estimating
p values. Exact p values based on random permutations are given in Sect. 3.4.

3.3 Random permutation tests

Here we discuss exact tests based on random transformations. Apart from Theorem 2
(Hemerik and Goeman 2017), the results in this section are novel.

Phipson and Smyth (2010) also consider exact p values based on random permuta-
tions. The proofs in Phipson and Smyth (2010) are incomplete, since they do not show
the role of the group structure of the set of all permutations. Lehmann and Romano
(2005) (p. 636) remark without proof that if G is a group, then under H;, the p value
(B + 1)/(w + 1) is always stochastically larger than uniform on [0, 1], but they state
no other properties. In Hemerik and Goeman (2017) for the first time, a theoretical
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foundation is given for the random permutation test, using the group structure of the
set G. Here this work is extended with additional results.

Theorem 2 states that the permutation test with random permutations has level at
most « if the identity map is added. This was remarked several times in the literature
and proved in Hemerik and Goeman (2017). We first define the vector of random
transformations.

Definition 2 Let G’ be the vector (id, g2, ..., gw), where id is the identity in G and
g2, ..., &y are random elements from G. Write g; = id. The transformations can be
drawn either with or without replacement: the statements in this paper hold for both
cases. If we draw g2, . . ., gy without replacement, then we take them to be uniformly
distributed on G\ {id}, otherwise uniform on G. In the former case, w < #G.

Theorem 2 Let G’ be as in Definition 2. Let TV(X,G') < --- < TW(X,G")
be the ordered test statistics T(g;X), 1 < j < w. Let a € [0, 1) and recall that
K =T -a)w].

Reject H, when T(X, G') > T®)(X, G'). Then, the rejection probability under
H,, is at most a.

A proof of Theorem 2 is in Hemerik and Goeman (2017), and we recall it here.

Proof From the group structure of G, it follows that forall 1 < j < w, G’ gj_1 and

G’ have the same distribution, if we disregard the order of the elements. Let j have
the uniform distribution on {1, ..., w} and write & = g;. Under H,,,

P{T(X) > T® (X, G")
=P{T(X) > T¥)(X,G'n 1))
=P{ThX) > T®0X,G'n™H).
Since (G’h~1)(hX) = G'(h~'hX), the above equals
P{T(hX) > T®) (h~'hX, G}
=P{T(hX) > T® (X, G)).

Since h = g; with j uniform, this equals
E[w’l#{l <j<w:TYX,G)>T¥ (X, G/)}] <a,

as was to be shown. O

We now prove Theorem 2 with a conditioning-based approach, viewing the test as
a “conditional Monte Carlo” test as it has been called in the literature.

Proof We prove the result for the case of drawing with replacement. The proof for
drawing without replacement is analogous. Note that (X, G') takes values in X’ x
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820 J. Hemerik, J. Goeman

(id} x G 1. Let A C X x {id} x G~ be such that the test rejects if and only if
(X,G") € A.

Endow the space of orbits with the o -algebra that it inherits from the o -algebra on
X. Suppose Hp holds. Assume that almost surely Ox contains #G distinct elements.
In case not, the proof is analogous. Analogously to the proof of Theorem 15.2.2 in
Lehmann and Romano (2005), we obtain

#(0x x {id} x G*" )N A

P{(X,G)c A | Ox) =
{(X.G) e AlOx] #O0x x {id} x G¥-1

“

We now argue that this is at most . Fix X. Let X have the uniform distribution
on Oy. It follows from the group structure of G that the entries of G’X are just
independent uniform draws from Oy. Thus, from the Monte Carlo testing principle
it follows that P{(X, G') € A} < a. Since (X, G') was uniformly distributed on
Oyx x {id} x G*~1, it follows that (4) is at most «. We conclude that

P{(X.G) e A} =E[P{(X.G) e 4| Ox}] =@,

as was to be shown. O

Theorem 2 implies that (B + 1)/(w + 1) is always a p value in the weak sense if
all random permutations (including g;) are uniform draws with replacement from G
or without replacement from G\{g;}. Under more specific assumptions, Theorem 2
can be extended to certain composite null hypotheses. Proposition 2 states that under
Condition 1 and suitable sampling, the test with random permutations is exact. The
formula in Sect. 3.4 for the p value under sampling without replacement is equivalent
to the last part of this result.

Proposition 2 Suppose Condition 1 holds. Let hy € Gi,...,h,, € Gy,. Then,
the result of Theorem 2 still holds if go, ..., gw are drawn with replacement from
{h1, ..., hy} orwithout replacement from {h», . .., h,,}. Moreover, in the latter case,
the test of Theorem 2 is exact for all « € {0/w, 1/w, ..., (w — 1)/w}.

Proof We consider the case that g, ..., g, are drawn without replacement from
{ha, ..., hy}andshow that the testis exactfora € {0/w, ..., (w—1)/w}. Write G’ =
(g1, -- -, gw)- Let h have the uniform distribution on {g1, ..., gyw}. Foreach g € G let
i(g) €{l,...,m}besuchthatg € G;). Suppose Hy holds. From the group structure
of G, it follows that the sets {i(g1). ..., i(gw)} and {i(gih™"), ... i(gwh™")} have
the same distribution. Consequently,

P{T(X) > T®) (X, G")
=P{T(X) > T® (X, G'h™ ).

Asinthe above proof of Theorem 2, we find that this equals IP’{ T(hX) > T®) (X,G) }
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Exact testing with random permutations 821

Since « € {0/w, ..., (w —1)/w}and T(g1X), ..., T(gywX) are distinct, it holds
with probability one that

#l<j<w:T(gX) > T(k/)} =aw.

Since / is uniform, it follows that P{T (hX) > T®) (X, G")} = a. O

Using this result, it can be shown that specific tests with random permutations
are unbiased. The test of Theorem 2 can be slightly conservative if « is not chosen
suitably or due to the possibility of ties. Recall that the same holds for the basic
permutation test that uses all transformations in G. The adaptation by Hoeftding at
(3) then guarantees exactness. The following is a generalization of Hoeffding’s result
to random transformations.

Proposition 3 Consider the setting of Theorem 2. Let

. wa—MT(X,G)
a=a(X,G) = WX G) 5)

where

MY (X, G :=#{1<j
MOUX, Gy =#{1 <

IA

w:T(g;X)>T* (X, G,
w:T(g;X)=T*(X,G)).

A

Reject if T(X) > T®) (X, G') and reject with probability a if T (X) = T® (X, G.
Then, the rejection probability is exactly o under Hp.

Proof Assume H,, holds. Note that
P(reject) = E{1 1 x)o 7w x.61) + 4Xs GV i1 x0—16)x.6) |-

Write Mt = M*(X, G’y and M° = MO(X, G'). Analogously to the first four steps of
the second proof of Theorem 2, it follows for / as defined there that the above equals

/
E{ 1{T(hX)>T<k’>(X,G/)} +aX,G )ﬂ{r(hX)=T(k/>(x,Gf)}}

!
= E{H{T(/’lX)>T(]"/)(X,G’)}} + E{a(X’ G )]l{T(hX):T(k/)(X,G’)}}
woe —M7T P
0 Lrao=reix.gy | MM ”
+
— +,.—1 wa — M L0
=E{MTw '} —HE[—MO E{ L amrin.an | MY M0)]
wae — M™T
MO

=E{M*w !} +E|Ef

:E{M+w_l}+E|: Mow_l] =,
as was to be shown. |
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822 J. Hemerik, J. Goeman

The test of Proposition 3 entails a randomized decision: in case T(X) = T*),
the test randomly rejects with probability a. This is in itself not objectionable, since
the test is randomized anyway due to the random transformations. Note that in the
situation of Proposition 2 under drawing without replacement the test is already exact,
such that Proposition 3 is not needed to obtain an exact test.

In Theorem 2, the requirement of using the whole group is replaced by suitable
random sampling from the group. Interestingly, the following sampling scheme is
also possible. Let G* € G be any finite subset of G, where we now allow G to be an
infinite group as well. Write k* = [(1 — «)#G™]. Let & be uniformly distributed on
G* and independent. Reject H}, if and only if

TX) > T (X, G*h™ 1),

i.e. if T(X) exceeds the (1 — o)-quantile of the values T (gh~!), g € G*. Thisis a
randomized rejection rule, since it depends on 4, which is randomly drawn each time
the test is executed. The rejection probability is at most «, which follows from an
argument analogous to the last five steps of the first proof of Theorem 2. Note that if
G* is a group itself, then G*h~! = G* and this test becomes nonrandom, coinciding
with the basic permutation test. Thus, it is a generalization thereof. This result allows
using a permutation test when G is an infinite group of transformations, from which
it may not be obvious how to sample uniformly. One simply uses any finite subset G*
of the infinite group.

3.4 p values based on random transformations

Phipson and Smyth (2010) give formulas for p values, when permutations are randomly
drawn. Here we provide the required assumptions and proofs, which follow from Sect.
3.3. We then provide some additional results.
Write
B=#{l<j<w:T(gX) =TX), 6)

where g1, ..., g, are random permutations with distribution to be specified. Let b
be the observed value of B. Under Condition 1, Phipson and Smyth’s p values are
exactly equal to IE”HP(— B > —b). Under Condition 1, if g1, ..., gy are drawn such
that they are from distinct elements G; of the partition and not from G1, the p value
IP’HP(— B > —b) is exactly

b+ 1

w1

The validity of this formula follows from Proposition 2. For the case that permutations
are drawn with replacement, where gi, ..., g, are independent and uniform on G,
Phipson and Smyth also provide a formula for Py, (— B > — b), under Condition 1.
The formula (B + 1)/(w + 1) simplifies to the formula B /w if the identity map is
added to the random permutations. It follows that the permutation test based on random
permutations becomes exact for certain « if the identity is added. Note that this only
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holds if Condition 1 is satisfied and all permutations are from distinct equivalence
classes G;.

We now state some additional results that follow from Sect. 3.3. Corresponding
to the randomized test of Proposition 3, a randomized p value can be defined as
follows. The advantage of this p value is that it is always uniform on [0, 1] under H,
without requirement of additional assumptions, and it is easy to compute. Consider the
randomized test of Proposition 3 (hence with G’ as in Definition 2). Suppose without
loss of generality that when 7'(X) = T®) | the test rejects if and only if a > u, where
u is uniform on [0, 1] and independent. Define the randomized p value by

P = #Hl<j<w:TE;X)>TX)) +u#{1 <Jj=w:T(gjX)=T(X)}
w w '

This p value has the property that p’ < « if and only if the randomized test rejects.
This implies in particular that p’ is exactly uniform on [0, 1] under Hj,. The fact that
p’ is randomized is in itself not objectionable, since it is randomized anyway due to
the random transformations.

A simple upper bound to p’ is

#Hl<j=<w:T(g;X)>TX)}
” )

a p value in the weak sense, which translates to (B + 1) /(w + 1) when g1, ..., g, are
for example all independent uniform draws from G. It is not exactly uniform on [0, 1]
under H),. However, when w is large and there are few ties among the test statistics, it
tends to closely approximate p’, so that it may be used for simplicity.

4 Applications

We briefly mention some applications where our results are particularly useful. We
have considered data X that lie in an arbitrary space X and an arbitrary group of
transformations G. For example, we allow X to be a vector of functions, which is the
type of data investigated by functional data analysis (FDA) (Cuevas 2014; Goia and
Vieu 2016). Cox and Lee (2008) consider permutation testing with such functional
data. To formulate an exact random permutation test in such a setting, the present
paper is useful.

In Hemerik and Goeman (2017), properties are proven of the popular method SAM
(“Significance Analysis of Microarrays”, Tusher et al. 2001). This is a permutation-
based multiple testing method which provides an estimate of the false discovery
proportion, the fraction of false positives among the rejected hypotheses. Using The-
orem 2, Hemerik and Goeman (2017) showed for the first time how a confidence
interval can be constructed around this estimate.

In a basic permutation test, the observed statistic 7' (X) is compared to T® € R,
a quantile of the permutation distribution. The permutation-based multiple testing
method by Meinshausen (2006), which provides simultaneous confidence bounds for
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the false discovery proportion, also constructs a quantile based on the permutation dis-
tribution. There, however, [ € N hypotheses and hence [ statistics 71 (X), . ..., T;(X),
are considered. (They consider p values as test statistics.) Correspondingly, the quan-
tile which Meinshausen constructs is /-dimensional. It turns out that the crucial step
of the proof (the second last line of the proof, p. 231) relies on the principle behind the
basic permutation test. The present article can be used to make this method exact. (For
example, in Meinshausen (2006), id should be added to the random permutations.)

In Goeman and Solari (2011), itis suggested to combine the method by Meinshausen
(2006) with closed testing, which leads to a very computationally intensive method.
Hence, preferably only a limited number of permutations (e.g. 100) would be used.
The present paper allows using such a limited number of transformations, while still
obtaining an exact method.

5 Discussion

This paper proves properties of tests with random permutations in a very general
setting. Properties such as unbiasedness of tests of composite null hypotheses and
consistency do not hold in general, but may be proved for more specific scenarios.
For fixed permutations, there are many results regarding such properties (Hoeffding
1952; Lehmann and Romano 2005; Pesarin and Salmaso 2010, 2013) which may be
extended to random permutations.

Aside from the permutation test, there are many multiple testing methods which
employ permutations, some of which are mentioned in Sect. 4. Another example is
the max7T method by Westfall and Young (1993). These methods are precisely based
on the principle behind the permutation test. This paper can provide better insight into
these procedures, when random permutations are used.
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