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We provide a generic method to find full dynamical solutions to binary decision models with
interactions. In these models, agents follow a stochastic evolution where they must choose between
two possible choices by taking into account the choices of their peers. We illustrate our method by
solving Kirman and Föllmer’s ant recruitment model for any number N of agents and for any choice
of parameters, recovering past results found in the limit N → ∞. We then solve extensions of the
ant recruitment model for increasing asymmetry between the two choices. Finally, we provide an
analytical time-dependent solution to the standard voter model and a semi-analytical solution to
the vacillating voter model.

I. INTRODUCTION

That individuals take into account the choices made by
others when making their own is evident to anyone who
has witnessed fashion fads, trends and events of mass
panic like bank runs. These collective phenomena have
dramatic social consequences, as they are authentic “col-
lective delusions” [1], of which economic bubbles and the
subsequent crashes they produce are eloquent examples.
The mechanism through which they appear is intuitive:
sociable individuals tend to imitate the choices made by
their peers, choosing to go to the same restaurant, dress
the same way or buy/sell the same asset as their group
of friends or the collective zeitgeist dictates. For any of
these, when a choice becomes that of the majority its
dominance and attractiveness tends to increase, as more
and more individuals are persuaded to make it.

To the physicist, this is reminiscent of the mechanism
governing certain phase transitions, and in particular
that of the ferromagnetic transition, where the magnetic
dipoles in a material all suddenly point in the same di-
rection when cooled below a critical temperature. Owing
to the common points between these mechanisms, similar
behaviour is observed in the abrupt opinion swings seen
in certain social systems (see [2] and references therein).

Thus it is no surprise that one of the strongest criti-
cisms to the old paradigm of the rational representative
agent used in textbook economics is that it does not suffi-
ciently take into account interactions between agents. In
that framework, agents make the choice that maximises
a certain utility function, quantifying the level of satisfac-
tion procured by said choice, by taking into account the
different constraints they face—such as a limited budget.

Because there are no interactions, these models fail to
capture the rich collective phenomena, or even the crises,
that appear in real social systems [3]. For example, in a
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system made of non-interacting rational agents the only
explanation for a large opinion swing is an exogenous
event, such as the publication of new information that
influences the agents. Therefore it is necessary to go
further to understand the link between the micromotives
that guide agents and their collective macrobehaviour [4].

A number of efforts have been made to alleviate this
issue, notably by considering models where agents’ deci-
sions are influenced by interactions with their peers [3, 5–
8]. These models often study cases where agents face only
two possible choices—reducing the problem to that of
making a binary decision. In this way, one can study toy
models describing social systems where agents interact,
in the hope of gaining a better understanding of collec-
tive social phenomena much like the Ising model set a
precedent for the understanding of emergent phenomena
in condensed matter physics.

In spite of their simplicity, these models show a very
rich phenomenology characterised by the appearance of
crises, hysteresis and other emergent phenomena [3, 9].
However, these dynamical models have often been stud-
ied only once their stationary state is reached, focusing
in how their statistical description can change radically
through subtle variations of the parameters that define
it. But more insight can be gained by studying the full
dynamics of how said stationary state is actually reached.

Indeed, one can consider Kirman and Föllmer’s sem-
inal ant recruitment model [7]. In its origin, it focused
in explaining the results of an entomological experiment
where an ant colony had access to two identical food
sources. Instead of spreading evenly between the two
sources, the ants were observed to concentrate in one of
the two sources before randomly switching collectively to
the other [10]. Similar models have arisen in independent
parts of the literature—indeed the ant rationality model
is very similar to the Bass diffusion model [11, 12], which
describes the uptake of a new product or practice in a
population, and if modelled stochastically would lead one
a model isomorphic to the model of Kirman and Föllmer.

The authors of [7] showed that this could be under-
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stood through a model were the ants had a certain
propensity to imitate their peers, and another propen-
sity to switch randomly between the two sources. When
the effect of imitation is strong, the distribution of the
number of ants in the food sources is bi-modal, and so
one is more likely to find a majority of ants in either of
the two sources, while when the random switching dom-
inates one finds a regime with an unimodal distribution,
with a rough half-and-half split between the two sources.

Although inspired by an example coming from be-
havioural biology, this model, and others that are very
similar, has been used to explain behaviour in financial
markets [13–15], firm agglomeration [16], the dynamics
of fishing boats [17] and even wealth inequality [18]. The
model is in fact also identical to the Moran model in ge-
netics [19], and is also closely related to the Pólya urn
model reviewed in [20].

An interesting aspect of this model was found in [21],
where a full dynamical solution to the model was pro-
vided in the limit of an infinitely large number of ants.
Indeed, a key finding is that the time it takes for the
ant colony to switch collectively from one food source to
the other depends exclusively on the rate at which ants
switch randomly. This can then be interpreted as im-
plying that collective switches are driven by a single ant
going to the other source and attracting all the others
through an imitative avalanche. It is therefore clear that
a precise dynamical description of such models is key in
understanding the collective behaviours they display.

In this article, we solve this model in the case of a
finite number of ants and show how the results from [21]
can be recovered. We also show how our methods can be
extended to solve a large class of similar models, such as
the voter model [8, 22].

The paper is structured as follows. In the first section
we describe the ant recruitment model fully, and show
how to map it onto a birth/death process. We solve it
analytically using generating functions, and also obtain
semi-analytical results in a computationally efficient way

using the methods described in [23]. We then apply these
methods to solving a more general version of the model,
taking into account all possible asymmetries. Finally, we
show applications of these techniques to the voter and
vacillating voter models.

II. SETUP

We first illustrate our setup by solving the stochastic
dynamics of Kirman and Föllmer’s ant rationality model.
Consider a system of N ants where there are two different
sources of food, left L and right R. Each ant is associ-
ated with a single food source, and we denote n as the
number of ants at the right-hand food source. Since we
do not track the spatial position of the ants, n completely
specifies the state of the system.

The ants are subject to two separate influences: (i) a
random influence whereby each ant switches to the op-
posite food source at rate ε, and (ii) a collective influ-
ence whereby when two ants meet—at rate ν—if they
are associated with opposing food sources, then one of
the ants recruits the other to its food source. Given that
any two ants meet at rate ν regardless of their current
food source, it is straightforward to show that the propen-
sity at which two ants at opposing food sources meet is
ν̃(n) = n(N −n)ν/(N − 1). We can now write a dynam-
ical effective reaction scheme describing the number of
ants on the right hand food source,

L
(N−n)ε+ν̃(n)−−−−−−−−−⇀↽−−−−−−−−−

nε+ν̃(n)
R. (1)

Note that unlike effective reaction schemes often writ-
ten in chemical reaction networks [24] the expressions
labelling the arrows denote the full propensity for the
event to occur given the state of the system n.

From this effective reaction scheme one can then de-
scribe the dynamical evolution of the probability distri-
bution P (n, t) for reaction scheme (1) via the following
master equation,

∂tP (n, t) = [(N − (n− 1))ε+ ν̃(n− 1)]P (n− 1, t) + [(n+ 1)ε+ ν̃(n+ 1)]P (n+ 1, t)

− [(N − n)ε+ nε+ 2ν̃(n)]P (n, t),
(2)

with a given initial condition that n(t = 0) = n0 ants are
initially at the right-hand food source, represented by
P (n, 0) = δn,n0

where δi,k is the Kronecker delta symbol.
Defining the (N+1)×(N+1)-dimensional real matrix

M as

(M)n,m =δn−1,m ((N − (n− 1))ε+ ν̃(n− 1))

+ δn+1,m ((n+ 1)ε+ ν̃(n+ 1))

− δn,m (Nε+ 2ν̃(n)) ,

(3)

it is straightforward to see that the master equation can
be re-cast as ∂t ~P (t) = M~P , where the n-th element of
~P (t) is P (n, t). The matrix M corresponds to the Li-
ouville or master operator and completely describes the
dynamics of our system as it contains all the information
on the transition rates.

The steady state distribution ~P0 can be derived by
solving the equation M~P0 = 0. This can be solved by
recursion, taking afterwards the N → ∞ limit, with
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FIG. 1: Sample of three different trajectories (left) of the
fraction of ants x(n) = n/N on the right-hand source, with the
red and green lines showing two different realisations for N = 50
ants, along with the corresponding stationary densities (right).
Purple bars are the exact stationary distribution for finite N ,

P0(x) = NP0(n), and the black lines correspond to the symmetric
Beta distribution, Ps(x) = NPs(n), given in Eq. (4). The

stochastic simulations are done using the stochastic simulation
algorithm [25]. Notice that in the high imitation regime ε < µ,
corresponding to plot (c) the ants tend to concentrate in one of

the food sources for a time of order 1/ε before switching
collectively to the other source. The case ε = µ in (b) corresponds

to the situation where the Beta distribution is a uniform
distribution over [0, 1].

n/N = x fixed to that the stationary distribution is given
by a symmetric Beta distribution [7, 21]. That is,

Ps(n) ≡ P (n, t→∞) ∝
N�1

( n
N

)ε/µ−1 (
1− n

N

)ε/µ−1

,

(4)
where we introduce µ = ν

N−1 so that ν̃(n) = n(N − n)µ

to match the notation of [21].
This is the main point of interest of this model, as

stressed by Kirman [7]: when imitation is strong, with
ε < µ, the most probable state is to have all of the ants
in a single food source, as shown by the divergence of
the probability distribution in Eq. (4), while the same
probability is ≈ 0 in the high-noise regime ε > µ where
the most probable state is to have a 50/50 split between
the two sources. We exhibit this behaviour in Fig. 1,
and show that even for N = 50 the Beta distribution
is a good approximation to the exact distribution. Note
that where ε/µ = 1 we get uniform distributions for both
P0(n) and Ps(n)

Because the tri-diagonal coefficients (n, n+1) and (n+

1, n) are positive, and because the rank of the matrix is
clearly N + 1, it is straightforward to show that M is
composed of N +1 distinct real eigenvalues that we label
−λm for m = 0, . . . , N .1 Further, direct application of
the Perron-Frobenius theorem shows that λm ≥ 0 and
that 0 is an eigenvalue of M. We choose therefore to
label these eigenvalues as 0 = λ0 < λ2 < . . . < λN .

The model may now be formally solved as ~P (t) =

etM ~P (0). We may then write M = −
∑
m λm

~Um~V
T
m ,2

which leads to ~P (t) =
∑
m e
−λmt

(
~Vm · ~P (0)

)
~Um.

Denoting finally cm = (~Vm · ~P (0)) and ~Um =

(fm(0), . . . , fm(N))
T we reach the following formula for

the full solution:

P (n, t) =
∑
m

cmfm(n)e−λmt, (5)

where the different terms cm, fm(n) and λm remain to be
determined.

This is a formal solution of a discrete master equa-
tion. Master equations are notorious for being diffi-
cult to solve, especially in time. Common methods in-
clude the Poisson representation [26], Fokker-Planck (or
Langevin) approximations [21, 26–28], field theory [29],
the linear-mapping approximation [30] and the system-
size expansion [27, 31, 32]. Below we utilise a combina-
tion of other methods, notably, the method of generating
functions [26, 27], eigenfunction methods [26, 27] and the
time-dependent solution to the 1D master equation [23].

In particular, the method used in [21] reached a so-
lution of the same form as Eq. (5) by properly taking
the limit N → ∞ as to transform the matrix M into
a Fokker-Planck partial-differential operator. The eigen-
functions (equivalent to the eigenvectors ofM) and eigen-
values of that operator were then found by two successive
changes of variables mapping the problem onto a solvable
quantum-mechanical problem. We claim to reach equiv-
alent results using simpler methods that can be reused
for other, similar models transparently.

A. Explicit solution

The one-dimensional nature of the problem, along with
the form of Eq. (5), invites us to introduce the generat-
ing function G(z, t) =

∑
n z

nP (n, t), defined for |z| ≤ 1.
Plugging this definition into the ordinary differential

1 Indeed, if one considers J = D−1MD, with D =
diag(Mn,n+1Mn+1,n) it is easy to show that J is symmetric. M
is therefore similar to a symmetric matrix, and has real eigenval-
ues.

2 Indeed, write M = −P∆P−1 with ∆ = diag(λm), then (~Um)i =

Pim and (~Vm)i = (P−1)im. These vectors are known respec-
tively as the right- and left-eigenvectors of M.
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equation system of Eq. (2) we obtain the following partial
differential equation,

∂tG(z, t)

z − 1
=εNG(z, t) + (µ(N − 1)(z − 1)

− ε(z + 1))∂zG(z, t)

− µz(z − 1)∂2
zG(z, t),

(6)

where we denote again µ = ν/(N − 1). This generating
function PDE is subject to a boundary condition and
an initial condition; the boundary condition relates to
the normalisation of probability and is G(1, t) = 1, while
the initial condition at t = 0 is found to be G(z, 0) =∑
n δn,n0

zn = zn0 . Note that probabilities and moments

can be obtained directly from the generating function:

P (n, t) =
1

n!
∂nzG(z, t)|z=0,

E[(n)r] = ∂nzG(z, t)|z=1,
(7)

where E[(n)r] = E
[∏r−1

i=0 (n− i)
]
is the rth factorial mo-

ment.
From Eq. (5) it is clear that this function can be writ-

ten as G(z, t) =
∑
m cm (

∑
n fm(n)zn) e−λmt. Defin-

ing now gm(z) =
∑
n fm(n)zn we reach the same

form we would have obtained had we used an exponen-
tial ansatz for the solution [27, 29], namely G(z, t) =∑
m cmgm(z)e−λmt. The interpretation of the gm(z)

functions is transparent, as they are the “generating func-
tions” associated to the pseudo-distributions fm(n).3

This is the same ansatz used in time-dependent so-
lutions to quantum mechanical problems [33], where it
arises naturally from the separation of variables G(z, t) =
f1(z)f2(t). Note that g0(z) corresponds, up to a normal-
isation constant, to the generating function of the steady
state distribution P (n, t→∞) ∝ f0(n).

Plugging this into Eq. (6) we reach an ODE in terms
of z alone,

µz(z − 1)g′′m(z)− (µ(N − 1)(z − 1)− ε(z + 1))g′m(z)−
(
λm
z − 1

+ εN

)
gm(z) = 0. (8)

One finds the singularities of this ODE are at z =
0, 1 and ∞ and are regular, hence the solution for gm(z)

is given by a sum of two linearly independent hypergeo-
metric type basis functions,

gm(z) = (z − 1)αm
{
c
(m)
1 2F1

(
αm +

ε

µ
, αm −N ; 1−N − ε

µ
, z

)
+ c

(m)
2 zN+ ε

µ
2F1

(
αm +

ε

µ
, αm +N ; 1 +N +

ε

µ
, z

)}
,

(9)

where

αm =
µ− 2ε+

√
4ε2 − 4εµ+ 4λmµ+ µ2

2µ
. (10)

However, owing to the definition of the generating
function G(z, t), the functions gm(z) should be polyno-
mials of degree N in z. We recall the definition of the

3 Note that this is an abuse of language, as only f0(n) is propor-
tional to an actual probability distribution as it corresponds to
the steady state.

hypergeometric function,

2F1(a, b; c, z) =

∞∑
`=0

(a)`(b)`
(c)`

z` (11)

where (a)` =
∏`
j=0(a + j) is the Pochhammer symbol.

From this definition, one can check that this function is a
polynomial only when either the first or second argument
is a negative integer. This must hold for all possible
values of ε/µ, which means that αm − N or αm + N
should be negative integers.

Consider now the first term in Eq. (9): if αm −N is a
negative integer, i.e. αm ∈ J0, NK, we have a polynomial
of degree N −αm for the hypergeometric function which
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becomes a polynomial of degree N after multiplication
with (z − 1)αm , as required. We now relabel c(m)

1 = cm.
On the other hand, for the second term we should have

that αm +N is a negative integer, suggesting to take an
integer αm ≤ −N and giving a polynomial of degree
(−αm) − N for the hypergeometric term. However this
is multiplied afterwards by (z − 1)αm , and one does not
obtain a polynomial but a rational function. Therefore
the only admissible solutions have c(m)

2 = 0.
We can therefore only keep the first term in the right-

hand side of Eq. (9) and identify αm with the index m ∈
J0;NK, allowing us to find the N + 1 eigenvalues of our
problem,

λm = m (2ε+ (m− 1)µ) , m ∈ J0;NK, (12)

which are precisely those given in [21], with the caveat
that here µ depends explicitly on N as µ = ν/(N − 1).
Without loss of generality, we set c(m)

1 = 1 and absorb it
into the definition of cm.

The constant cm can then be evaluated by projecting
the initial condition G(z, 0) = zn0 onto the eigenfunc-
tions gm(z), which form an orthogonal eigenbasis for a
certain scalar product that can be determined fully us-
ing Sturm-Liouville theory (see Appendix A). In other
words, there exists a function w(z) such that 〈gm, gn〉 =∫ 1

−1
dz w(z)gm(z)gn(z)) = δm,n. It follows then that

cm =

∫ 1

−1
dz w(z)zn0gm(z)∫ 1

−1
dz w(z)(gm(z))2

, (13)

which is equivalent to the projection method on the or-
thogonal eigenfunctions of the imaginary-time Hamilto-
nian used in [21].

We attract the reader’s attention to the fact that the
second eigenvalue λ1 is still independent of N and equal
to 2ε: the convergence to the stationary state, and there-
fore the rate at which ants switch to another source, is
proportional only to the random switching rate, as found
in [21] in the large N limit. We note that the waiting
time to switch between the two food sources was explored
more in depth in [34], where they approximately found
the mean time it takes an ant to switch food sources for
a given (ε, µ) as N → ∞ based on first passage time
theory.

It is also possible to retrieve the result from [21] that
E[n(t)]−E[n(t→∞)] ∝ e−2εt. Starting from the second
line of Eq. (7), we write E[n(t)] =

∑
m cmg

′
m(1)e−λmt.

Owing to the term (z−1)m in gm(z), it is quite straight-
forward to show that g′m(1) = 0 for m ≥ 2. Therefore we
obtain that E[n(t)] = c0g

′
0(1) + c1g

′
1(1)e−2εt as required,

with E[n(t→∞)] = c0g
′
0(1) = 1/2 because of symmetry

considerations.
Note also that the spectrum obtained in Eq. (12)

matches that of the tan2 Pöschl-Teller potential [35] for
the quantum problem solved in [36]. The correspond-
ing Schrödinger’s equation is solved by a trigonometric
change of variables that puts the eigenvalue problem into

the form of an Euler hypergeometric differential equa-
tion, similar to the one obtained in Eq. (8). The discrete
eigenvalues are then found by imposing that the wave-
function must be square-normalisable, much as we must
impose that the generating function be a polynomial in
z.

The method for the large N limit used in [21] mapped
the ant model into the tan2-potential Schrödinger’s equa-
tion by writing a Fokker-Planck equation describing the
random dynamics of the variable x = n/N , changing
variables into ϕ = 2x − 1 to obtain another Fokker-
Planck equation with a diffusive term that did not de-
pend on ϕ and finally by using another common tech-
nique, described in detail in [37], to map this equation
into a Schrödinger’s equation. The method shown above
achieves the same result in a much more straightforward
way that can be applied to other similar problems and
that allows one to obtain a solution for any value of N .

B. Practical evaluation of P (n, t)

Using the polynomial expression expressed above,
2F1(−k, a; b, z) =

∑k
l=0

(
k
`

)
(−1)` Γ(a+`)

Γ(a)
Γ(b)

Γ(b+`)z
`, we now

recast gm(z) = cm
∑
n fm(n)zn, which yields

fm(n) = (−1)m−n
n∑
`=0

(
N −m
`

)(
m

n− `

)
Γ (a+ `)

Γ (a)

Γ (b)

Γ (b+ `)
,

(14)

with a = m + ε
µ and b = 1 − N − ε

µ .
4 This describes

the time-dependent solution up to the determination of
the cm coefficients. We show our results for m = 0, 1 on
Figure 2, and note that the agreement with the N →∞
results from [21] is remarkably good.

Noticing then that

c0 =
1

2F1

(
ε
µ ,−N ; 1−N − ε

µ , 1
) ≈
N→∞

Γ
(

2 εµ

)
Γ
(
ε
µ

) N− ε
µ

(15)
and that f0(0) = 1, one has directly that the probability
of having n = 0 ants in the right-hand side food-source
in the asymptotic regime behaves as N−

ε
µ . In particular,

if one does as in [7, 21] and studies the asymptotic prob-
ability density corresponding of the fraction of ants n/N

4 Note that the above formula is not defined when ε
µ
is an integer

because b and b+ ` are negative integers and therefore Γ(b) and
Γ(b + `) are not defined. In that case, however, it is possible
to use the Euler reflection formula by writing ε

µ
= k + δ with

k ∈ N, 0 < δ < 1 and then take δ → 0 to replace Γ(b+`)
Γ(b)

with
Γ
(
N+ ε

µ
−`
)

Γ
(
N+ ε

µ

) (−1)
ε
µ .
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FIG. 2: A figure showing the two first modes f0 and f1,
represented with the reduced variable x = n/N . The solid lines
correspond to the N →∞ results from [21] for ε/µ = 0.6 (left)
and ε/µ = 2.1 (right), while the dots represent their discrete
equivalent using Eq. (14) with N = 20. The fit is already

remarkably good at only N = 20. In line with the
quantum-mechanical interpretation given in [21], the mode f1 can
be interpreted as describing the hopping of ants from one source
to the other, hence its asymmetric shape about x = 0.5. Note

that this Figure reproduces Figure 2 from [21].

in the right-hand food source, multiplication by the Ja-
cobian of the transformation means that the asymptotic
density at n/N = 0 behaves as N1− ε

µ . This corresponds
to the behaviour of the density of the symmetric Beta
distribution of parameter ε

µ at 0, as given in Eq. (4).
Nonetheless, it is possible to obtain the full time-

dependent solution for a one-dimensional master equa-
tion such as (2) using the alternative method described
in [23], which is exact up to the determination of
the eigenvalues of the transition rate matrix which we
have already obtained above. Similar applications of
this little-known method have been employed in sev-
eral recent publications, for the solution of Brock and
Durlauf’s binary decision model [38], a solution to the
Michaelis-Menten enzyme reaction [39], and in solving
the fast-switching autoregulatory genetic feedback loop
with bursty gene expression [40]. Note that this method
is very similar to the one described in [41, 42], al-
though these publications use Laplace transforms instead
of Cauchy’s integral formula.

We shall now detail the essential steps from the method
of [23] in a generalised form that allows for multi-step
reactions/events. For more rigorous details, see [23]. We

start again from the formal solution ~P (t) = etM ~P (0),
which after using Cauchy’s integral formula5 reads

~P (t) =
1

2πi

∮
γ

dz ezt(zI−M)−1 ~P (0). (16)

However, because P (n, 0) = δn,n0 one can verify that
P (n, t) = [(zI−M)−1 ~P (0)]n = [(zI−M)−1]n,n0

(where
M0,0 is the top-left-hand element of M). We next use
that for any invertible matrix A, A−1 = adj(A)/det(A),
where adj(A) is the adjugate matrix ofA, or equivalently
the transpose of the cofactor matrix. Defining B(z) =
adj (zI−M) we therefore reach the following expression,

P (n, t) =
1

2πi

∮
γ

dz
ezt∏N

i=0(z + λi)
B(z)n,n0

, (17)

where B(z)n,n0
is a polynomial in z, as expected, and can

be determined using standard methods [43], including a
simple iterative formula for the case of tridiagonal M,
i.e., for a one-step birth death process [44], as is the case
here.

Evaluating the integral using Cauchy’s residue theorem
leads to the following expression,

P (n, t) =

N∑
m=0

{
e−λmt

B(−λm)n,n0∏
j 6=m(λj − λm)

}
. (18)

where we now recognise the equivalence with the result
obtained using generating functions,

cmfm(n) =
B(−λm)n,n0∏
j 6=m(λj − λm)

. (19)

To summarise our results, the generating function ap-
proach allowed us to obtain the eigenvalues −λm and
the functions fm describing the solution, up to the con-
stants cm that depend on the initial state. The last ap-
proach, using Cauchy’s integral formula, allowed us to
obtain a more amenable expression that is easy to eval-
uate numerically provided we have the eigenvalues ob-
tained previously. We apply these methods to simulate
the time-evolution of the distribution P (n, t) in the case
of the symmetric model and the asymmetric generalisa-
tions considered below on Figure 3. Note that we vali-
date our analytical results in Fig. 3 against the stochastic
simulation algorithm (SSA, [25]), a Monte Carlo method
from which one can simulate exact stochastic trajectories
describing master equations, for example Eq. (2) (Fig. 3,
top plot).

5 This formula states that for any function ~f(M) = 1
2πi

∮
γ dz (zI−

M)−1 ~f(z), where γ is a contour containing the spectrum of M.
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C. Extension to asymmetric sources

1. Asymmetric noise only

The same analysis can be extended to the asymmet-
ric ant model, studied in [17] to model the dynamics of
fishing boats and in [14] to model agents trading in a
financial market. This version of the model amounts to
saying that the noise level ε depends on whether an ant
is in the left- or right-hand food source. In this case,
Eq. (1) becomes

L
(N−n)ε1+n(N−n)µ−−−−−−−−−−−−−⇀↽−−−−−−−−−−−−−

nε2+n(N−n)µ
R. (20)

The same analysis as above may be carried out in ex-
actly the same way. After solving the eigenvalue prob-
lem using the characteristic function and imposing that
it be a polynomial we find the following expression for
the eigenvalues,

λm = m (ε1 + ε2 + (m− 1)µ) , m ∈ J0;NK, (21)

which is the same expression obtained in the continuum
N →∞ version obtained in [17].

Similarly, the modes gm(z) read

gm(z) = (z − 1)
m

2F1

(
m+

ε1

µ
,m−N ; 1−N − ε2

µ
, z

)
,

(22)
and the expressions for fm(n) are given by Eq. (14) but
with a = m+ ε1

µ and b = 1−N − ε2
µ .

Again in this case we find that the convergence rate
is given by ε1 + ε2 and therefore does not depend on
the imitation rate µ for any value of N . We verify our
analytic solution in Fig. 3 (middle plot) against the SSA.

2. Full asymmetry

The fully asymmetric case corresponds to a situation
where the ants have a different imitation propensity de-
pending on the food source they are currently in. Thus,
Eq. (1) now reads

L
(N−n)ε1+n(N−n)µ1−−−−−−−−−−−−−−⇀↽−−−−−−−−−−−−−−

nε2+n(N−n)µ2

R. (23)

The eigenvalue problem is now an ordinary differential
equation with four regular singularities, and can therefore
be solved via the Heun function [45, Sec. 31],

gm(z) = H(a, q(λm);α, β, γ, 0; z), (24)

FIG. 3: Plots showing the time evolution of ant rationality
models under varying levels of asymmetry. In all plots the

distributions are shown for N = 50 agents and initial condition
x = 0.5, with the histograms showing the analytic solution (from
Eq. (18)) and solid lines showing ensemble distributions from
2500 simulations of the stochastic simulation algorithm (SSA)
[25]. The top plot shows a time evolution for the completely

symmetric ant model; the middle plot shows a time evolution for
the asymmetric ε model; and the bottom plot shows a time
evolution for the entirely asymmetric case of ε1 6= ε2 and

µ1 6= µ2. Clearly, as the model becomes more asymmetric more
complex behaviours are possible.

where we define

a = µ2/µ1,

q(λm) =
(λm −Nε1)(N − 1)

µ1
,

α = −N,

β =
(N − 1)ε1

µ1
,

γ = −(N − 1)

(
1 +

ε2

µ2

)
.

(25)

We require again that this function be a polynomial of
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order N . We therefore write H(a, q(λm);α, β, γ, 0; z) =∑∞
j=0 Cjz

j , with the following recurrence relation (see
[45, Sec. 31.3]):

C0 = 1, αγC1 − q(λm(t))C0 = 0,

RjCj+1 − (Qj + q(λm(t)))Cj + PjCj−1 = 0,
(26)

with

Rj = a(j + 1)(j + γ),

Qj = j((j − 1 + γ)(1 + a) + 1 + α+ β − γ),

Pj = (j − 1 + α)(j − 1 + β),

(27)

and naturally Cj = 0 for j > N .
Setting CN+1 = 0, this recurrence leads to an equation

for q(λm) using continued fractions. Writing a1
b1+

a2
b2+...

=
a1
b1+

a2
b2+ . . ., we find

q(λm) =
R0P1

Q1 + q(λm)−
R1P2

Q2 + q(λm)−
. . .

RN−1PN
QN + q(λm)

,

(28)
which then leads to a polynomial of order N + 1 in λm
and therefore to the N + 1 distinct eigenvalues. This
case, therefore, does not lead to a situation where we can
improve on, say, a direct diagonalisation of the transition
rate matrix.

It is nonetheless possible to study the time evolution
of all instances of the model numerically, as shown on
Figure 3 (bottom plot).

III. APPLICATIONS TO OTHER MODELS

A large class of binary decision models with interac-
tions can be mapped onto birth/death processes. Indeed,
if the dynamics is such that at every time step one or
more agents change their mind from choice A to B, then
this can be rewritten as removing an agent of class A
from the population and replacing them with B. Thus it
is possible to write a reaction scheme as we have done pre-
viously, write the master equation, find the correspond-
ing differential equation for the generating function and
solve using the methods we have shown.

One of the methods we used was already used in [38] to
solve the Brock and Durlauf model [6]. We further illus-
trate this by giving solutions to the voter and vacillating
voter models.

A. The voter model

In the voter model [46] one is interested in the opinion
dynamics of individuals who can vote for two distinct
choices—voting for a left- or right-wing political party,
say. We can again chose to label those choices by L and
R.

The model imagines that the agents are embedded in
a social network, and they only communicate with near-
est neighbours. In the dynamics, with probability pd an

FIG. 4: Plots showing the time evolution of the voter model
(top) and the vacillating voter model (bottom) for N = 50 agents

and initial condition x = 0.5. Unlike the voter model, the
vacillating voter model is capable of exhibiting steady state
trimodality (seen here for t = 100), brought on by the unsure

nature of the voters.

agent is picked at random and their opinion becomes L
or R with equal probability, or with probability 1− pd a
pair of neighbouring agents with opposite opinions LR is
chosen, and then one of the agents persuades the other
into adopting their opinion, so that the new pair becomes
LL or RR with equal probability.

In this case, the model bears strong similarities with
models for catalytic reactions between two different
chemical species L and R [47–49] that are embedded in a
substrate onto which they have adsorbed. The interpre-
tation is now that (i) with probability pd per unit time
L or R desorb and are immediately replaced (at equal
probability) with L or R, and (ii) with probability 1−pd
per unit time a nearest neighbour LR pair react and des-
orb, and are immediately replaced with 2Ls or 2Rs. The
reaction scheme now reads

L
pd(1−x)

2 +
(1−pd)x(1−x)

2−−−−−−−−−−−−−−⇀↽−−−−−−−−−−−−−−
pdx

2 +
(1−pd)x(1−x)

2

R, (29)

where x = n/N is the concentration of species R in the
substrate.

Clearly, this is just a special case of the ant recruitment
model of Eq. (1) in the special case where µ = (N−1)(1−
2εN)/2N2 and ε < 1/2N . Hence, its time-dependent
dynamics is solved by the analyses above. We note
that although it is a special case of the symmetric ant
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model it largely does share the models’ phenomenology—
showing the transition from monomodality to bimodality
in the transient and steady state dynamics, albeit in a re-
stricted section of the parameter space. A benefit of and
Föllmer’s ant model is that extensions towards higher de-
grees of asymmetry between the food sources are more
easily implemented.

B. The vacillating voter model

Another version of said model is that of the vacillating
voter model [22]. This model extends the voter model to
the case where agents are unsure of their opinion. The
dynamics is as follows: every time-step, an agent i with
an opinion Si ∈ {L,R} is selected at random. With a
probability ∝ ε the agent changes their mind randomly
to the opposite choice, and with a probability ∝ ν the
agent then selects another agent j 6= i at random. If
Sj 6= Si then i’s opinion is updated as Si ← Sj , but if
instead Sj = Si and the agents already agree, then i picks
yet another random agent k. If Sk 6= Si then Si ← Sk,
and i retains their original opinion if Sk = Si.

Again we may write the reaction scheme for this model,

L
ε(N−n)+ν

(N−n)n
N−1 (1+N−n

N−1 )
−−−−−−−−−−−−−−−−−−⇀↽−−−−−−−−−−−−−−−−−−

εn+ν
(N−n)n
N−1 (1+ n

N−1 )
R, (30)

and apply the same reasoning as before.
This now yields third-order ODEs for the N generating

function gm(z) (see Appendix B). Using the method of
Frobenius, we write each gm(z) as a series and find the
conditions for which it is a polynomial of degree N + 1.
This then allows to find a continued fraction expression
that is satisfied by the eigenvalues λm, which again allows
one to compute a full time-dependent solution using the
resolvent relationship of Eq. (18). Our numerical results
are shown in Fig. 4.

IV. CONCLUSION

In this paper, we have provided an exact solution to
the ant recruitment model. We have proved that we can
recover the N →∞ results found through other methods
in [21], finding in particular that the stationary state is
reached at an exponential rate of 2ε, independently of N .

We have also shown how our method can be extended
to any binary decision model that can be mapped onto
a one-step birth/death process. We have illustrated this
with applications to the voter and the vacillating voter
models.

More interesting lines of research are however possi-
ble in the context of decision theory. For example, our

method works very well for models that display micro-
scopic reversibility, as the process of one or more agents
changing their mind from A to B can also be reversed by
the process. However, as highlighted in [3], more compli-
cated interactions between agents can break microscopic
reversibility (or break detailed balance, in physics par-
lance) and possibly lead to more interesting phenomena.

A promising way to introduce this is through explicit
path-dependency in the agents’ decision-making process.
Such effects have been studied through the inclusion of
memory effects in utility functions [50–52], showing inter-
esting effects such as ageing or memory induced conden-
sation. There remains, however, to see how such memory
effects could arise naturally from interactions. It should
be noted, as highlighted in [18], that under a timescale
of order 1/2ε the model we have described here is not
ergodic: in the high imitation regime one may think that
one of the two choices is optimal because it has been made
all the time so far, but this may be only because under
that timescale the ants are self-consistently “trapped” in
one given choice, and one has not had the time to observe
a full collective switch.

Other exciting results in decision theory can be ob-
tained with random interactions. Agents interacting
through random games are already known to produce
very rich dynamics, in particular because multiple Nash
equilibria emerge as the games become more complex [53]
and because minute details such as the order in which
players update their actions has an impact on the exis-
tence of an equilibrium [54].

Similarly, if the agents influence each other via a net-
work with random topology and random weights then
one can expect the dynamics to be similar to that of
a spin glass, and therefore to display a rich phase dia-
gram and non-intuitive dynamical behaviour. Progress
in this direction has been made e.g. in [55], whose dy-
namics strongly resembles those describing glassy popu-
lation dynamics in large ecosystems [56, 57] and where
we can expect path dependency to emerge naturally.

By further studying the dynamics of economic toy
models, such as those considered in this paper, we can
further expand the library of qualitative transient be-
haviours one expects to see in more complex models.
Such qualitative behaviours are highly valuable, since
they allow us to reframe the behaviours of real economic
data, and parse them with respect to well understood
behaviours from simpler models.
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Appendix: Exact time-dependent dynamics of discrete binary choice models

Appendix A: Calculation of cm from Sturm–Liouville theory

In this Appendix we complete the specification of the generating function from Eq. (9) in the main text, explaining
how the coefficients cm may be computed from an initial condition. Aside from the first coefficient that corresponds
to the weight on the steady-state generating function, given by c0 = 1/g1,0(1), the other coefficients are determined
from the initial condition. We now look to determine the non-zero coefficients cm≥1 from Sturm–Liouville theory
[S58].

Consider a second-order linear ODE of the same type as Eq. (8) in the main text,[
β1(z)∂2

z + β2(z)∂z + β3(z)
]
f(z, t) = ∂tf(z, t), (S1)

which can be solved using separation of variables to obtain the general solution

f(z, t) =
∑
m

bmFm(z)e−λmt, (S2)

where each Fm(z) is a linearly-independent eigenfunction, i.e. a solution of,

ÔFm(z) ≡ β1(z)F ′′m(z) + β2(z)F ′m(z) + β3(z)Fm(z) = −λmFm(z), (S3)

and −λm are the eigenvalues of Ô.
Sturm–Liouville theory states that the eigenfunctions will form an orthogonal basis under the w-weighted inner

product in the Hilbert space L2([a, b], w(z)dz) denoted,

〈Fn(z), Fm(z)〉 ≡
∫ b

a

Fn(z)Fm(z)w(z) dz ∝ δn,m, (S4)

where w(z) is given by,

w(z) =
1

β1(z)
e
∫ β2(z)

β1(z)
dz
. (S5)

This orthogonality property then allows one to find the coefficient bm with respect to projections onto the initial state,

bm =
〈Fm(z), q(z)〉
〈Fm(z), Fm(z)〉

. (S6)

In our case, from Eq. (8) we find that

w(z) = (1− z)
2ε
µ −1z−(N+ ε

µ ) (S7)

and [a, b] = [−1, 1], as it is the region over which the generating function is defined.
One can then find the coefficients cm as,

cm =
〈gm(z), zn0〉
〈gm(z), gm(z)〉

, (S8)

where the initial number of ants on the right-hand source is n0. This completes the specification of the generating
function solution which is now simply given by,

G(z, t) =

N∑
m=0

cm(z − 1)m2F1 (m+ ε/µ,m−N ; 1−N − ε/µ, z) e−m(2ε+(m−1)µ)t. (S9)
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Appendix B: Solution to the vacillating voter model

Starting from the reaction scheme (30), one obtains the following ordinary differential equation for the functions
gm(z):

νz2(z + 1)(z − 1)g′′′m(z)

+ νz(z − 1)(2 + 4z − 3Nz)g′′m(z)

− (N − 1)(z − 1)((N − 1)(z + 1)ε+ ν(N + 2z(1−N)))g′m(z)

+ (N − 1)(λm +N(z − 1)ε)gm(z) = 0.

(S1)

We next obtain a recursion relation for the coefficients Cj , as

C0 = 1, (N − 1)((N − 1)ε+Nν)C1 − q(λm)C0 = 0,

RjCj+1 − (Qj + q(λm(t)))Cj + PjCj−1 = 0,
(S2)

with the condition that CN+1 = 0, and where we write

q(λm) =(N − 1)(εN − λm),

Rj =(j + 1)

(
j

(
− j2 + j − 2

)
ν

+ νN(N − 1) + (N − 1)2ε

)
,

Qj =− jν(3N − 2)(N − j),
Pj =(j − 1)ν(j − 2N)(j −N − 1)

− (N − 1)ε((j − 2)N − j + 1).

(S3)

We obtain again a continued fraction relation that determines the eigenvalues λm,

q(λm(t)) =
R0P1

Q1 + q(λm(t))−
R1P2

Q2 + q(λm(t))−
. . .

RN−1PN
QN + q(λm(t))

. (S4)

Calculating λm from this relation, the full time-dependent solution is given using the resolvent relationship in Eq. (18).
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