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Exact three-dimensional static analysis of single- and

multi-layered plates and shells

Salvatore Brischetto∗

Abstract
This new work proposes an exact three-dimensional static analysis of plates and shells. One-layered and
multilayered isotropic, orthotropic, sandwich and composite structures are investigated in terms of dis-
placements and in-plane and out-of-plane stresses through the thickness direction. Proposed structures
are completely simply-supported and a transverse normal load is applied. The proposed method is based
on the 3D equilibrium equations written using general orthogonal curvilinear coordinates which are valid
for spherical shells. Cylindrical shell, cylinder and plate results are obtained as particular cases of 3D
spherical shell equations. All the considered structures are analyzed without any geometrical approxima-
tion. The exact solution is possible because of simply-supported boundary conditions and harmonic form
for applied loads. The shell solution is based on a layer-wise approach and the second order differential
equations are solved using the redouble of variables and the exponential matrix method. A preliminary
validation of the model is made using reference results in the literature. Thereafter, the proposed exact
3D shell solution is employed with confidence to provide results for one-layered and multilayered plates,
cylinders, cylindrical shell panels and spherical shell panels. All these geometries are analyzed via a
unified and general solution, and the obtained results can be used to validate future numerical methods
proposed for plates and shells (e.g., the finite element method or the differential quadrature method).
Proposed results allow to remark substantial features about the thickness of the structures, their geom-
etry, the zigzag effects of displacements, the interlaminar continuity of displacements and transverse
stresses, and boundary loading conditions for stresses.

Keywords: plates and shells; 3D exact solution; layer-wise approach; exponential matrix method;
static analysis; multilayered composite and sandwich structures; exact geometry.

1 Introduction

Beams, plates and shells are basic components for the structural analysis in the mechanical, aerospace
and civil engineering fields. Numerical models based on these elements allow dynamic, static, free
vibration, stability and stress analysis of several structures with different geometries and embedded
materials, and subjected to different loading and boundary conditions. Appropriate refined numerical
models allow accurate analyses with an increase of safety and a decrease of the weight. However, such
numerical models need a deep validation in order to be used with confidence. Such a validation could be
made by means of opportune comparisons with exact 3D shell models which have two main advantages:
absence of numerical problems in the solution of equations and a complete and exhaustive description
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of the 3D stress and displacement fields for all the possible thickness ratios and embedded materials of
the analyzed structures.

Several 3D exact models have already been presented in the literature. In general, they have been de-
veloped for a given geometry and for a restricted choice of materials, lamination sequences and loading
conditions. The 3D exact model here proposed tries to overcome these limitations proposing a general
shell model valid for spherical shells, cylindrical shells, cylinders and plates. Each investigated struc-
ture can be single- or multi-layered (also sandwich and cross-ply configurations) embedding isotropic,
orthotropic and composite materials. Loads can be applied at the top/bottom surfaces in terms of
transverse shear or transverse normal stresses. For the sake of brevity, the benchmarks here proposed
consider transverse normal loads in the z direction applied at the top or at the bottom surfaces. Further
loading condition results will be proposed in the near future.

Some of the most important 3D plate models proposed in the literature are described in the following
section. Pagano proposed in [1] an elasticity model for the cylindrical bending of composite plates, and
in [2] a three-dimensional elasticity model for the static analysis of square and rectangular composite
and sandwich plates. Work [1] was extended to uniformly distributed concentrated load cases in [3] by
Pagano and Wang. Demasi [4] developed a three-dimensional exact plate solution using the Navier-type
method and the mixed form of constitutive equations. The use of the mixed form of Hooke law allows
an easier imposition of boundary loading conditions. Aimmanee and Batra [5], [6] proposed the free
vibrations of simply-supported plates using analytical solutions. Srinivas et al. [7], [8] developed a 3D
linear elastic theory for the free vibration and flexural analysis of simply supported plates subjected
to arbitrary loading conditions. Exhaustive comparisons between several 2D theories and an exact 3D
plate solution were proposed by Batra et al. [9] for vibration analyses. Ye [10] analyzed the free vibration
behaviour of clamped cross-ply plates using a recursive solution. Messina [11] developed an exact three-
dimensional plate solution in orthogonal rectilinear coordinates using the exponential matrix method.
The same method has been employed in the present new work to write the exact three-dimensional
shell solution in general orthogonal curvilinear coordinates. In work [11], Messina investigated free
vibrations, displacements and stresses in multilayered plates. The Ritz method applied to develop
three-dimensional plate models was used by Cheung and Zhou [12] for isosceles triangular plates and
by Liew and Yang [13] for circular plates. The eigenvalue problem, based on the three-dimensional
elasticity theory, was solved by Taher et al. [14] and Xing and Liu [15] for free vibration and mode
analysis of plates. Exact three-dimensional closed form solutions for free vibrations of Funcionally
Graded Material (FGM) plates were proposed by Hosseini-Hashemi et al. [16] for both in-plane and
out-of-plane vibration modes. Free and forced vibrations of simply-supported FGM plates were analyzed
by Vel and Batra [17] using a three-dimensional exact method. The three-dimensional elastic static
analysis of FGM plates, using general expressions for displacements and stresses, was proposed by Xu
and Zhou [18]. The free vibration study of a circular piezoelectric plate was performed by Haojiang et
al. [19] using a 3D exact model. The cylindrical bending modes for composite simply-supported plates
embedding piezoelectric actuators were shown by Baillargeon and Vel [20]. An exact 3D solution was
developed for such an analysis. Chen et al. [21] developed a three-dimensional state-space approach to
investigate bending and free vibration problems of piezoelectric composite rectangular plates. The same
authors developed in [22] an exact 3D model to investigate the distribution of mechanical and electric
variables in inner points of a symmetric inhomogeneous multilayered piezoelectric plate. A further study
was that by Kapuria and Nair [23] for the exact three-dimensional piezothermoelasticity static, free
frequency and steady state harmonic response analysis of composite plates including piezoelectric layers.
Zhong and Shang [24] proposed an exact 3D solution for a rectangular plate embedding functionally
graded piezoelectric layers using the state space approach. Meyer-Piening [25] proposed results for
plate geometries using an elasticity solution valid for sandwich structures. The author declared that
such a method could also be extended to curved shell panels.

Elasticity shell solutions are usually less numerous than those for plates because the involved equa-
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tions are in general more complicated to be written and to be solved. Among the most important
solutions, Ren [26] proposed the exact cylindrical bending elastic analysis of multilayered composite
cylindrical shells, and Varadan and Bhaskar [27] developed the three-dimensional elasticity solution
of simply supported composite cross-ply cylinders subjected to harmonic loads. Chen et al. [28] used
three displacement functions in order to develop a three-dimensional elastic model to analyze the free
frequencies of an elastic cylindrical shell. Fan and Zhang [29] wrote the state equations in cylindrical
coordinates in order to elaborate a three-dimensional model for static, dynamic and buckling analysis
of composite cylindrical panles. The 3D exact theory developed by Gasemzadeh et al. [30] allowed the
free frequency analysis of simply-supported cylindrical shells. Huang [31] solved the coupled system of
differential equations using the power series method in order to investigate the free frequencies of simply
supported composite cylindrical and doubly-curved shells. Sharma et al. [32], [33] used the Fröbenious
matrix method to solve the 3D shell equations for the free frequency analysis of homogenous isotropic,
viscothermoelastic hollow spheres and trans-radially isotropic, thermoelastic solid spheres. Soldatos
and Ye [34] used the exponential matrix to solve the 3D equilibrium equations written in cylindrical
coordinates for the free frequency analysis of angle-ply multilayered cylinders. The method proposed
in the present new paper also uses the exponential matrix method. However, it is more general than
the model by Soldatos and Ye [34] because the use of general orthogonal curvilinear coordinates allows
to obtain plate, cylindrical shell and cylinder results as particular cases of the spherical shell analysis.
Armenakas et al. [35] introduced a self-contained treatment method based on the three-dimensional
theory of elasticity for the free frequency analysis of hollow circular cylinders. Refined 2D models,
shear deformation theory, Flügge theory and exact elasticity model are compared in terms of frequen-
cies in [36]. Flügge classical theory for thin shells was detailed in [37] in the case of free frequency
analysis of cylindrical shells. Khalili et al. [38] compared two-dimensional closed form models and
exact three-dimensional elastic solutions in the case of free frequency analysis of circular cylindrical
shells. A first extension of 3D linear elastodynamics equations to FGM cylindrical shells was proposed
by Vel [39] using displacement functions to satisfy the boundary conditions. A layer-wise approach,
based on the 3D theory of elasticity and on the principle of energy minimization, was proposed by Loy
and Lam [40] to study the vibrations of thick circular cylindrical shells. Wang et al. [41] developed the
3D magneto-electro-elastic theory for the free frequency analysis of cylindrical shells. Interesting works
by Efraim and Eisenberger [42], Kang and Leissa [43] and Liew et al. [44] were devoted to the 3D free
vibration analysis of shells using numerical solutions (e.g., dynamic stiffness matrix method and Ritz
method). Fan and Zhang [45] used a methodology similar to that proposed in the present new paper
where the 3D equilibrium equations were written in orthogonal curvilinear coordinates for spherical
shells. The main difference is between the use of the three displacement components and the three
transverse stress components as the six main variables in [45], and the use of the three displacement
components and their three derivatives in z as the six main variables in the present work. Moreover,
even if the solutions of equations are based on the same principle, they use two different procedures.
Fan and Zhang [45] used the Cayley-Hamilton theorem. The procedure employed in the present new
paper, based on the exponential matrix method, is able to use of a large number of mathematical layers
which allows to analyze in a correct way very thick shells giving a correct 3D behavior for displacements
and stresses through the thickness. The use of a large number of mathematical layers could allow an
easy extension to FGM structures. Fan and Zhang [45] used the written 3D spherical shell equations
to obtain free vibrations and static results for several spherical shell types modifying the curvature
from the case of deep spherical shells to shallow spherical shells (plate case is seen as a very shallow
spherical shell). The plate results were compared using the equations proposed by Fan and Ye in [46].
The present new work uses the great potentiality of 3D spherical shell equations because they automat-
ically degenerate in those for cylinders and cylindrical panels, when one of the two radii of curvature
is imposed as infinite, and in those for plates when both radii of curvature are imposed as infinite. In
this way, using the same formulation, static results in terms of displacements and stresses are proposed
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for one-layered and multilayered isotropic, orthotropic, sandwich and composite plates, cylinders and
cylindrical and spherical shell panels (both thin and thick structures).

Past author’s works about exact 3D shell solutions considered only the free vibration analysis of
structures. Free frequency analysis of one-layered, multilayered and FGM plates and shells has been
conducted in [47], [48] and [49], respectively. Works [50] and [51] analyzed the vibration modes for single-
walled carbon nanotubes and double-walled carbon nanotubes, respectively. The convergence analysis
of the proposed method, in order to understand the number of mathematical layers and the order of
expansion of the exponential matrix, has been proposed in [52]. The shell geometry approximation in
the proposed 3D equations for classical and FGM structures has been deeply analyzed in [53] and [54].
Thorough comparisons between the 3D exact shell model and several 2D numerical shell models, in
terms of frequency values and vibration modes, have been performed in [55]- [59] for classical and FGM
plates and shells and for carbon nanotubes. Free frequency analysis for cylindrical bending vibration
modes has been performed in [60] and [61] for classical and FGM structures using both 3D exact and
refined 2D numerical models. The present work is the first extension of the 3D exact shell model, used
in the past by Brischetto [47]- [61] for free vibration investigations, to static analysis of one-layered and
multilayered isotropic, orthotropic, sandwich and composite plates, cylinders and cylindrical/spherical
shell panels. The 3D shell equilibrium equations are developed using a general orthogonal curvilinear
coordinate system and they are exactly solved via Navier-type conditions and the exponential matrix
method. The structures have all the edges as simply supported. Plates and shells are subjected to
harmonic transverse normal loads applied at the top or at the bottom surfaces. Results are proposed,
giving the three displacement components and the six stress components through the thickness for
thin and and thick structures, in order to describe an exhaustive 3D behavior of plates and shells.
Proposed benchmarks can be used as reference solutions by those scientists working in the development
of plate/shell numerical models which need an appropriate validation.

2 Three-dimensional exact solution for static analysis

In a three-dimensional shell, the middle surface Ω0 is the locus of points which is situated halfway
between the top and the bottom surfaces. The curvilinear orthogonal reference system (α, β, z) is
clearly indicated in Figure 1. The distance between the top and bottom surfaces evaluated along
the normal to the surface Ω0 is the thickness h of the structure [62], [63]. The three displacement
components are u, v, and w defined along α, β and z directions, respectively.

The parametric quantities for shells having constant radii of curvature (see Figure 1) are:

Hα = (1 +
z

Rα

) = (1 +
z̃ − h/2

Rα

) , Hβ = (1 +
z

Rβ

) = (1 +
z̃ − h/2

Rβ

) , Hz = 1 , (1)

Hα and Hβ depend on z (which varies from −h/2 to +h/2 and it is measured starting from Ω0 surface)
or z̃ coordinate (which varies from 0 to h and it is measured starting from bottom surface). Rα and
Rβ are mean radii of curvature evaluated in α and β directions, respectively [64].

Three-dimensional static study of laminated spherical shells embedding NL layers, with constant
radii of curvatureRα andRβ as indicated in Figure 1, can be implemented using the following differential
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equilibrium equations:

Hβ
∂σk

αα

∂α
+Hα

∂σk
αβ

∂β
+HαHβ

∂σk
αz

∂z
+ (

2Hβ

Rα

+
Hα

Rβ

)σk
αz = 0 , (2)

Hβ

∂σk
αβ

∂α
+Hα

∂σk
ββ

∂β
+HαHβ

∂σk
βz

∂z
+ (

2Hα

Rβ

+
Hβ

Rα
)σk

βz = 0 , (3)

Hβ
∂σk

αz

∂α
+Hα

∂σk
βz

∂β
+HαHβ

∂σk
zz

∂z
−

Hβ

Rα
σk
αα −

Hα

Rβ

σk
ββ + (

Hβ

Rα
+

Hα

Rβ

)σk
zz = 0 , (4)

the most general equations including the case for variable radii of curvature are proposed in [65] and [66].
The six stress components in each k physical layer are (σk

αα, σ
k
ββ , σ

k
zz, σ

k
βz, σ

k
αz, σ

k
αβ). Rα and Rβ refer

to the the mid-surface Ω0 of the whole laminated shell. Hα and Hβ depend on the z coordinate and
they continuously vary through the thickness direction of the laminated shell. Symbol ∂ indicates the
partial derivatives.

The most general form of three-dimensional strain-displacement relations in the case of general
orthogonal curvilinear coordinates were proposed in [64] and [65]. These geometrical relations can be
written in a simpler way for shells with constant radii of curvature:

ǫkαα =
1

Hα

∂uk

∂α
+

wk

HαRα
, (5)

ǫkββ =
1

Hβ

∂vk

∂β
+

wk

HβRβ

, (6)

ǫkzz =
∂wk

∂z
, (7)

γkαβ =
1

Hα

∂vk

∂α
+

1

Hβ

∂uk

∂β
, (8)

γkαz =
1

Hα

∂wk

∂α
+

∂uk

∂z
−

uk

HαRα
, (9)

γkβz =
1

Hβ

∂wk

∂β
+

∂vk

∂z
−

vk

HβRβ

. (10)

Eqs.(5)-(10) are written for spherical shells and they degenerate into equations for cylindrical shells
when Rα or Rβ is infinite (which means Hα or Hβ equals one), and they degenerate into equations for
plates when both Rα and Rβ are infinite (which means Hα=Hβ=1). (ǫkαα, ǫ

k
ββ, ǫ

k
zz, γ

k
βz, γ

k
αz , γ

k
αβ) are the

six strain components for each k physical layer.
3D linear elastic constitutive relations link the stress components with the strain components by

means of elastic coefficients Ck
ij . For a generic orthotropic material in the structural reference system

(α, β, z) and considering a generic k layer of the multilayered plate or shell, these equations are:

σk
αα = Ck

11ǫ
k
αα + Ck

12ǫ
k
ββ + Ck

13ǫ
k
zz + Ck

16γ
k
αβ , (11)

σk
ββ = Ck

12ǫ
k
αα + Ck

22ǫ
k
ββ + Ck

23ǫ
k
zz + Ck

26γ
k
αβ , (12)

σk
zz = Ck

13ǫ
k
αα + Ck

23ǫ
k
ββ + Ck

33ǫ
k
zz + Ck

36γ
k
αβ , (13)

σk
βz = Ck

44γ
k
βz + Ck

45γ
k
αz , (14)

σk
αz = Ck

45γ
k
βz + Ck

55γ
k
αz , (15)

σk
αβ = Ck

16ǫ
k
αα + Ck

26ǫ
k
ββ + Ck

36ǫ
k
zz + Ck

66γ
k
αβ . (16)

Closed form solution of Eqs.(2)-(4) is possible only if cross-ply laminates are considered (which means
fibre orientation angle θ equals 0◦ or 90◦). This last feature means elastic coefficients Ck

16, C
k
26, C

k
36 and
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Ck
45 equal zero. This condition combined with the substitution of Eqs.(5)-(10) into Eqs.(11)-(16) leads

to the employed constitutive equations:

σk
αα =

Ck
11

Hα
uk,α +

Ck
11

HαRα
wk +

Ck
12

Hβ

vk,β +
Ck
12

HβRβ

wk + Ck
13w

k
,z , (17)

σk
ββ =

Ck
12

Hα
uk,α +

Ck
12

HαRα
wk +

Ck
22

Hβ

vk,β +
Ck
22

HβRβ

wk + Ck
23w

k
,z , (18)

σk
zz =

Ck
13

Hα
uk,α +

Ck
13

HαRα
wk +

Ck
23

Hβ

vk,β +
Ck
23

HβRβ

wk + Ck
33w

k
,z , (19)

σk
βz =

Ck
44

Hβ

wk
,β + Ck

44v
k
,z −

Ck
44

HβRβ

vk , (20)

σk
αz =

Ck
55

Hα

wk
,α + Ck

55u
k
,z −

Ck
55

HαRα

uk , (21)

σk
αβ =

Ck
66

Hα

vk,α +
Ck
66

Hβ

uk,β . (22)

Symbol for partial derivatives ∂
∂α

, ∂
∂β

and ∂
∂z

are here replaced by subscripts ,α, ,β and ,z, respectively.
Equilibrium equations (2)-(4) for a generic physical layer k can be written in displacement form via

substitution of constitutive equations (17)-(22):

(

−
HβC

k
55

HαR2
α

−
Ck
55

RαRβ

)

uk +
(Ck

55Hβ

Rα

+
Ck
55Hα

Rβ

)

uk,z +
(Ck

11Hβ

Hα

)

uk,αα +
(Ck

66Hα

Hβ

)

uk,ββ+

(

Ck
55HαHβ

)

uk,zz +
(

Ck
12 + Ck

66

)

vk,αβ +
(Ck

11Hβ

HαRα
+

Ck
12

Rβ

+
Ck
55Hβ

HαRα
+

Ck
55

Rβ

)

wk
,α+ (23)

(

Ck
13Hβ + Ck

55Hβ

)

wk
,αz = 0 ,

(

−
HαC

k
44

HβR
2
β

−
Ck
44

RαRβ

)

vk +
(Ck

44Hα

Rβ

+
Ck
44Hβ

Rα

)

vk,z +
(Ck

66Hβ

Hα

)

vk,αα +
(Ck

22Hα

Hβ

)

vk,ββ+

(

Ck
44HαHβ

)

vk,zz +
(

Ck
12 + Ck

66

)

uk,αβ +
(Ck

44Hα

HβRβ

+
Ck
44

Rα
+

Ck
22Hα

HβRβ

+
Ck
12

Rα

)

wk
,β+ (24)

(

Ck
44Hα +Ck

23Hα

)

wk
,βz = 0 ,

( Ck
13

RαRβ

+
Ck
23

RαRβ

−
Ck
11Hβ

HαR2
α

−
2Ck

12

RαRβ

−
Ck
22Hα

HβR
2
β

)

wk +
(

−
Ck
55Hβ

HαRα
+

Ck
13

Rβ

−
Ck
11Hβ

HαRα
−

Ck
12

Rβ

)

uk,α+

(

−
Ck
44Hα

HβRβ

+
Ck
23

Rα
−

Ck
22Hα

HβRβ

−
Ck
12

Rα

)

vk,β +
(Ck

33Hβ

Rα
+

Ck
33Hα

Rβ

)

wk
,z+ (25)

(

Ck
55Hβ + Ck

13Hβ

)

uk,αz +
(

Ck
44Hα + Ck

23Hα

)

vk,βz +
(

Ck
55

Hβ

Hα

)

wk
,αα +

(

Ck
44

Hα

Hβ

)

wk
,ββ+

(

Ck
33HαHβ

)

wk
,zz = 0 .

Eqs.(23)-(25) are written in closed form supposing simply supported egdes in all the considered struc-
tures and using harmonic forms for the three displacement components:

uk(α, β, z) = Uk(z)cos(ᾱα)sin(β̄β) , (26)

vk(α, β, z) = V k(z)sin(ᾱα)cos(β̄β) , (27)

wk(α, β, z) = W k(z)sin(ᾱα)sin(β̄β) , (28)
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where Uk, V k and W k are the amplitudes for displacements evaluated in α, β and z directions, re-
spectively. Coefficients ᾱ = mπ

a
and β̄ = nπ

b
include m and n as the half-wave numbers and a and b

as the shell dimensions in α and β directions, respectively (all these quantities are calculated at the
mid-surface Ω0). Rα and Rβ are measured at the reference mid-surface Ω0 of the multilayered shell. Hα

and Hβ are evaluated through the thickness direction of the laminated shell using Eq.(1). Equilibrium
relations are written for spherical shells, they automatically degenerate into equilibrium relations for
cylindrical closed/open shells when Rα or Rβ is infinite (which means Hα or Hβ equals one) and into
equilibrium relations for plates [11] when Rα and Rβ are infinite (which means Hα and Hβ equal one).
These features allow a unified and general formulation valid for all the considered geometries.

Eqs.(26)-(28) are substituted in Eqs.(23)-(25) in order to obtain the equilibrium equations in terms
of displacement amplitudes and their derivatives made with respect to z coordinate:

(

−
Ck
55Hβ

HαR2
α

−
Ck
55

RαRβ

− ᾱ2C
k
11Hβ

Hα
− β̄2C

k
66Hα

Hβ

)

Uk +
(

− ᾱβ̄Ck
12 − ᾱβ̄Ck

66

)

V k+

(

ᾱ
Ck
11Hβ

HαRα
+ ᾱ

Ck
12

Rβ

+ ᾱ
Ck
55Hβ

HαRα
+ ᾱ

Ck
55

Rβ

)

W k +
(Ck

55Hβ

Rα
+

Ck
55Hα

Rβ

)

Uk
,z +

(

ᾱCk
13Hβ+ (29)

ᾱCk
55Hβ

)

W k
,z +

(

Ck
55HαHβ

)

Uk
,zz = 0 ,

(

− ᾱβ̄Ck
66 − ᾱβ̄Ck

12

)

Uk +
(

−
Ck
44Hα

HβR
2
β

−
Ck
44

RαRβ

− ᾱ2C
k
66Hβ

Hα
− β̄2C

k
22Hα

Hβ

)

V k+

(

β̄
Ck
44Hα

HβRβ

+ β̄
Ck
44

Rα
+ β̄

Ck
22Hα

HβRβ

+ β̄
Ck
12

Rα

)

W k +
(Ck

44Hα

Rβ

+
Ck
44Hβ

Rα

)

V k
,z +

(

β̄Ck
44Hα+ (30)

β̄Ck
23Hα

)

W k
,z +

(

Ck
44HαHβ

)

V k
,zz = 0 ,

(

ᾱ
Ck
55Hβ

HαRα

− ᾱ
Ck
13

Rβ

+ ᾱ
Ck
11Hβ

HαRα

+ ᾱ
Ck
12

Rβ

)

Uk +
(

β̄
Ck
44Hα

HβRβ

− β̄
Ck
23

Rα

+ β̄
Ck
22Hα

HβRβ

+ β̄
Ck
12

Rα

)

V k+

( Ck
13

RαRβ

+
Ck
23

RαRβ

−
Ck
11Hβ

HαR2
α

−
2Ck

12

RαRβ

−
Ck
22Hα

HβR
2
β

− ᾱ2C
k
55Hβ

Hα
− β̄2C

k
44Hα

Hβ

)

W k+ (31)

(

− ᾱCk
55Hβ − ᾱCk

13Hβ

)

Uk
,z +

(

− β̄Ck
44Hα − β̄Ck

23Hα

)

V k
,z +

(Ck
33Hβ

Rα
+

Ck
33Hα

Rβ

)

W k
,z+

(

Ck
33HαHβ

)

W k
,zz = 0 .

Eqs.(29)-(31) are a system of three second order partial differential relations in z. These equations
are proposed for spherical shells with constant radii of curvature and they can easily degenerate into
relations for cylindrical panels and plates. A compact form can be proposed when coefficients Ak

s are

used in place of each block
()

with k indicating the physical layer and index s varying from 1 to 19:

Ak
1U

k +Ak
2V

k +Ak
3W

k +Ak
4U

k
,z +Ak

5W
k
,z +Ak

6U
k
,zz = 0 , (32)

Ak
7U

k +Ak
8V

k +Ak
9W

k +Ak
10V

k
,z +Ak

11W
k
,z +Ak

12V
k
,zz = 0 , (33)

Ak
13U

k +Ak
14V

k +Ak
15W

k +Ak
16U

k
,z +Ak

17V
k
,z +Ak

18W
k
,z +Ak

19W
k
,zz = 0 . (34)

The method described in [67] and [68] allows the reduction of the system of second order differential
equations in a system of first order differential equations simply using the redouble of the variables (all
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the details, here omitted for the sake of brevity, are given in [48]). The new system is:

















Ak
6

0 0 0 0 0
0 Ak

12 0 0 0 0
0 0 Ak

19
0 0 0

0 0 0 Ak
6 0 0

0 0 0 0 Ak
12

0
0 0 0 0 0 Ak

19

































Uk

V k

W k

Uk′

V k′

W k′

















′

=

















0 0 0 Ak
6

0 0
0 0 0 0 Ak

12 0
0 0 0 0 0 Ak

19

−Ak
1 −Ak

2 −Ak
3 −Ak

4 0 −Ak
5

−Ak
7

−Ak
8

−Ak
9

0 −Ak
10

−Ak
11

−Ak
13

−Ak
14

−Ak
15

−Ak
16

−Ak
17

−Ak
18

































Uk

V k

W k

Uk′

V k′

W k′

















.

(35)

Considering a generic k layer, Eq.(35) can be proposed as:

D
k ∂U

k

∂z̃
= A

k
U

k , (36)

where ∂Uk

∂z̃
= U

k′ and U
k = [Uk V k W k Uk′ V k ′ W k ′]. Further steps must be performed:

D
k
U

k ′ = A
k
U

k , (37)

U
k′ = D

k−1
A

k
U

k , (38)

U
k′ = A

k∗
U

k , (39)

with A
k∗ = D

k−1
A

k. Plates have coefficients Ak
3 , A

k
4 , A

k
9 , A

k
10, A

k
13, A

k
14 and Ak

18 equal zero because
of infinite radii of curvature Rα and Rβ . The remaining coefficients Ak

1 , A
k
2 , A

k
5 , A

k
6 , A

k
7 , A

k
8 , A

k
11, A

k
12,

Ak
15, A

k
16, A

k
17 and Ak

19 are constant in each k layer because parametric coefficients Hα = Hβ = 1 do

not depend on the thickness coordinate z̃ in the case of plates. Therefore, matrices D
k, Ak and A

k∗

are constant in each k layer of the plate. The solution of Eq.(39) for plates can be written as proposed
in [68] and [69]:

U
k(z̃k) = exp(Ak∗z̃k)Uk(0) with z̃k ǫ [0, hk] , (40)

where z̃k is the coordinate through the thickness of each layer k from 0 at the bottom to hk at the top.
The exponential matrix for the plate geometry (constant coefficients Ak

s) is developed with z̃k = hk for
each k layer:

A
k∗∗ = exp(Ak∗hk) = I +A

k∗ hk +
A

k∗2

2!
hk

2
+

A
k∗3

3!
hk

3
+ . . .+

A
k∗N

N !
hk

N
, (41)

where I is the 6 × 6 identity matrix. This expansion has a very rapid convergence as demonstrated
in [70]. For this reason, the method is not time consuming from the computational point of view.
Brischetto [49] demonstrated as N = 15 order of expansion gives the exact solution for free vibration
analysis of each possible one-layered plate case. For one-layered and multilayered shells embedding one
or NL physical layers, Ak∗ is not constant in each k layer because parametric coefficients Hα(z̃) and
Hβ(z̃) depend on the thickness coordinate. Matrices D

k, Ak and A
k∗ are constant in each k layer

when radii of curvature Rα and Rβ are infinite for the multilayered plate cases (this condition means

Hα = Hβ = 1). Shell structures have not constant matrices D
k, Ak and A

k∗ because parametric
coefficients Hα and Hβ in each k layer depend on the thickness coordinate z̃. In shell cases, the
introduction of several q fictitious/mathematical layers in each k layer is mandatory in order to exactly
evaluate Hα and Hβ. In this work, each k physical layer of the laminated shell will be divided in an
opportune number of q mathematical layers in order to obtain a total number M of layers with index
j and constant thickness hj . In this way, all the above-quoted equations must be rewritten with index
j in place of index k in order to be valid for shell structures. Index j considers the total physical
and mathematical layers obtained dividing the k physical layers in mathematical layers with constant
thickness. In this way, matrices A

j∗∗ are constant in each mathematical j layer because they can be

8



calculated using Rα, Rβ, ᾱ and β̄ evaluated at the mid-surface Ω0 of the whole shell, and using Hα and
Hβ evaluated in the middle of each j layer.

In the case of multilayered shells, M − 1 transfer matrices T
j−1,j must be defined. These matrices

are obtained writing for each interface (physical or mathematical interface) the conditions to impose
the interlaminar continuity of displacements and transverse shear/normal stresses:

ujb = uj−1
t , vjb = vj−1

t , wj
b = wj−1

t , (42)

σj
zzb = σj−1

zzt , σj
αzb = σj−1

αzt , σj
βzb = σj−1

βzt , (43)

each displacement and transverse stress component at the top (t) of the j-1 layer is equal to the
connected displacement and transverse stress component at the bottom (b) of the j layer.

The continuity of transverse shear stress σαz as suggested in Eq.(43) can be written in explicit form
using Eq.(21) and index j:

Cj−1
55

Hj−1
αt

ᾱW j−1
t +Cj−1

55 U j−1
t

′

−
Cj−1
55

Hj−1
αt Rα

U j−1
t =

Cj
55

Hj
αb

ᾱW j
b + Cj

55U
j
b

′

−
Cj
55

Hj
αbRα

U j
b , (44)

U j
b

′

=
1

Cj
55

(Cj−1
55

Hj−1
αt

ᾱ−
Cj
55

Hj
αb

ᾱ
)

W j−1
t +

1

Cj
55

(

−
Cj−1
55

Hj−1
αt Rα

+
Cj
55

Hj
αbRα

)

U j−1
t +

(Cj−1
55

Cj
55

)

U j−1
t

′

. (45)

The continuity of transverse shear stress σβz as suggested in Eq.(43) can be written in explicit form
using Eq.(20) and index j:

Cj−1
44

Hj−1
βt

β̄W j−1
t + Cj−1

44 V j−1
t

′

−
Cj−1
44

Hj−1
βt Rβ

V j−1
t =

Cj
44

Hj
βb

β̄W j
b + Cj

44V
j
b

′

−
Cj
44

Hj
βbRβ

V j
b , (46)

V j
b

′

=
1

Cj
44

(Cj−1
44

Hj−1
βt

β̄ −
Cj
44

Hj
βb

β̄
)

W j−1
t +

1

Cj
44

(

−
Cj−1
44

Hj−1
βt Rβ

+
Cj
44

Hj
βbRβ

)

V j−1
t +

(Cj−1
44

Cj
44

)

V j−1
t

′

. (47)

The continuity of transverse shear stress σzz as suggested in Eq.(43) can be written in explicit form
using Eq.(19) and index j:

−
Cj−1
13

Hj−1
αt

ᾱU j−1
t +

Cj−1
13

Hj−1
αt Rα

W j−1
t −

Cj−1
23

Hj−1
βt

β̄V j−1
t +

Cj−1
23

Hj−1
βt Rβ

W j−1
t + Cj−1

33 W j−1
t

′

= (48)

−
Cj
13

Hj
αb

ᾱU j
b +

Cj
13

Hj
αbRα

W j
b −

Cj
23

Hj
βb

β̄V j
b +

Cj
23

Hj
βbRβ

W j
b + Cj

33W
j
b

′

,

W j
b

′

=
1

Cj
33

(

−
Cj−1
13

Hj−1
αt

ᾱ+
Cj
13

Hj
αb

ᾱ
)

U j−1
t +

1

Cj
33

(

−
Cj−1
23

Hj−1
βt

β̄ +
Cj
23

Hj
βb

β̄
)

V j−1
t + (49)

1

Cj
33

( Cj−1
13

Hj−1
αt Rα

+
Cj−1
23

Hj−1
βt Rβ

−
Cj
13

Hj
αbRα

−
Cj
23

Hj
βbRβ

)

W j−1
t +

(Cj−1
33

Cj
33

)

W j−1
t

′

.

The continuity of displacement components (see Eq.(42)), written in terms of amplitude and using the
harmonic forms as already done in Eqs.(44)-(49), is:

U j
b = U j−1

t , V j
b = V j−1

t , W j
b = W j−1

t . (50)

In above-mentioned equations, t and b indicate top and bottom of j − 1 layer and j layer, respectively.
ᾱ, β̄, Rα and Rβ are measured with respect to the mid-surface Ω0 of the structure. Hα and Hβ are
evaluated where it has been indicated by the subscript b or t and the superscript j or j − 1.
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The conditions summarized in Eqs.(45), (47), (49) and (50) can be rewritten using the following
system:

















U
V
W
U ′

V ′

W ′

















j

b

=

















1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
T1 0 T2 T3 0 0
0 T4 T5 0 T6 0
T7 T8 T9 0 0 T10

















j−1,j 















U
V
W
U ′

V ′

W ′

















j−1

t

, (51)

The compact form of Eq.(51) is:
U

j
b = T

j−1,j
U

j−1
t . (52)

The matrices T
j−1,j links U defined at the bottom (b) of the j layer with U defined at the top (t) of

the j − 1 layer. This condition can also be expressed as:

U
j(0) = T

j−1,j
U

j−1(hj−1) , (53)

displacements U j are evaluated at z̃j = 0 and displacements U j−1 are evaluated at z̃j−1 = hj−1. U at
the top of the j layer and U at the bottom of the same j layer are linked via the exponential matrix
A

j∗∗ as suggested in Eqs.(40) and (41):

U
j(hj) = A

j∗∗
U

j(0) , (54)

Eq.(53) can recursively be included in Eq.(54) for each M − 1 interface:

U
M (hM ) = A

M ∗∗

T
M−1,M

A
M−1∗∗

T
M−2,M−1 . . . . . .A2∗∗

T
1,2

A
1∗∗

U
1(0) , (55)

defining the matrix Hm in the case of multilayered structures, Eq.(55) can be rewritten as:

U
M (hM ) = Hm U

1(0) , (56)

Eq.(56) links U defined at the top of the last M layer with U evaluated at the bottom of the first layer.
Matrices T

j−1,j become constant because they are calculated using Rα, Rβ, ᾱ and β̄ evaluated at the
mid-surface Ω0 of the shell, and using Hα and Hβ evaluated at each mathematical/fictitious interface.

The analyzed plates and shells have simply supported edges and they can be loaded at the top
and/or at the bottom of the whole laminated structure using the following conditions:

σzz = pz , σαz = pα , σβz = pβ for z = −h/2,+h/2 or z̃ = 0, h , (57)

w = v = 0, σαα = 0 for α = 0, a , (58)

w = u = 0, σββ = 0 for β = 0, b , (59)

pz, pα and pβ are harmonic mechanical loads that can be applied at the top or at the bottom of the
structure in z, α and β direction, respectively:

pjα(α, β, z) = P j
α(z)cos(ᾱα)sin(β̄β) , (60)

pjβ(α, β, z) = P j
β(z)sin(ᾱα)cos(β̄β) , (61)

pjz(α, β, z) = P j
z (z)sin(ᾱα)sin(β̄β) , (62)

P j
α, P

j
β and P j

z indicate the load amplitudes.
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Transverse shear/normal stresses developed for a generic value of z̃ in the j layer are:

σj
zz(z̃) =

Cj
13

Hα(z̃)
uj,α +

Cj
13

Hα(z̃)Rα

wj +
Cj
23

Hβ(z̃)
vj,β +

Cj
23

Hβ(z̃)Rβ

wj + Cj
33w

j
,z = −ᾱ

Cj
13

Hα(z̃)
U j+

Cj
13

Hα(z̃)Rα

W j − β̄
Cj
23

Hβ(z̃)
V j +

Cj
23

Hβ(z̃)Rβ

W j + Cj
33W

j
,z , (63)

σj
βz(z̃) =

Cj
44

Hβ(z̃)
wj
,β + Cj

44v
j
,z −

Cj
44

Hβ(z̃)Rβ

vj = β̄
Cj
44

Hβ(z̃)
W j + Cj

44V
j
,z −

Cj
44

Hβ(z̃)Rβ

V j , (64)

σj
αz(z̃) =

Cj
55

Hα(z̃)
wj
,α + Cj

55u
j
,z −

Cj
55

Hα(z̃)Rα

uj = ᾱ
Cj
55

Hα(z̃)
W j + Cj

55U
j
,z −

Cj
55

Hα(z̃)Rα

U j , (65)

Eqs.(63)-(65) written at the the top (t) of the last j layer use the conditions summarized by Eq.(57)
with Rα, Rβ, ᾱ and β̄ evaluated at the mid-surface Ω0 of the shell, and with Ht

α and Ht
β defined at top

of the whole structure for z̃ = h:

σM
zzt = −ᾱ

CM
13

Hαt

UM
t +

CM
13

HαtRα

WM
t − β̄

CM
23

Hβt

V M
t +

CM
23

HβtRβ

WM
t + CM

33W
M
t,z = PM

zt , (66)

σM
βzt = β̄

CM
44

Hβt

WM
t + CM

44V
M
t,z −

CM
44

HβtRβ

V M
t = PM

βt , (67)

σM
αzt = ᾱ

CM
55

Hαt
WM

t + CM
55U

M
t,z −

CM
55

HαtRα
UM
t = PM

αt , (68)

M indicates the last layer at the top of the whole structure. Each physical layer k has been divided in
q mathematical layers with constant thickness hq. In this way total j mathematical layers have been
obtained, the index j goes from 1 at the bottom to the total number M at the top. NL indicates the
number of real physical layers. Eqs.(63)-(65) written at the the bottom (b) of the first j = 1 layer use
the conditions summarized by Eq.(57) with Rα, Rβ, ᾱ and β̄ evaluated at the mid-surface Ω0 of the
shell, and with Hb

α and Hb
β defined at bottom of the whole structure for z̃ = 0:

σ1
zzb = −ᾱ

C1
13

Hαb

U1
b +

C1
13

HαbRα
W 1

b − β̄
C1
23

Hβb

V 1
b +

C1
23

HβbRβ

W 1
b + C1

33W
1
b,z = P 1

zb , (69)

σ1
βzb = β̄

C1
44

Hβb

W 1
b + C1

44V
1
b,z −

C1
44

HβbRβ

V 1
b = P 1

βb , (70)

σ1
αzb = ᾱ

C1
55

Hαb

W 1
b + C1

55U
1
b,z −

C1
55

HαbRα
U1
b = P 1

αb . (71)

Eqs.(66)-(68) in matrix form are (UM (hM ) is vector U evaluated at the top of the whole multilayered
shell, last M layer with z̃M = hM ):









−ᾱ
CM

13

Hαt
−β̄

CM
23

Hβt
(

CM
13

HαtRα
+

CM
23

HβtRβ
) 0 0 CM

33

0 −
CM

44

HβtRβ
β̄

CM
44

Hβt
0 CM

44 0

−
CM

55

HαtRα
0 ᾱ

CM
55

Hαt
CM
55 0 0



























UM (hM )
V M (hM )
WM(hM )

UM ′

(hM )

V M ′

(hM )

WM ′

(hM )



















=





PM
zt

PM
βt

PM
αt



 . (72)

Eqs.(69)-(71) in matrix form are (U 1(0) is vector U calculated at the bottom of the whole multilayered
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shell, first layer 1 with z̃1 = 0):









−ᾱ
C1

13

Hαb
−β̄

C1

23

Hβb
(

C1

13

HαbRα
+

C1

23

HβbRβ
) 0 0 C1

33

0 −
C1

44

HβbRβ
β̄

C1

44

Hβb
0 C1

44 0

−
C1

55

HαbRα
0 ᾱ

C1

55

Hαb
C1
55 0 0



























U1(0)
V 1(0)
W 1(0)

U1′(0)

V 1′(0)

W 1′(0)



















=





P 1
zb

P 1
βb

P 1
αb



 . (73)

Eqs.(72) and (73) in compact writing, to define the stress state and the loading conditions at the top
and bottom of the whole structure, are:

B
M (hM ) UM (hM ) = P

M
t , (74)

B
1(0) U1(0) = P

1
b , (75)

with

P
M
t =





PM
zt

PM
βt

PM
αt



 , P
1
b =





P 1
zb

P 1
βb

P 1
αb



 . (76)

In the cases proposed in the present paper, only loads in z direction applied at the top or at the bottom
will be considered. Therefore, PM

βt = PM
αt = P 1

βb = P 1
αb = 0. This choice is made for the sake of brevity,

further results with loads applied at the top and at the bottom in α and β directions will be proposed
in future companion papers. Eq.(56) can be introduced in Eq.(74) for a total number of layers equals
M :

B
M (hM ) Hm U

1(0) = P
M
t , (77)

B
1(0) U1(0) = P

1
b , (78)

Eqs.(77) and (78) can be grouped in a general system:

[

B
M (hM ) Hm

B
1(0)

]

U
1(0) = P , (79)

where the 6× 6 E matrix is:

E =

[

B
M (hM ) Hm

B
1(0)

]

, (80)

and the 6× 1 unknown vector U1(0) and load vector P are:

U
1(0) =



















U1(0)
V 1(0)
W 1(0)

U1′(0)

V 1′(0)

W 1′(0)



















, P =

















PM
zt

0
0
P 1
zb

0
0

















. (81)

The final linear algebraic system to be solved is:

E U
1(0) = P . (82)

The Eq.(82) is also valid for multilayered plate geometries without fictitious layers where BNL(hNL) =
B

M (hM ). The method always uses a layer-wise definition and the matrix E has always a 6× 6 dimen-
sion, independently from the number of employed layers M . The solution is obtained via an in-house
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academic software called 3DES which has been implemented by the author in a Matlab environment.
Only spherical panel equations have been implemented because they automatically degenerate into
cylindrical open/closed shell and plate equations.

From the solution of Eq.(82), the vector U
1(0) is obtained. It contains the three displacement

components at the bottom of the structure and their relative derivatives made with respect z. From
these six values at the bottom, the 6 × 1 vector U can be calculated at each value of the thickness
coordinate z using Eqs.(50)-(56). Strain components and stress components can be evaluated at each
value of the thickness coordinate z using Eqs.(5)-(10) and (17)-(22), respectively. The proposed method
is very accurate in the calculation of displacement components because it always uses a layer-wise
approach even if a large number of mathematical layers is employed. The strains are calculated in
an accurate way through the thickness because in Eqs.(5)-(10) the derivatives of displacements with
respect to α and β are exactly obtained simply using the harmonic forms, and the derivatives of
displacements with respect to z are directly obtained from the system in Eq.(82) (there is not need
to numerically derive the displacements with respect to z). In this sense, this solution uses the same
principle employed by mixed methods. Exact evaluations of strains through z direction in Eqs.(5)-(10)
give exact evaluations of stresses through z direction by means of Eqs.(17)-(22).

3 Results

The present section is divided in two main parts. The first part proposes a validation of the model
using several comparisons with other 3D solutions for plates and shells in the literature. This part is
also useful to understand the number of mathematical layers M and the order of expansion N in the
exponential matrix to use for a stable and correct solution. The second part proposes new benchmarks
to use for future comparisons with further 2D and 3D numerical and exact models and to understand
the 3D behavior of different one-layered, multilayered, sandwich and laminated structures.

3.1 Preliminary assessments

The five proposed assessments are summarized, as geometry, lamination scheme and load applications,
in Table 1. The material data of the five proposed cases are shown in Table 2. Cases 1 and 2 have
been proposed by Pagano in [2] for the exact 3D solution of a simply supported rectangular composite
laminated plate and for a simply supported square sandwich plate, respectively. Results have been
proposed in Tables 3 and 4 in terms of no-dimensional stresses and displacements:

(σ̄αα, σ̄ββ, σ̄αβ) =
(σαα, σββ, σαβ)

p̂z(a/h)2
, (σ̄αz, σ̄βz) =

(σαz, σβz)

p̂z(a/h)
, (w̄) =

100Ecomp
2 w

p̂zh(a/h)4
. (83)

The case 3 has been proposed by Ren [26] for the exact 3D solution of a simply supported composite
laminated cylindrical shell. Results have been proposed in Table 5 in terms of no-dimensional stresses
and displacements:

(σ̄αα, σ̄ββ) =
(σαα, σββ)

p̂z(Rα/h)2
, (σ̄αz) =

(σαz)

p̂z(Rα/h)
, (w̄) =

10Ecomp
2 w

p̂zh(Rα/h)4
. (84)

The case 4 has been proposed by Varadan and Bhaskar [27] for the exact 3D solution of a simply
supported composite laminated cylinder. Results have been proposed in Tables 6 in terms of no-
dimensional stresses and displacements:

(σ̄αα, σ̄ββ , σ̄αβ) =
10(−σαα,−σββ, σαβ)

p̂z(Rα/h)2
, (σ̄αz , σ̄βz) =

10(σαz ,−σβz)

p̂z(Rα/h)
, (w̄) = −

10Ecomp
1 w

p̂zh(Rα/h)4
, (85)

σ̄zz = −σzz .
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The case 5 has been proposed by Fan and Zhang [45] for the exact three-dimensional solution of a
simply supported composite laminated spherical shell. Results have been proposed in Table 7 using
the no-dimensional transverse displacement:

(w̄) =
103Ecomp

2 h3w

p̂za4
. (86)

The present 3D exact solution has been employed in Tables 3-7 using an order of expansion N = 3
for the exponential matrix. M = 102 mathematical layers have been used for the cases 1, 4 and 5, where
three layers with the same thickness have been embedded. M = 100 mathematical layers have been
set for cases 2 and 4 for the sandwich configuration and for the two-layered shell, respectively. These
choices have always guaranteed an optimal convergence of the solution and a perfect correspondence
with the other proposed 3D exact solutions. For these reasons, these values will be also used in the
next part where new benchmarks will be proposed.

Table 3 presents the comparison between the present 3D exact solution and the 3D exact solution
by Pagano [2] for a simply-supported rectangular composite laminated plate. Transverse normal dis-
placement, in-plane normal, in-plane shear and transverse shear stresses are given in terms of maximum
amplitude (in parentheses are indicated the α and β coordinates where they are evaluated) at different
z coordinates (which can vary from the bottom −h/2 to the top +h/2). In the case of quantities
evaluated at interfaces, it is specified if the top or the bottom of the interface is considered. Results
are given for thick and thin plates (from thickness ratio a/h = 2 to a/h = 100). The two methods are
perfectly coincident for each thickness ratio and investigated variable.

Table 4 proposes the 3D exact solution by Pagano [2] and the present 3D exact method in the case
of a simply-supported square sandwich plate. Comparisons have been performed for several in-plane
normal/shear and transverse shear stresses evaluated as maximum amplitude at different thickness
locations. Both thick and thin plates are investigated. The two methods are almost coincident for
moderately thin and thin plates. Important differences are shown for thick plates. The 3D solution by
Pagano [2] seems to have some problems for thick plates with an high value of transverse anisotropy
(typical of sandwich structures where there is an important difference between skins and core in terms
of elastic properties). The present author has verified these results adding DiQuMASPAB results which
confirm the stress values by Brischetto and not those by Pagano for thickness ratios a/h equal 2, 4 and
10. Readers interested to this topic can verify this feature by means of their models. DiQuMASPAB
results have been supplied by the courtesy of Dr. Tornabene and Dr. Fantuzzi using the in-house
academic software DiQuMASPAB [71] based on a refined quasi-3D layer-wise model [72], [73].

Table 5 makes a comparison between the present three-dimensional exact model and that by Ren [26]
for a composite laminated cylindrical shell panel. This comparison is proposed for in-plane normal and
transverse shear stresses and for the transverse displacement. Such variables are evaluated as maximum
amplitudes in particular positions through the thickness. For all the thickness ratios proposed (from
thick structures with Rα/h = 2 to thin structures with Rα/h = 500), the two methods are always
perfectly coincident.

Table 6 shows the results for a simply-supported composite laminated cylinder. 3D solution by
Varadan and Bhaskar [27] is compared with the present 3D exact method in terms of transverse dis-
placement and in-plane and transverse shear/normal stresses. All the quantities are investigated in
terms of maximum amplitudes through different thickness positions. The two models are always per-
fectly coincident for each thickness ratio Rα/h proposed.

The last Table 7 proposes the comparison between the present three-dimensional exact model and
that by Fan and Zhang [45] for the analysis of a composite multilayered spherical panel in terms of
no-dimensional transverse displacement w̄ evaluated in the middle of the structure. The two solutions
are coincident for each thickness ratio h/Rα.
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3.2 New benchmarks

The present 3D exact shell solution, validated in the previous part, is here used to propose new bench-
marks. From the previous verifications, the proposed 3D shell model can be used with confidence by
means of an order of expansion N = 3 for the exponential matrix. N = 100 mathematical layers are
used for one-layered, two-layered and sandwich configurations. N = 102 mathematical layers are used
for three-layered structures with the same thickness for the three layers. New proposed benchmarks are
important for two main reasons. They can be used for a complete validation of new refined 2D and 3D
shell models proposed in the literature because they propose a large variety of geometries, lamination
schemes and employed materials. Moreover, they allow to investigate typical three-dimensional effects
and 3D behaviors which are typical of high thickness values and high values of transverse and in-plane
anisotropy.

Benchmark 1 considers a one-layered isotropic square plate. Benchmark 2 proposes a two-layered
rectangular plate embedding two different isotropic layers with the same thickness. Benchmark 3
investigates a three-layered cylinder embedding three different isotropic layers with the same thickness.
Benchmark 4 shows a sandwich cylindrical shell panel with two external isotropic skins and an internal
soft core. The last benchmark, the number 5, considers a three-layered composite cross-ply (0◦/90◦/0◦)
spherical shell panel. All the five structures are simply-supported and subjected to a mechanical load
applied at the top in harmonic form with half-wave numbers m,n as indicated in Table 8 and amplitude
Pz = 1Pa. All the geometrical, lamination and load features of the five proposed benchmarks are
summarized in Figure 2 and Table 8. Table 9 contains the elastic properties of all the materials
employed in the five proposed benchmarks. Tables 10-14 and Figures 3-8 show the results for the
five proposed benchmarks using no-dimensional displacements and stresses. No-dimensional forms for
benchmarks 1 and 2 are:

(ū, v̄, w̄) =
102Ebottom

2 (u, v, w)

p̂zh(a/h)4
, (σ̄αα, σ̄ββ , σ̄αβ) =

(σαα, σββ , σαβ)

p̂z(a/h)2
, (87)

(σ̄αz , σ̄βz) =
(σαz, σβz)

p̂z(a/h)
, σ̄zz = σzz .

No-dimensional forms for benchmarks 3, 4 and 5 are:

(ū, v̄, w̄) =
104Ebottom

2 (u, v, w)

p̂zh(Rα/h)4
, (σ̄αα, σ̄ββ , σ̄αβ) =

103(σαα, σββ, σαβ)

p̂z(Rα/h)2
, (88)

(σ̄αz , σ̄βz) =
103(σαz, σβz)

p̂z(Rα/h)
, σ̄zz = σzz .

Tables 10-14 propose the no-dimensional forms of the three displacement components and the six stress
components in terms of maximum amplitude. They are evaluated at the top, middle and bottom of
the structure. When the middle surface coincides with a physical interface (e.g., Table 11), the top
of the first layer is considered. Results in Tables 10-14 are proposed for thick and thin structures
(thickness ratios from a/h = 2 to a/h = 100 for plates and from Rα/h = 2 to Rα/h = 500 for shells).
Displacements proposed in Figure 3 and stresses evaluated in Figures 4-8 for all the five benchmarks are
given as no-dimensional quantities through the thickness direction in terms of maximum amplitudes.

Benchmark 1 is proposed in Table 10. The one-layered isotropic square plate has a symmetric
behavior in the plane in fact ū = v̄, σ̄αα = σ̄ββ and σ̄αz = σ̄βz. The symmetric behavior through the
thickness is possible only for thin and moderately thin structure, in fact for thickness ratios greater
than a/h = 20 the top displacement values and the bottom displacement values are equal and the
same feature is shown for in-plane and transverse shear stresses. Transverse shear stresses σ̄αz and σ̄βz
are equal to 0 at the top and at the bottom of the structure because no Pα and Pβ loads have been
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applied. Transverse normal stress σ̄zz is equal to 1 at the top and equals 0 at the bottom because a
load Pz = 1Pa has been applied at the top of the structure. The first image of Figure 3 for a thick
plate confirms the displacement behavior through the thickness direction. Figure 4 shows the six stress
components through the thickness of a thick plate, all the considerations obtained by means of the
table results are here confirmed.

Benchmark 2 is analyzed in Table 11. The two-layered isotropic rectangular plate does not have a
symmetric behavior in the plane because the two sides are different (a = 3b), in fact ū 6= v̄, σ̄αα 6= σ̄ββ
and σ̄αz 6= σ̄βz. The symmetric behavior through the thickness is not possible even if the structure
is very thin (a/h = 100) because there is an important transverse anisotropy due to the presence
of two different isotropic layers with large differences in terms of elastic properties. For this reason,
top displacement values are different from bottom displacement values, and top in-plane stresses are
different from bottom in-plane stresses for each thickness ratio. It is confirmed that transverse shear
stresses σ̄αz and σ̄βz are equal to 0 at the top and at the bottom of the structure because no Pα and
Pβ loads have been applied. Transverse normal stress σ̄zz is equal to 1 at the top and equals 0 at the
bottom because a load Pz = 1Pa is applied at the top of the structure. The second image of Figure
3 for a thick plate confirms the displacement behavior through the thickness direction. Displacements
are continuous through the interface between the two layers because the compatibility conditions have
been imposed in the proposed 3D shell model. Figure 5 gives the six stress components through the
thickness for a thick plate. All the considerations obtained by means of table results are here confirmed.
Transverse shear and transverse normal stresses must be continuous through the thickness and at the
interface between the two layers because of equilibrium reasons. In-plane normal and in-plane shear
stresses can be discontinuous at the interface as demonstrated in the first three images. All these
conditions have been successfully included in the employed 3D layer-wise shell model.

Benchmark 3 is studied in Table 12. The three-layered isotropic cylinder does not have a symmetry
in terms of variables ū, v̄, σ̄αα, σ̄ββ, σ̄αz and σ̄βz. The symmetric behavior is also not present in the
thickness direction because of the three different isotropic layers with different elastic properties which
give an important transverse anisotropy. This feature is confirmed for all the thickness ratios, even if
displacements become constant through the thickness for the Rα/h = 500 case. Top in-plane stresses
are different from bottom in-plane stresses for each thickness ratio. Transverse shear stresses are zero
at the top and at the bottom to satisfy the loading boundary conditions (Pα = Pβ = 0). Transverse
normal stress is zero at the bottom and equals 1 at the top because the transverse normal load Pz is zero
at the bottom and equals 1Pa at the top, respectively. The third image of Figure 3 gives an exhaustive
evaluation of the three displacement components through the thickness of a very thick three-layered
cylinder. All the three displacement components are continuous through the two interfaces because
the compatibility conditions have been satisfied in the proposed 3D shell model. Figure 6 gives the six
stress components through the thickness of a thick three-layered cylinder confirming the results seen in
Table 12. Transverse shear and transverse normal stresses must be continuous through the thickness
and at the two interfaces because of imposed equilibrium conditions. In-plane normal and in-plane
shear stresses can be discontinuous at the interfaces as demonstrated in the first three images of Figure
6. All these conditions are clearly given in the proposed figure because compatibility and equilibrium
conditions have been correctly imposed in the 3D shell model. The proposed model uses a layer-wise
approach and this feature is clearly demonstrated in Figure 6 where the typical zigzag form is shown.
This behavior is due to the high transverse anisotropy connected with the presence of three different
isotropic layers.

Table 13 proposes the benchmark 4 for the sandwich cylindrical shell panel. The investigated
variables demonstrate the absence of symmetry in the in-plane direction and in the behavior through
the thickness direction z. These features are connected with the absence of symmetry in the geometry
and with the presence of a soft core. When a load is applied at the top of the structure, such load
effects are not completely transferred to the bottom skin because of the presence of a very soft central
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core. Loading boundary conditions (Pα = Pβ = 0 at both top and bottom surfaces, and Pz = 0 at the
bottom and Pz = 1Pa at the top) are satisfied. For these reasons, transverse shear stresses σ̄αz and
σ̄βz are zero at both external surfaces, and transverse normal stress σ̄zz is zero at the bottom of the
structure and equals 1 at the top. The fourth image of Figure 3 shows a clear zigzag behavior through
the thickness for the three displacement components. In fact, in this case the transverse anisotropy
is very large because of the presence of a very soft central core. The proposed layer-wise 3D shell
model captures this behavior and the displacements remain continuous through the thickness because
of the opportune imposition of the compatibility conditions in the model. Figure 7 shows the six stress
components through the thickness direction of a thick shell. The presence of two external thin skins,
with a rigidity larger than the core rigidity, and an internal very soft core with a thickness equals 0.8
times the total thickness of the structure is clearly shown. The zigzag affect and the presence of the two
interfaces between the skins and the core are clearly demonstrated. In-plane stresses are discontinuous
at each physical interface. On the contrary, transverse stresses are continuous because of the imposed
equilibrium conditions. The transverse stresses clearly confirm the imposed external loading conditions.
The 3D behavior of such structures is clearly evaluated by the present model and it must be reproduced
by those 2D refined theories developed for these types of investigation.

The last benchmark 5 concerns the cross-ply three-layered composite spherical shell panel. The main
results are proposed in Table 14. Even if the structure has a geometrical symmetry, the presence of three
composite layers with lamination scheme 0◦/90◦/0◦ gives differences between ū and v̄, σ̄αα and σ̄ββ,
and σ̄αz and σ̄βz. There is not a symmetrical behavior through the thickness because of the transverse
and in-plane anisotropy combined with the complicated geometry of the structure (the presence of two
radii of curvature). For very thin shells, displacements are constant through the thickness. Transverse
shear and transverse normal stresses correctly satisfy the boundary loading conditions. The fifth image
of Figure 3 confirms the typical zigzag form of displacements (in particular for thick shells) which can
be recovered by means of the proposed 3D shell model because it is based on a layer wise approach.
Displacements are continuous through the thickness direction and at each physical interface. The six
stress component behavior through the thickness direction is described in Figure 8 for the case of a very
thick spherical shell. The in-plane normal stresses are discontinuous through the thickness and they
do not have any symmetry. Transverse shear and transverse normal stresses are continuous and they
reflect the loading boundary conditions. Their non-symmetric behavior is clearly shown, in particular
for the σ̄βz stress. The three-dimensional behavior of such a structure is clearly shown and it is due to
the lamination scheme, presence of orthotropic materials, thickness ratio and geometry.

4 Conclusions

This work has presented an exact 3D shell model for the static analysis of simply supported plates
and shells subjected to a transverse normal load applied at the top in harmonic form. The method is
based on the three-dimensional shell equilibrium equations developed in a general orthogonal curvilinear
reference system. These equations, valid for spherical shells, easily degenerate in those for cylinders,
cylindrical shells and plates. For these reasons, the method is very general and it has been employed
to investigate square plates, rectangular plates, cylinders, cylindrical shells and spherical shells. Such
geometries can be one-layered or multilayered embedding isotropic, orthotropic or composite materials
(also including laminated and sandwich configurations). The proposed equations have been proposed in
closed form using simply supported boundary conditions and harmonic forms for displacements, stresses
and loads. The differential equations in z have been solved using the exponential matrix procedure
which has been successfully employed by the same author in his past works for the free vibration
analysis. The model uses a layer wise approach and it directly imposes the compatibility conditions
for displacements, the equilibrium conditions for the transverse stresses and the loading conditions for
the applied loads. For all these reasons, the method is very accurate for each geometry, lamination

17



scheme, material and thickness ratio. It always gives a complete three-dimensional description of all
displacement and stress components, and it allows the inclusion of all the three-dimensional effects such
as the transverse and in-plane anisotropy and the consequent zigzag behavior of displacements. Such
results can be employed as reference solutions by those scientists involved in the development of new
3D and refined 2D numerical shell models.
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Case 1 Case 2 Case 3 Case 4 Case 5

a[in] 1 1 π
3Rα 2πRα 10

b[in] 3 1 1 40 10
Rα[in] ∞ ∞ 10 10 10
Rβ[in] ∞ ∞ ∞ ∞ 10
h1 h/3 0.1h 0.5h h/3 h/3
h2 h/3 0.8h 0.5h h/3 h/3
h3 h/3 0.1h - h/3 h/3
sequence 0◦/90◦/0◦ 0◦/core/0◦ 90◦/0◦ 0◦/90◦/0◦ 0◦/90◦/0◦

p̂z[psi] 1(top) 1(top) 1(top) 1(bottom) 1(top)
m[-] 1 1 1 8 1
n[-] 1 1 0 1 1

Table 1: Load and geometrical data for the case 1 about the rectangular composite laminated plate
proposed by Pagano [2], the case 2 about the square sandwich plate proposed by Pagano [2], the case 3
about the composite laminated cylindrical panel proposed by Ren [26], the case 4 about the composite
laminated cylinder by Varadan and Bhaskar [27] and the case 5 about the composite laminated spherical
panel proposed by Fan and Zhang [45].

Composite for cases 1-5 Core material for case 2

E1[psi] 25 × 106 0.04 × 106

E2[psi] 1× 106 0.04 × 106

E3[psi] 1× 106 0.5× 106

G12[psi] 0.5× 106 0.016 × 106

G13[psi] 0.5× 106 0.06 × 106

G23[psi] 0.2× 106 0.06 × 106

ν12 0.25 0.25
ν13 0.25 0.25
ν23 0.25 0.25

Table 2: Material data for the five cases proposed in Table 1.

23



σ̄αα σ̄αα σ̄ββ σ̄ββ σ̄αz σ̄βz σ̄αβ σ̄αβ w̄

(α,β) (a2 ,
b
2) (a2 ,

b
2 ) (a2 ,

b
2) (a2 ,

b
2 ) (0, b

2 ) (a2 , 0) (0,0) (0,0) (a2 ,
b
2 )

(z) (h2 ) (−h
2 ) (h6

∗

) (−h
6

∗∗

) (0) (0) (h2 ) (−h
2 ) (0)

a/h=2
3D Pagano [2] 2.13 -1.62 0.230 -0.268 0.257 0.0668 -0.0564 0.0548 8.17
Present 3D 2.13 -1.62 0.229 -0.268 0.257 0.0668 -0.0564 0.0548 8.17

a/h=4
3D Pagano [2] 1.14 -1.10 0.109 -0.119 0.351 0.0334 -0.0269 0.0281 2.82
Present 3D 1.14 -1.10 0.109 -0.119 0.351 0.0334 -0.0269 0.0281 2.82

a/h=10
3D Pagano [2] 0.726 -0.725 0.0418 -0.0435 0.420 0.0152 -0.0120 0.0123 0.919
Present 3D 0.726 -0.725 0.0418 -0.0435 0.420 0.0152 -0.0120 0.0123 0.919

a/h=20
3D Pagano [2] 0.650 -0.650 0.0294 -0.0299 0.434 0.0119 -0.0093 0.0093 0.610
Present 3D 0.650 -0.650 0.0294 -0.0299 0.434 0.0119 -0.0092 0.0093 0.609

a/h=50
3D Pagano [2] 0.628 -0.628 0.0259 -0.0259 0.439 0.0110 -0.0084 0.0084 0.520
Present 3D 0.628 -0.628 0.0258 -0.0259 0.439 0.0110 -0.0084 0.0084 0.520

a/h=100
3D Pagano [2] 0.624 -0.624 0.0253 -0.0253 0.439 0.0108 -0.0083 0.0083 0.508
Present 3D 0.624 -0.624 0.0253 -0.0253 0.439 0.0108 -0.0083 0.0083 0.508

Table 3: Case 1, present 3D solution compared with the 3D solution proposed by Pagano [2] for a
rectangular laminated composite plate. *bottom of the second interface. ** top of the first interface.
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σ̄αα σ̄αα σ̄αα σ̄αα σ̄ββ σ̄ββ σ̄αz σ̄βz σ̄αβ σ̄αβ
(α,β) (a2 ,

b
2) (a2 ,

b
2) (a2 ,

b
2) (a2 ,

b
2) (a2 ,

b
2) (a2 ,

b
2 ) (0, b

2 ) (a2 , 0) (0, 0) (0, 0)

(z) (h2 ) (−h
2 ) (0.4h∗) (−0.4h∗∗) (h2 ) (−h

2 ) (0) (0) (h2 ) (−h
2 )

a/h=2
3D Pagano [2] 3.278 -2.653 -2.220 1.668 0.4517 -0.3919 0.185 0.1399 -0.2403 0.2338
Present 3D 2.494 -3.100 -1.753 1.936 0.3022 -0.4892 0.192 0.1505 -0.1545 0.2886
DiQuMASPAB [71] 2.494 -3.100 -1.753 1.914 0.3022 -0.4892 0.192 0.1505 -0.1545 0.2886

a/h=4
3D Pagano [2] 1.556 -1.512 -0.233 0.196 0.2595 -0.2533 0.239 0.1072 -0.1437 0.1481
Present 3D 1.468 -1.543 -0.220 0.198 0.2307 -0.2730 0.240 0.1106 -0.1281 0.1583
DiQuMASPAB [71] 1.468 -1.543 -0.220 0.191 0.2307 -0.2730 0.240 0.1106 -0.1281 0.1583

a/h=10
3D Pagano [2] 1.153 -1.152 0.628 -0.629 0.1104 -0.1099 0.300 0.0527 -0.0707 0.0717
Present 3D 1.145 -1.153 0.623 -0.630 0.1065 -0.1131 0.300 0.0534 -0.0686 0.0733
DiQuMASPAB [71] 1.145 -1.153 0.623 -0.633 0.1065 -0.1131 0.300 0.0534 -0.0686 0.0733

a/h=20
3D Pagano [2] 1.110 -1.110 0.810 -0.810 0.0700 -0.0700 0.317 0.0361 -0.0511 0.0511
Present 3D 1.108 -1.110 0.808 -0.810 0.0691 -0.0708 0.317 0.0363 -0.0505 0.0517
DiQuMASPAB [71] 1.108 -1.110 0.808 -0.812 0.0691 -0.0708 0.317 0.0363 -0.0505 0.0517

a/h=50
3D Pagano [2] 1.099 -1.099 0.867 -0.867 0.0569 -0.0569 0.323 0.0306 -0.0446 0.0446
Present 3D 1.099 -1.099 0.866 -0.866 0.0568 -0.0570 0.323 0.0306 -0.0445 0.0447
DiQuMASPAB [71] 1.099 -1.099 0.866 -0.866 0.0568 -0.0570 0.323 0.0306 -0.0445 0.0447

a/h=100
3D Pagano [2] 1.098 -1.098 0.875 -0.875 0.0550 -0.0550 0.324 0.0297 -0.0437 0.0437
Present 3D 1.097 -1.097 0.875 -0.875 0.0549 -0.0550 0.324 0.0297 -0.0436 0.0437
DiQuMASPAB [71] 1.097 -1.098 0.875 -0.876 0.0549 -0.0550 0.324 0.0298 -0.0436 0.0437

Table 4: Case 2, present 3D solution compared with the 3D solution proposed by Pagano [2] for a
square sandwich plate. * top of the interface between core and top skin. ** bottom of the interface
between core and bottom skin. DiQuMASPAB results have been obtained using the DiQuMASPAB
code [71] based on a refined quasi-3D layer-wise model [72], [73].
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w̄ σ̄αα σ̄αα σ̄ββ σ̄ββ σ̄αz
(α,β) (a2 ,

b
2 ) (a2 ,

b
2) (a2 ,

b
2) (a2 ,

b
2) (a2 ,

b
2) (0, b

2)

(z) (0) (−h
2 ) (h2 ) (−h

2 ) (h2 ) (h4 )

Rα/h=2
3D Ren [26] 2.079 -0.644 3.348 -0.1610 0.0960 0.851
Present 3D 2.079 -0.644 3.347 -0.1609 0.0960 0.851

Rα/h=4
3D Ren [26] 0.854 -0.384 2.511 -0.0960 0.0407 0.871
Present 3D 0.854 -0.384 2.511 -0.0960 0.0407 0.871

Rα/h=10
3D Ren [26] 0.493 -0.277 2.245 -0.0693 0.0250 0.879
Present 3D 0.493 -0.277 2.245 -0.0693 0.0249 0.879

Rα/h=50
3D Ren [26] 0.409 -0.240 2.165 -0.0601 0.0218 0.869
Present 3D 0.409 -0.240 2.165 -0.0601 0.0217 0.869

Rα/h=100
3D Ren [26] 0.403 -0.237 2.158 -0.0592 0.0216 0.867
Present 3D 0.403 -0.237 2.158 -0.0592 0.0216 0.867

Rα/h=500
3D Ren [26] 0.399 -0.234 2.153 -0.0587 0.0215 0.865
Present 3D 0.399 -0.234 2.152 -0.0585 0.0215 0.864

Table 5: Case 3, present 3D solution compared with the 3D solution proposed by Ren [26] for a
composite laminated cylindrical shell.
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w̄ σ̄αα σ̄αα σ̄ββ σ̄ββ σ̄αβ σ̄αβ σ̄βz σ̄αz σ̄zz
(α,β) (a2 ,

b
2) (a2 ,

b
2 ) (a2 ,

b
2) (a2 ,

b
2) (a2 ,

b
2 ) (0, 0) (0, 0) (a2 , 0) (0, b

2) ( b2 ,
b
2)

(z) (0) (−h
2 ) (h2 ) (−h

2 ) (h2 ) (−h
2 ) (h2 ) (−h

6 ) (0) (0)

Rα/h=2
3D V&B [27] 10.11 -18.19 7.168 -0.8428 0.1761 -0.2922 0.1797 0.3006 -1.379 -0.34
Present 3D 10.11 -18.19 7.167 -0.8428 0.1761 -0.2922 0.1797 0.3006 -1.379 -0.34

Rα/h=4
3D V&B [27] 4.009 -9.323 6.545 -0.2701 0.1270 -0.1609 0.1081 0.1736 -2.349 -0.62
Present 3D 4.009 -9.323 6.544 -0.2701 0.1270 -0.1609 0.1081 0.1736 -2.349 -0.62

Rα/h=10
3D V&B [27] 1.223 -5.224 4.683 -0.0791 0.0739 -0.0729 0.0374 0.0826 -3.264 -1.27
Present 3D 1.223 -5.224 4.683 -0.0791 0.0739 -0.0729 0.0374 0.0826 -3.264 -1.27

Rα/h=50
3D V&B [27] 0.5495 -3.987 3.930 -0.0225 0.0712 -0.0760 -0.0118 0.0894 -3.491 -4.85
Present 3D 0.5495 -3.986 3.930 -0.0224 0.0712 -0.0760 -0.0118 0.0894 -3.491 -4.85

Rα/h=100
3D V&B [27] 0.4715 -3.507 3.507 0.0018 0.0838 -0.1038 -0.0478 0.1223 -3.127 -8.30
Present 3D 0.4715 -3.506 3.507 0.0018 0.0838 -0.1038 -0.0478 0.1223 -3.127 -8.30

Rα/h=500
3D V&B [27] 0.1027 -0.7542 0.7895 0.0379 0.0559 -0.0889 -0.0766 0.1051 -0.691 -9.12
Present 3D 0.1027 -0.7543 0.7896 0.0379 0.0559 -0.0889 -0.0766 0.1051 -0.691 -9.12

Table 6: Case 4, present 3D solution compared with the 3D solution proposed by Varadan and Bhaskar
[27] for a composite laminated cylinder.

w̄(a/2, b/2, 0)
h/Rα 0.01 0.03 0.05 0.07 0.09 0.1 0.2 0.3

3D Fan & Zhang [45] 0.0541 0.4624 1.1724 2.0863 3.1667 3.7676 12.083 24.706
Present 3D 0.0541 0.4624 1.1723 2.0860 3.1660 3.7664 12.081 24.703

Table 7: Case 5, present 3D solution compared with the 3D solution proposed by Fan and Zhang [45]
for a composite laminated spherical panel.

B1 B2 B3 B4 B5

a[m] 1 1 2πRα
π
3Rα

π
3Rα

b[m] 1 3 20 20 π
3Rα

Rα[m] ∞ ∞ 10 10 10
Rβ[m] ∞ ∞ ∞ ∞ 10
h1 h h/2 h/3 0.1h h/3
h2 - h/2 h/3 0.8h h/3
h3 - - h/3 0.1h h/3
sequence Iso1 Iso1/Iso2 Iso1/Iso2/Iso3 Iso1/Core/Iso1 0◦/90◦/0◦

p̂z[Pa] 1(top) 1(top) 1(top) 1(top) 1(top)
m[-] 1 1 2 1 1
n[-] 1 1 1 1 1

Table 8: Load and geometrical data for the five proposed new benchmarks.
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Iso1 Iso2 Iso3 Core Composite

E1[Pa] 73× 109 114 × 109 210× 109 18× 107 132.38 × 109

E2[Pa] 73× 109 114 × 109 210× 109 18× 107 10.756 × 109

E3[Pa] 73× 109 114 × 109 210× 109 18× 107 10.756 × 109

G12[Pa]
E

2(1+ν)
E

2(1+ν)
E

2(1+ν)
E

2(1+ν) 5.6537 × 109

G13[Pa]
E

2(1+ν)
E

2(1+ν)
E

2(1+ν)
E

2(1+ν) 5.6537 × 109

G23[Pa]
E

2(1+ν)
E

2(1+ν)
E

2(1+ν)
E

2(1+ν) 3.603 × 109

ν12 0.3 0.3 0.3 0.37 0.24
ν13 0.3 0.3 0.3 0.37 0.24
ν23 0.3 0.3 0.3 0.37 0.49

Table 9: Material data for the five new benchmark cases proposed in Table 8.

ū v̄ w̄ σ̄αα σ̄ββ σ̄αβ σ̄zz σ̄αz σ̄βz
(α,β) (0, b

2) (a2 , 0) (a2 ,
b
2) (a2 ,

b
2) (a2 ,

b
2 ) (0, 0) (a2 ,

b
2) (0, b

2) (a2 , 0)

a/h=2
z = −h/2 2.3160 2.3160 4.8277 -0.2079 -0.2079 0.1119 0.0000 0.0000 0.0000
z = 0 0.5067 0.5067 6.0466 0.0055 0.0055 0.0245 0.4755 0.2277 0.2277
z = h/2 -2.1637 -2.1637 7.5963 0.3014 0.3014 -0.1046 1.0000 0.0000 0.0000

a/h=4
z = −h/2 1.1368 1.1368 3.4463 -0.2041 -0.2041 0.1099 0.0000 0.0000 0.0000
z = 0 0.0537 0.0537 3.6630 0.0037 0.0037 0.0052 0.4981 0.2362 0.2362
z = h/2 -1.0622 -1.0622 3.6237 0.2175 0.2175 -0.1027 1.0000 0.0000 0.0000

a/h=10
z = −h/2 0.4430 0.4430 2.9120 -0.1988 -0.1988 0.1071 0.0000 0.0000 0.0000
z = 0 0.0032 0.0032 2.9425 0.0007 0.0007 0.0008 0.4999 0.2383 0.2383
z = h/2 -0.4371 -0.4371 2.9166 0.2004 0.2004 -0.1056 1.0000 0.0000 0.0000

a/h=20
z = −h/2 0.2205 0.2205 2.8302 -0.1979 -0.1979 0.1066 0.0000 0.0000 0.0000
z = 0 0.0004 0.0004 2.8377 0.0002 0.0002 0.0002 0.5000 0.2386 0.2386
z = h/2 -0.2197 -0.2197 2.8305 0.1983 0.1983 -0.1062 1.0000 0.0000 0.0000

a/h=50
z = −h/2 0.0881 0.0881 2.8070 -0.1976 -0.1976 0.1064 0.0000 0.0000 0.0000
z = 0 0.0000 0.0000 2.8082 0.0000 0.0000 0.0000 0.5000 0.2387 0.2387
z = h/2 -0.0880 -0.0880 2.8070 0.1977 0.1977 -0.1063 1.0000 0.0000 0.0000

a/h=100
z = −h/2 0.0440 0.0440 2.8037 -0.1976 -0.1976 0.1064 0.0000 0.0000 0.0000
z = 0 0.0000 0.0000 2.8040 0.0000 0.0000 0.0000 0.5000 0.2387 0.2387
z = h/2 -0.0440 -0.0440 2.8037 0.1976 0.1976 -0.1064 1.0000 0.0000 0.0000

Table 10: Benchmark 1, 3D exact results for displacements and stresses in an isotropic one-layered
square plate.
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ū v̄ w̄ σ̄αα σ̄ββ σ̄αβ σ̄zz σ̄αz σ̄βz
(α,β) (0, b

2) (a2 , 0) (a2 ,
b
2) (a2 ,

b
2) (a2 ,

b
2 ) (0, 0) (a2 ,

b
2) (0, b

2) (a2 , 0)

a/h=2
z = −h/2 6.5035 2.1678 10.690 -0.4640 -0.1846 0.1048 0.0000 0.0000 0.0000
z = 0∗ 1.5677 0.5226 12.427 -0.0637 0.0037 0.0253 0.4498 0.4065 0.1355
z = h/2 -5.2585 -1.7528 13.043 0.6930 0.3402 -0.1323 1.0000 0.0000 0.0000

a/h=4
z = −h/2 3.2336 1.0778 8.3065 -0.4614 -0.1836 0.1042 0.0000 0.0000 0.0000
z = 0∗ 0.4304 0.1435 8.6631 -0.0489 -0.0119 0.0139 0.4671 0.4200 0.1400
z = h/2 -2.5676 -0.8559 8.5448 0.5990 0.2544 -0.1292 1.0000 0.0000 0.0000

a/h=10
z = −h/2 1.2841 0.4280 7.5124 -0.4581 -0.1822 0.1034 0.0000 0.0000 0.0000
z = 0∗ 0.1338 0.0446 7.5658 -0.0457 -0.0170 0.0108 0.4709 0.4237 0.1412
z = h/2 -1.0280 -0.3427 7.5344 0.5770 0.2321 -0.1293 1.0000 0.0000 0.0000

a/h=20
z = −h/2 0.6412 0.2137 7.3943 -0.4575 -0.1820 0.1033 0.0000 0.0000 0.0000
z = 0∗ 0.0642 0.0214 7.4075 -0.0453 -0.0177 0.0103 0.4714 0.4242 0.1414
z = h/2 -0.5142 -0.1714 7.3993 0.5740 0.2290 -0.1294 1.0000 0.0000 0.0000

a/h=50
z = −h/2 0.2564 0.0855 7.3611 -0.4573 -0.1819 0.1033 0.0000 0.0000 0.0000
z = 0∗ 0.0254 0.0085 7.3632 -0.0452 -0.0179 0.0102 0.4715 0.4243 0.1414
z = h/2 -0.2057 -0.0686 7.3618 0.5732 0.2281 -0.1294 1.0000 0.0000 0.0000

a/h=100
z = −h/2 0.1282 0.0427 7.3563 -0.4573 -0.1819 0.1033 0.0000 0.0000 0.0000
z = 0∗ 0.0127 0.0042 7.3568 -0.0452 -0.0180 0.0102 0.4716 0.4243 0.1414
z = h/2 -0.1029 -0.0343 7.3565 0.5731 0.2280 -0.1294 1.0000 0.0000 0.0000

Table 11: Benchmark 2, 3D exact results for displacements and stresses in an isotropic two-layered
rectangular plate. * top of the first layer.
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ū v̄ w̄ σ̄αα σ̄ββ σ̄αβ σ̄zz σ̄αz σ̄βz
(α,β) (0, b

2) (a2 , 0) (a2 ,
b
2) (a2 ,

b
2) (a2 ,

b
2) (0, 0) (a2 ,

b
2) (0, b

2) (a2 , 0)

Rα/h=2
z = −h/2 1663.7 1058.4 2555.1 151.60 -287.03 309.58 0.0000 0.0000 0.0000
z = 0 1422.3 236.60 2563.8 393.06 29.521 296.81 0.3691 59.521 227.99
z = h/2 1182.6 -624.15 2482.0 950.33 924.17 300.56 1.0000 0.0000 0.0000

Rα/h=4
z = −h/2 422.85 150.89 704.47 110.22 -61.742 128.72 0.0000 0.0000 0.0000
z = 0 385.27 20.358 696.31 215.99 51.163 150.29 0.3382 20.042 72.145
z = h/2 348.82 -109.58 680.18 464.52 356.17 199.39 1.0000 0.0000 0.0000

Rα/h=10
z = −h/2 64.579 7.7543 112.96 51.954 3.4058 42.155 0.0000 0.0000 0.0000
z = 0 62.078 -1.0074 112.04 87.967 29.850 57.963 0.3296 3.4264 12.216
z = h/2 59.623 -9.7050 110.90 173.11 98.787 93.397 1.0000 0.0000 0.0000

Rα/h=50
z = −h/2 2.4569 -0.0584 4.4011 10.941 3.7410 7.3083 0.0000 0.0000 0.0000
z = 0 2.4373 -0.1274 4.3921 17.345 6.8057 11.115 0.3278 0.1350 0.4846
z = h/2 2.4178 -0.1963 4.3828 32.386 14.271 19.935 1.0000 0.0000 0.0000

Rα/h=100
z = −h/2 0.6096 -0.0258 1.0950 5.4948 2.0543 3.5830 0.0000 0.0000 0.0000
z = 0 0.6072 -0.0344 1.0939 8.6448 3.4480 5.5215 0.3276 0.0336 0.1208
z = h/2 0.6047 -0.0430 1.0927 16.033 6.7839 10.036 1.0000 0.0000 0.0000

Rα/h=500
z = −h/2 0.0242 -0.0014 0.0436 1.1024 0.4399 0.7052 0.0000 0.0000 0.0000
z = 0 0.0242 -0.0015 0.0436 1.7242 0.6966 1.0984 0.3275 0.0013 0.0048
z = h/2 0.0242 -0.0015 0.0436 3.1804 1.3004 2.0179 1.0000 0.0000 0.0000

Table 12: Benchmark 3, 3D exact results for displacements and stresses in an isotropic three-layered
cylinder.
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ū v̄ w̄ σ̄αα σ̄ββ σ̄αβ σ̄zz σ̄αz σ̄βz
(α,β) (0, b

2) (a2 , 0) (a2 ,
b
2 ) (a2 ,

b
2) (a2 ,

b
2) (0, 0) (a2 ,

b
2) (0, b

2) (a2 , 0)

Rα/h=2
z = −h/2 40266 -4978.0 93446 -7499.4 -685.94 3333.6 0.0000 0.0000 0.0000
z = 0 66015 2201.2 119525 22.675 49.695 19.852 0.4650 134.84 71.574
z = h/2 41975 -20864 155004 7380.9 8843.8 1220.0 1.0000 0.0000 0.0000

Rα/h=4
z = −h/2 13575 -2582.2 35367 -2157.2 975.29 1918.6 0.0000 0.0000 0.0000
z = 0 13196 -2931.9 35910 10.784 16.748 4.2956 0.3553 153.28 87.943
z = h/2 11031 -4558.4 37396 2652.7 3678.7 795.59 1.0000 0.0000 0.0000

Rα/h=10
z = −h/2 2295.8 -493.71 6250.2 -481.25 631.15 787.34 0.0000 0.0000 0.0000
z = 0 2101.5 -607.44 6228.5 1.4602 3.3141 1.3307 0.1138 141.56 82.857
z = h/2 1892.5 -737.02 6220.3 953.96 1446.9 333.46 1.0000 0.0000 0.0000

Rα/h=50
z = −h/2 132.14 -31.609 370.29 -63.159 229.31 214.96 0.0000 0.0000 0.0000
z = 0 123.90 -36.515 370.04 0.2456 0.7768 0.3828 -0.1433 45.791 25.478
z = h/2 115.67 -41.423 369.63 230.51 394.61 112.79 1.0000 0.0000 0.0000

Rα/h=100
z = −h/2 35.615 -9.3410 102.52 0.5634 146.90 106.85 0.0000 0.0000 0.0000
z = 0 34.315 -10.110 102.48 0.1596 0.4538 0.2121 0.0853 14.734 8.1505
z = h/2 33.015 -10.878 102.43 93.426 198.93 74.566 1.0000 0.0000 0.0000

Rα/h=500
z = −h/2 1.4420 -0.4148 4.2730 7.8247 34.923 19.607 0.0000 0.0000 0.0000
z = 0 1.4306 -0.4215 4.2727 0.0332 0.0945 0.0442 0.4088 0.6476 0.3576
z = h/2 1.4193 -0.4282 4.2723 11.883 37.194 18.196 1.0000 0.0000 0.0000

Table 13: Benchmark 4, 3D exact results for displacements and stresses in a sandwich cylindrical shell.
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ū v̄ w̄ σ̄αα σ̄ββ σ̄αβ σ̄zz σ̄αz σ̄βz
(α,β) (0, b

2) (a2 , 0) (a2 ,
b
2) (a2 ,

b
2) (a2 ,

b
2 ) (0, 0) (a2 ,

b
2) (0, b

2) (a2 , 0)

Rα/h=2
z = −h/2 277.82 354.49 566.75 -911.37 -150.23 265.89 0.0000 0.0000 0.0000
z = 0 228.52 205.02 632.22 49.720 82.980 136.73 0.4798 285.34 272.89
z = h/2 128.55 -50.872 770.96 887.79 287.58 19.598 1.0000 0.0000 0.0000

Rα/h=4
z = −h/2 87.222 99.941 185.49 -443.19 -60.907 134.92 0.0000 0.0000 0.0000
z = 0 58.281 54.432 188.49 14.791 130.89 71.095 0.2214 252.15 141.27
z = h/2 30.897 0.0726 190.23 467.56 107.30 17.364 1.0000 0.0000 0.0000

Rα/h=10
z = −h/2 18.116 17.599 43.854 -138.87 -12.122 59.283 0.0000 0.0000 0.0000
z = 0 13.214 12.079 43.886 6.4550 95.841 39.885 0.0697 128.11 44.096
z = h/2 8.4961 6.2081 43.511 221.56 32.922 22.083 1.0000 0.0000 0.0000

Rα/h=50
z = −h/2 0.7249 0.6644 2.2184 3.0086 1.1961 11.064 0.0000 0.0000 0.0000
z = 0 0.6654 0.6044 2.2165 1.6645 25.247 10.012 0.3583 8.2353 2.4247
z = h/2 0.6063 0.5437 2.2135 24.988 3.5657 8.9781 1.0000 0.0000 0.0000

Rα/h=100
z = −h/2 0.1746 0.1592 0.5570 4.3260 0.8807 5.2904 0.0000 0.0000 0.0000
z = 0 0.1671 0.1517 0.5567 0.8241 12.718 5.0262 0.4282 2.0851 0.6106
z = h/2 0.1596 0.1441 0.5563 9.8812 1.4767 4.7644 1.0000 0.0000 0.0000

Rα/h=500
z = −h/2 0.0067 0.0061 0.0222 1.3108 0.2201 1.0123 0.0000 0.0000 0.0000
z = 0 0.0067 0.0060 0.0222 0.1615 2.5414 1.0018 0.4857 0.0833 0.0244
z = h/2 0.0066 0.0060 0.0222 1.5327 0.2439 0.9913 1.0000 0.0000 0.0000

Table 14: Benchmark 5, 3D exact results for displacements and stresses in a three-layered laminated
composite spherical shell.
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Figure 1: Geometrical data, parameters and notations for the proposed 3D shell formulation.
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Benchmark 5
( )0°/90°/0°

Figure 2: Geometries and reference systems for the five proposed new benchmarks.
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Figure 3: No-dimensional displacement components through the thickness direction for the five proposed
new benchmarks.
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Figure 4: No-dimensional stress components through the thickness direction for the benchmark 1 about
the isotropic one-layered square plate with a/h=4.
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Figure 5: No-dimensional stress components through the thickness direction for the benchmark 2 about
the isotropic two-layered rectangular plate with a/h=4.
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Figure 6: No-dimensional stress components through the thickness direction for the benchmark 3 about
the isotropic three-layered cylinder with Rα/h=4.

38



-3000 -2000 -1000 0 1000 2000 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ
αα

z
/h

σ
αα

stress component

σ
αα

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ
ββ

z
/h

σ
ββ

stress component

σ
ββ

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ
αβ

z
/h

σ
αβ

stress component

σ
αβ

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ
zz

z
/h

σ
zz

stress component

σ
zz

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ
αz

z
/h

σ
αz

stress component

σ
αz

0 20 40 60 80 100 120 140 160
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ
βz

z
/h

σ
βz

stress component

σ
βz

Figure 7: No-dimensional stress components through the thickness direction for the benchmark 4 about
the sandwich cylindrical shell panel with Rα/h=4.
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Figure 8: No-dimensional stress components through the thickness direction for the benchmark 5 about
the composite spherical shell panel with Rα/h=4.
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