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A 
IXTRODUCTION 

NTENNAS, whose radiating  body  has  a cross 
section which is  small  in  comparison to  the 
length of the  antenna  and  to  the wave length; 

i.e., antennas consisting of wires and rods, are to a 
very wide extent  treated  with  the  help of a linearized 
integral  equation,  the  invention of the auth0r.l-3 
In this  equation  the  distance  between two points  on 
the  antenna is  normally  represented  by  the  distance 
between the corresponding  points on some  central line. 
Only when the  distance  is  small  this  is  not  permitted 
and from  such  regions  arises  the  only  term which 
contains  the  dimension of the cross  section, which  is  a 
parameter  mainly  consisting of a logarithm.  The  equa- 
tion  therefore  has  a  certain  limited  degree of accuracy 
which is such that  the  ratio of the  radius of cross  section 
to  the  length of the  antenna  or  to  the wavelength  is 
neglected compared  with  unity.  The  results which  can  be 
drawn  from  the linearized integral  equation  thus  also 
should  have  this  limited  accuracy which  is a normal 
one  in  electrotechnics  in  all  kinds of devices,  where 
wires are involved.  Nevertheless  much  discussion has 
gone on about  this  accuracy.  The  only  way of finding 
definite  numerical  answers to  this question  is to solve 
exactly  the  antenna  integral  equations,  both  the 
linearized  one  and  the  exact  one,  for  some special  case. 
Nowadays  this  can  be  done for a straight cylindrical 
tube-shaped  antenna. 

(R. Gans  has  recently  expressed  the  opinion  that 
Hallen’s  linearized  integral  equation  should  not  have 
any zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAexact s o l ~ t i o n . ~ ~   T h i s  is  a  mistake  made  by  Gans 
because  he  apparently  has  never seen my  original 
papers.  What  he  studies  and criticizes  is  the  coarser 
form of the  equation  given  in  many  American  papers 
and books as “Hall6n’s  integral  equation.”  Gans  in 
reality  criticizes  the  deviation  that  is  made  in those 
papers  from  my own form,  which  is  not  subject  to 
any criticism of the  kind expressed by Gans.6.7 
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I t  must  also  be  remembered that  even if I would 
agree  with  Gans, to some extent, if he  had  directed 
his  criticism  to  the  proper  persons,  it  is  for  practical 
purposes  not  very  essential if the coarser  form of the 
equation  is used in  the  beginning.  Those  authors  have 
at a later  stage  in  their  deductions  usually  completed 
the  linearization so that  they in  reality use the  correct 
form  even if i t  has  not been  written  explicitly. As they 
try  to find only  an  approximate  solution  it is  even  for 
this  reason  unessential if their  equation  is  not  quite 
the  correct  linearized  one.) 

Any  electric field in  free  space,  periodic  with  respect 
to  time  as @‘, can  be  expressed  with  the  help of a 
vector  potential A as follows: 

E = (grad  div A + /PA) ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC 
(1) 

38 
where c is the  electromagnetic  wave  velocity  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

p = - ,  w 

c 

a  wave  constant. On a  cylindrical antenna oscillating 
under  conditions which  involve  axial symmetry,  the 
current  and  consequently  its  vector  potential  has  the 
directioh of the cylinder  axis. I f  the  ohmic  resistance 
is  neglected the  tangential  component of E vanishes 
in the  surface of the  antenna  and from (1) follows the 
nowadays well-known that  the  vector  potential, 
and hence the  scalar  potential, of the  antenna field 
is  exactly  sine-shaped  along  the  surface of a  cylindrical 
antenna.  This  gives  the  integral  equation  for  the 
antenna  current 1 ( x )  of a cylindrical  antenna, fed by a 
potential  jump 2V, in the middle  (reference 3, eq. 
35.15) : 

47r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Z O  

= - (- Voe-i’lrl + A cos D X ) ,  (3) 

where 21 is  the  length, a the  cylinder-radius of the 
antenna, 

r = [ ( x  - [>2  + 4a2 sin2 $p]l/z, 

the  distance  between two surface  points, 2, the  wave 
resistance of free  space (2, = 377 ohms),  and A an 
unknown  constant.  The  minus sign  on Vl,  , which we 
have  introduced  here,  although  it  was  not  in  the 
previous  papers,  only  indicates that  we have  turned 
the  potential  jump so that  the  outgoing  potential  wave 
is  positive when traveling  in  the  direction of negative x .  
In order  that (3) shall  be  mathematically  exact  the 
ohmic  resistance  should be  negligible and  the cylinder 
should  have no end  surfaces: i.e., it  must  be a thin  tube. 
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(In  practice  only  the  pieces  nearest to the  cylinder  ends 
need to be  hollow.) 

The  current I (%) can  be  considered  either  as  a 
standing  wave  or  as  a  system of traveling  waves,  one 
outgoing  current  wave  traveling  in  both  directions 
from the feeding  point,  and a series of current  waves 
reflected a t  the  ends of the  antenna.  The  terms of the 
right  side of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3) are,  besides a constant  factor,  the 
corresponding  terms of the  vector  potential  along  the 
antenna.  Thus - (V,/c>e-@l is the  outgoing  vector 
potential  wave  and A / c  cos Bx the  sum of all  the 
reflected  vector  potential  waves.  The  outgoing  scalar 
potential  wave  is + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVoejBz in the  direction of negative 
x and - Vlle-iB2 in the  positive  direction.  The  sum of 
all  the  reflected  scalar  potential  waves  is - jA  sin 6%. 
Thus  the  traveling  potential  waves  have  constant 
amplitudes  (on  the  surface of the  cylindrical  antenna), 
whereas the corresponding  traveling current waves 
always  decrease. 

The  outgoing  traveling  wave  is  easily  found  from (3). 
It is the  same  as  the  current  on  an infinite antenna 
without  end  reflections,  hence A = 0 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA00. 

Thus  the  outgoing  current  wave  satisfies  the  integral 
e q u a t i ~ n ~ . ~ .  

The difference  between (6) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4) is that in (6) 
the  radius of the  cross  section of the  antenna is  conse- 
quently suppressed  except  in the  first  logarithmical 
term.  There is the  same  connection  between  (Sa),  (Sb) 
and (3). The linearized  equations  are  much  easier to 
handle,  but  that is not  the  main  reason  to  use  them as 
we can now even  solve (3) and (6)  exactly.  The  linear- 
izing  has  been  invented in order  to  make it possible 
to solve antenna problems of much  more  complicated 
nature.  Even if the  antenna  has  a  curved  instead of 
a straight  central  line,  has  variable  cross  section  and a 
cross  section  which is not  circular,  integral  equations 
can still be  set  up  with  only  one  unknown  variable, 
of a  type  corresponding  to  (Sa).  The  fact  that in the 
general  case the  vector  potential  along  the  antenna  is 
not  sine-shaped,  presents no obstacle. If even  the 
ohmic  resistance of the  antenna  is  taken  into  account 
as well as an incoming outer field, this  general  linearized 
antenna  equation  can  be  written : 112  

[For  the  solution  of  this  equation  see (9).] Before we 
proceed we will even  write  down  the  linearized  equa- 
tions,  which  correspond to (3) and (4). These  are for 
an  antenna of finite  length2  (Eq. 24): 

or in a modified  forma: 

where  the  function I is  the  complex  amplitude  function 
of the  sine  and  cosine  integral  as  defined  (and  tabulated) 
earlier  by  the  author.eI0  From  (5b) we immediately 
get  the linearized  integral  equation  for  the  outgoing 
waves, if we put 1 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA00 and A = 0.398 
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. .  

+ j /" I(s)  sin B(x - s)za(s) ds zll 

+ A cos Bx + B sin Ox ( W  

where D = 2 log 2Z/a(x) is a parameter. ( 5 4  

Here x and 6 are  the  lengths of the  arc of the  central 
line of the  antenna  reaching  from -1  to I ;  r ( ( ,  x )  is 
the  straight  distance  between two points  on  the  central 
line  (thus r (x,  x )  = 0); a(%) is the  radius of cross  sec- 
tion at the  point x ,  if circular,  and  the  "equivalent 
radius" if not; ZB is the  inner  impedance  per  unit  length 
of the  antenna wire. E&) is the  component  along  the 
antenna  central  line of an incoming outer  electric  field, 
if any,  and 2V0 the  driving  potential  jump  [directed  as 
in (3)], if any,  applied  in  the  point x - 11 ; and A and B 
constants.  The  integrals  with  respect  to s, which have 
upper  limits x ,  have  arbitrary,  but  constant lower 
limits. All integrands  remain  finite  even  when 5: = x 
or 5 = s. 
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Eqs. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(6)  for  the  outgoing  current  wave  both 

can  easily  be  exactly  solved. The general  solution of 
both  includes an undetermined  solution  to  the  corre- 
sponding  homogeneous  equations; i.e., the  equations 
with  the  right  side  put  equal  to  zero.  In  the  case of 
the  exact  equation (4) this  eigen-solution (see further 
below)  is the  wave  guide  solution  for  the  tube: 

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA%= constant-e zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz-, a 

(reference  3,  page  410)  where  the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE,,, are  the zeros of 
the Bessel function of order 0. This  solution in  all 
ordinary  antenna  cases zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(X >> a) ,  when  the  wavelength 
is  big  enough to  make B < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEm/a, is aperiodic in space: 
frequency below  cutoff frequency of the  tube.  In  the 
case of the  linearized  antenna  integral  equation (6 )  
we have (see further  below) a corresponding  eigen- 
solution  to  the  homogeneous  equation: 

where y1 = 1.781072 or log y1 = y = 0.577216 is 
Euler’s  constant.  Eq. ( 8 )  represents  traveling  waves 
in both  directions,  which in all  ordinary  antenna  cases 
(X >> a) would have a very low velocity.  These  waves 
have  no  physical  significance. 

Thus  the general  solutions of both (4) and (6 )  are 
undetermined  by  terms of the kind  indicated  by  (7) 
and (8).  However, if we add  the  condition  that  the 
solutions  to (4) and (6)  should  have  symmetry  with 
respect  to  the  feeding  point, so that  the two waves, 
going out in  both  directions,  should  be  equivalent, 
then  the  solution of (4) as well zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas of ( 6 )  is unique. 
This  solution of the  exact  equation  (4) is  (see  reference 
3,  eq.  35.24;  reference 8, eq.  8): 

I ( x )  = - - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv, - 4n j B  
z, 2n 

e iu 

-1 (a2 - p ) I , ( a ~ a z  - j3”)Ko(a~a2 - b2) d a  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(9) 

and of the  linearized  equation ( 6 ) ,  

where I, and Koll  (pp. 78-79) are  the Bessel and  Hankel 
functions of imaginary  argument  and r an  integration 
path in the complex  a-plane  which follows the  real 
axis  from - co to + eo but  avoids a = + B  as if fl 
had a small  negative  imaginary  part. If x is changed 
into - x ,  (9) and (10)  remain  unaltered. 

Both (9) and (10) are  exact  solutions  respectively 
of (4) and ( 6 ) ,  but  they  still  do  not  represent  exactly 
pure  antenna waves.  Both  contain  small  terms of a 
type  similar  to  (7)  and (8) respectively  but  with the 
difference that x is  replaced  by I x 1 ;  i.e., (9) contains 

l1 G. N. Watson, “A Treatise  on  the  Theory of Bessel Functions,” 
2nd Ed., Cambridge  University Press, Cambridge, pp. 1-804; 1944. 

outgoing  waveguide  waves  (below  cutoff  frequency) 
and  (10)  an  extra  outgoing  very  slowly  traveling  wave. 
Those  additional  parts in (9)  and  (10)  come  from  the 
poles  of  the  integrand.  By  changing  the  path of inte- 
gration we can  separate  those  small  terms  from  the 
rest,  which is the  true  antenna  outgoing  traveling 
wave, for (9),  according  to3  (Reference  3,  eq. 35. 28a): 

~ ( x )  = - - v , + ( ~ x ) e - j f i ( z ( ,  ( I f )  
4n 

2, 
where 

(I  repeat  that  the minus  signs  before V ,  in  (3), (4), 
( 5 ) ,  ( 6 ) ,  ( 9 ) ,  (lo), and (11)  only  indicate that whereas 
the  current is counted  positive in the  direction of 
positive x, the  potential  jump 2V,  is directed so that 
i t  would drive  current in the  negative  direction; i.e., 
the  scalar  potential  wave is positive  for  negative x 
and vice  versa.)  Another  way  of  separating  the  true 
antenna  current from  the  total  current  follows  from 
(17c) and  (17d).  In  both  cases  the  function $(@x),  
in spite of the  first  factor  is  perfectly  aperiodic. 
(This  has  been  diagrammed  in  reference  3,  p.  415). In 
the  case of the  exact  solution  (9),  and (11, 12) have 
each  a  distinct  physical  meaning:  (1 1, 12)  is  the  true 
antenna  current  on  the  outside of the  antenna  tube, 
whereas (9) is  the  sum of this  current  and  the wave- 
guide  current  inside  the  tube.  In  the  linearized  case 
there is no  such  distinction.  The new expressions  (11, 
12) ,  and (13) still are  exact  solutions  of  the  integral 
equations (4) and ( 6 )  but only  on  one  side of the feeding 
point,  either  the  side of positive x or  of  negative x ;  
for  the  other  side i t  is  necessary to  add  an eigen-solution 
of the  type (7) respective  (8)  to  make  the  integral 
equation  satisfied  for all values of x .  The expressions 
(9) and (10)  are  the  only  symmetrical  solutions  to 
(4)  and (6 ) .  We  remark that  the  terms which  make 
the difference  between (9) and (1 1, 12) and between 
(10) and (11, 13)  contain  the  small  factor ap. 

The close connection  between (12) and (13) or be- 
tween (9) and (10) is obvious. We have in the  de- 
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nominator of the  integrands in (12) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
= 1 + - log2 gylz + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA221 -g zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7- - (log & l Z  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 

a2 i T 2  

- log2 iy1z) 1 + . . . , 
and  thus we can  get (13) from (12) by suppressing the 
powers of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAafi but keeping i t  in the  logarithm.  This is 
just  what we did when we put  up  the linearized integral 
equation (Sa). The numerical  agreement  between the 
solution (12) of the  exact  equation (4) and  the  solution 
(13) of the linearized equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(6 )  is very  high  even 
near  the  feeding  point,  in  all  ordinary cases. Only for 
extremely  thick antennas is  there a difference. I t  now 
also  appears that  the  consequent  complete  linearization 
of the integral  equation (5a) with  suppressing of all 
powers of a (but keeping a in the  logarithm), which I 
undertook before172 is  the  only  strict  procedure.  My 
followers have  mostly  written a fictitious 

Y = q x  - 0 2  + a2, 

the  distance  between a point  on  the  surface  and a point 
on  the  axis,  instead of I x - ( 1 ,  and  even used a square 
root expression  in the first  term of (Sa). I n  doing so 
they  have  not a t  all  increased the  accuracy  and in fact 
have  made  (5a)  unsolvable, in a strict  mathematical 
sense,  because the  derivative  of  the  left  side  then will 
remain  continuous at x = 0, but  not of the  right  side. 
Gans,  in  his  above  mentioned  papers,  criticizes  this 
inconsistency,  which  he  quite  erroneously attributes  to 
me. The remedy which he  recommends, the changing 
of the  right side of (Sa) as well,  does not seem adequate. 
I t  is better  to  return  to  the original  for  this  integral 
equation  method.2  (When  there is no  potential  jump, 
passive antennas,  and the antenna is solid, the  distance 
Y = d ( x  - + a2 may  be used,  because one  can use 
the vanishing  electric field along the  antenna axis to  
get  an integral  equation,  but  then  there  are  always  end 
surfaces.) 

From the  exact  symmetrical expression (9) for the 
outgoing  traveling  current  wave i t  is  very  easy to  get 
the  potentials  and field strengths at any  point  outside 
the  antenna  and even  inside the  antenna  tube.  We  only 
have  to  apply  the  formula 

& p a J  ~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
O0 e-iOr+iuE 

df' 
-a2 r 

-1  2eiu=lo(a dffz - / 32 )Ko(p  d f f 2  - p ) ,  p > a 

2 e i u z l o (  P dffz - /32)K,(a G- p ) ,  p < a , 
I (14) 

where Y = d ( x  - ,$)2 + p2 + u2 - 2 a p  cos cp is the 
distance  between  two  points, whose cylinclcr co-ordinates 
are p ,  0, x respective a ,  cp, E.  By  putting (9) in the 
integral expression for the  vector  potential  (similar  to 
the  left side of (3)) we get with the help of (14) the 
vector  potential at  any  point: 

As the  scalar  potential V = j c / B  (aA  = / a x )  we get  from 
(15) : 

p = u + 0 ( 1 7 ~ )  

p = u - 0. (17d) 

The axial  electric field component is 

E ,  = 0, p = a. W C )  

The radial  electric field component  is E,  = -- : 
aV 

a p  
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The expression (20) is identical  with (1 1, 12) and  the 
sum of (20)  and  (21) is identical  with  (9).  In  (17d), 
(19d),  and  (21d)  the  integral  can easily  be  carried 
out  and gives a series of wave  guide  waves below cutoff 
frequency (see reference  3,  eq. 35.25). The  character 
of the  potential  jump 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV o  in the feeding point  and  the 
direction we have  given it in this  investigation is clearly 
seen in (16c).  In  the following we will also  give  some 
other  forms  and  asymptotic  values for  some of the 
quantities (15)-(21). 

INTEGRAL EQUATION FOR REFLECTED ANTENNA 
CURREKT WAVES 

After  this  survey of the  outgoing  current wave we 
turn  to  the main object,  the reflected waves. The first 
investigation I made on them9 was based on the  prin- 
ciple that a standing wave expression was  first  obtained 
and then  this  standing  current wave was dissolved into 
a system of traveling  waves. Thus  the ‘expression 
(reference 9,  eq. 55) for the first,  second and following 
traveling  waves was obtained. However, there  have  as 
yet  only existed approximate expressions  for the  stand- 
ing waves,  consisting of a  series of a  limited number 
of terms,  obtained  by  iteration from the integral  equa- 
tion  (Sa). Thus  the traveling  waves will also  be  known 
through  series  with  a  limited  number of terms. This 
method  is  laborious, as already  the  third  term  in  the 
standing  current  wave expression (reference 9, eq. 30) 
is extremely  complicated. A new direct  method of 
finding the traveling  waves  has been developed later.3 
I t  consists of splitting  up  (sa)  into a  series of integral 
equations,  one  for  each  traveling wave. This  can be 
done  by  studying  the  periodicity of both sides of (Sa) 
with  respect to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx as well as with  respect to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. Thus  the 
series of integral  equations (reference 3 ,  eqs.  35.61, 

35.62a, b,  c) for the outgoing  wave,  for  the  first,  second, 
etc., reflected waves, is obtained.  From  these  equations 
i t  is  very  easy to find the result  (55) in reference 9, 
and  even increase the  number of terms; i.e., the ac- 
curacy, in the series  solutions  (reference 3, eqs. 35.65, 
35.66). 

These new integral  equations also invite  us to  try  to 
solve the  antenna problem  exactly in the form of in- 
tegrals  without  any  abbreviated series.  In fact, since 
Levine and Schwinger12 treated  sound  waves in a limited 
unflanged  pipe  with the  help of Hopf’s  and  Wiener’s 
solution to a certain  integral  equation,  the  integral ex- 
tending from 0 to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 3 ,  i t   has been evident  that  the 
problem of the cylindrical antenna (with  tube-shaped 
ends)  can  also  be solved mathematically  exactly.  In 
my book3  I have  also given the  exact solution of the 
problem of the first reflected wave, as  it is derived  from 
the linearized antenna  integral  equation (Sa), when the 
distance 1 from the end to  the feeding point  tends to 
infinity. I t  is also quite  certain  that a finite 1 makes no 
real extra difficulties and  that  the following waves  can 
be  exactly  determined as well, although  formulas be- 
come more  involved  in  these cases. I t  is our object  in 
this  paper to  make a  corresponding  investigation  based 
on  the  exact  integral  equation (3)  for  a  tube-shaped 
cylindrical antenna; i.e., to obtain  the  exact expression 
for the first reflected wave,  and  to  compare  the  result 
with the corresponding  result  from the linearized equa- 
tion. In doing so we ~7ill  get  an  exact knowledge of the 
particular role played by  the  antenna  ends. Of course 
the tube-shaped  ends are only  one of several  possibilities, 
but for the role of the  ends  the  tube  end  can  serve  as a 
type. As I expected-I do  not answer  for others-the 
difference between the results  from the exact  equation 
(3) and  the linearized equation  (sa) consists in terms 
which have  the small factor  ab. For thin  .antennas in 
fact  the linearized equation  is  the  most  general,  it  is 
independent of the  particular  form of the  ends,  and  what 
is common to all  antennas  with  differently  shaped  end 
surfaces  is just  what  the linearized equation gives. 
But  it is  very  important  to know,  numerically,  for  a 
special  case how far  the  agreement  between  -the  exact 
solution and  the  solution of the linearized equation 
extends. 

Two  features can be expected to be of special interest. 
When the reflected  traveling current  wave  has  traveled 
a considerable distance  from  the  end  it is obviously of 
very  little concern  whether we have used the  exact  or  the 
linearized equation.  But in the beginning and especially 
at the very.end-point of the  antenna  the difference must 
be expected to  be  the  greatest.  Therefore we  will deter- 
mine the  exact end admittance of the reflected wave as 
i t  is derived  from  (3)  and  compare it with the  end 
admittance  derived  from (5) which has  already been 
determined.s  Further,  the open  tube-end will carry a 

l2 H. Levine  and J. Schwinger,  “On the  radiation of sound from 
an unflanged  circular pipe,” Plzys. Rev., vol. 73, pp. 383-406; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1948. 
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small  internal  current, which analog to  the  inner 
current of the outgoing  wave  can  be expected to be 
aperiodical  in  space  and  only  represent an end-charging 
current.  This  mainly  capacitive  current  branches off 
from the reflected wave  current at the  end of the  antenna. 
We will determine  it  numerically at the  end-point.  This 
current  has  no correspondence  in the linearized  solution, 
where  there  is, however, just  as was the case  with  the 
outgoing  wave, a fictitious  small, slow, extra  wave  current 
without physical ~ignificance.~ Besides this,  the  exact 
shape of the field round the  antenna end will be of 
interest. 

For the deduction  from (Sa) of the complete  system 
of integral  equations,  one  for  each  traveling  current 
wave,  see  reference zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3, pages 421-425,433-434. Although 
the main  feature of the reasoning is based  only on  the 
true  antenna waves, i t  can  be  repeated in exactly  the 
same  way  even if we start  with  the  exact  standing  wave 
equation ( 3 ,  in  spite of the  fact  that  its general  solution 
contains  even  the  aperiodic  tube waves. In  this  paper 
we will, however,  limit the investigation to  the first 
reflected wave,  and,  for  simplicity,  assume  the  antenna 
length 21 to be very  great.  The influence of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 on  the field 
and  current  conditions  around  the  end  apparently is 
very small anyway.  Then we do  not need the whole 
system of integral  equations  and  can  obtain  the needed 
one  in a simple  way. 

We  introduce  in  our  equations  the  distance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz along 
the antenna from the end  and thus have x = z - 1, 
where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz = 0, when x = - E .  We usually need not  extend 
z to  greater values than z < I and (for this  part of the 
antenna)  have I x I = E - z. The incoming current  wave 
according to (9) is in  our new co-ordinate: 

I(2) = - - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4n .ia zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2, 21r 

v, - 
eja(z-O zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL (a2 - fi”).r,(a4$ - P2)K0(al42 - P 2 )  

da. (22) 

If I increases  infinitely  there will be  no reflected wave 
coming  from the  farther  end z = 2E, but  only, besides 
the incoming current I ( z )  and corresponding  potential 
wave V,e-jBl~-zl, one reflected current  wave i ( z )  and a 
corresponding  potential  wave Vle-iBZ. Thus we get 
from (3), when 1 -+ 00 the  integral  equation 

/- [I({) + i ( { ) ] d {  -L 1’” d q  
0 21r 0 r 

4lr 

Z, 
= - (- Va-iaI l-21 + Vle- is.), (23) 

where { = [ + 1 and r = d ( z  - t)2 + 4a2 sin2 3p. 
Now, if we fictively  define I (c)  as before,  even  for 
negative t, we have,  according to (4), 

Subtracting  this  equation  from (23) we get  the integral 
epuatwn for the first reJlected current wave:3 

2 < 0 ,  

where i ( z )  is,  for z > 0, the unknown reflected current 
wave, and,  by  arbitrary definition,  for z < 0: 

i ( z )  = -I(z) .  (25) 

g(z)  is an unknown  function which we need not  deter- 
mine. V l  is a potential  amplitude, which has  to be deter- 
mined. Eq. (24) is valid  whether  the  antenna  length  is 
infinite or finite. Now we will use the simplification, 
which  comes  from  making 1 = ~4 . The  only consequence 
of this is that  the incoming current (22) will be simplified. 
In  fact,  the expression (22) for the incoming current 
wave  approaches,  for big E ,  

~ ( z )  = - 5 ~ , ~ j ~ ( z - ~ ) ~ z - z - ~ ,  (26) 
2, 

where 

In (26) terms of the  order of magnitude f2Lz have 
been neglected.  Neglecting  even z beside I we get a 
constant  amplitude of the incoming current  wave by 
substituting Q 2 for Ql-z  , where = log 2E/a2/3 - y - 
j ~ / 2 .  The corresponding  asymptotic expressions for 
the incoming  wave of the  vector  potential  and  the 
scalar  potential as derived  from (lsa), (16a) are (with x 
replaced by z - I )  : 

A 2 -  - - V. eiB(2-Z) - - v. 2 log U - e j ~ ( z - ~ ) a l - z - l ,  p > a 
G C P 

(28) 

v = v,ejB(z-l) + V ,  2 log 2 ejB(z-’)nZ-z-l, p > a, (29) 

where 1 is  very big in comparison to z, p ,  a. For p < a 
we simply  get  from (15b) and (16b) the  asymptotic 
values : 

P 

A ,  = - Tro e j o ( z - 2 )  (30) 

v = v&iB(z-’), (3 1) 
C 

and  in  this case the  approach  is closer; the neglected 
terms  are small  essentially as e-”a. 

The first terms  in (28),  (29) together  with (30), (31) 
form  a potential  “field” of constant  amplitude  and 
constant direction. It  has  no physical content  because 
the field strengths B and E as derived  from it   are zero 
everywhere. The electromagnetic  potentials of a radia- 
tion field are more  purely  mathematical  and less physical 
than in quasi-stationary cases. I t  is  therefore  more 
adequate  to use the incoming current  wave  amplitude 
as a  measure of the incoming  wave than  the  potential 
[which we keep  only  in the  unimportant  first  terms of 
(28)-(31)]. We  put  the  constant 
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and  have  for  the incoming wave  the  asymptotic for- 
mulas 

I ( z )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- Ie iBg (33) 

A , =  -- ' 0  e i O ( z - 2 )  - - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI d  log a - e j p z ,  p > a (34a) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C 2.rr P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
v .  A z -  - - 2 e ' B ( z - 0 ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp < a (34b) 
C 

V = V,eiB(Z-l) + _. log - e i B z ,  p > a ZJ a 

27r P 
(354 

v = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvoeiB(z-ll, p < a (393) 

B, = - __ e j p ' ,  p > a POI 

2 R P  
(364 

B, = 0, p < U. (36b) 
The expressions (34)-(36) have  an  independent physical 
sense  only  for z > 0. For z < 0; i.e., outside  the  antenna 
end,  one  cannot  reasonably  make a difference  between 
incoming and reflected wave  (or  this difference would be 
artificial). In  that case (34)-(36) represent a first part 
of a total  wave (see further below). 

SOLUTION OF THE INTEGRAL EQUATION FOR THE 

REFLECTED CURRENT  WAVE 

We now introduce (33) in (25) and (24) and  turn  to 
the  exact  solution of the integral  equation (24). The 
procedure  for solving (24) is  exactly the  same as that 
which I have  carried out before  for the corresponding 
linearized e q ~ a t i o n . ~   T h e  only difference is that we have 
a different  kernel, which now is the  exact  one  for a tube- 
shaped  antenna.  The  mathematical  method  is  in  its 
main feature  that of Hopf and Wiener13 and  i t  was  first 
used on a physical tube problem (an  accoustical  one) 
by Levine  and Schwinger.12 Our  procedure  is, however, 
entirely different  from that of the  latter.  One of the 
advantages we get  is  that we never need a study of the 
field to get  boundary  conditions,  but  that  these  are 
automatically filled and all  constants known. [See the 
very simple deduction of the formulas (48)-(50) below]. 
In  fact, we do  not need the formulas  for the  potentials 
and fields (15)-(19), (34)-(36), etc. for  solving the 
problem;  however, we get  them, as we have  seen,  very 
easily and  they  are of interest  in themselves. 

In  order  to  facilitate  our  computation we temporarily 
assume that /3 has a small  negative  imaginary  term 
B = 81 - j e  so that B is  situated in the lower complex 
semi-plane.  We  dissolve the kernel of the integral  equa- 
tion (24) into a Fourier  integra1  (reference  3,  eq. 35.22) : 
J- /'" e x  da 
27r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 r ='I m 

i(l-1 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 / ejaf[F+(a) -i F-(a)] da, (37) 

e j Q ( Z - ~ ) 2 1 0 ( u ~ a '  - @Z)Ko(udaz  *- p2) da. 
27r -m 

Even i ( r )  is  expressed as a  Fourier  integral 
m 

n. --oo 

Press,  Oxford, England, pp. 1-390, especially p. 339; 1937. 
Is E. C. Titchmarsh, "Fourier Integrals," Oxford University 

where 

F+(a) = / 0 i (u )e - iau  du, 

F-(a) = i(u)e-ja" du- 

m 

is  unknown but regular  in the whole lower complex 
a-semi-plane. When a approaches - j m  we get  the 
limit  value of F+(a) : 

F-(a) is  known  because for  negative u, according to 
(25),  (33), we have i (u)  = IeiB ", and  thus 

(39) 

which is a regular  function of a in the whole up$er com- 
plex  a-semi-plane.  We  finally  dissolve  even the  right 
side of (24) and find it  to  be 

m 
-!- / eiaz[G+(a) + G-(a)] d a ,  
2n -m 

where G+(a) is  known : 

which is a  regular  function of a in the whole lower 
complex  a-semi-plane. G-(a) is  unknown: 

G-(a) = /", g(u)e-iQ" du 

but regular  in the upper complex  a-semi-plane. It 
disappears at infinity  essentially as 1/- ja in  this semi- 
plane. 

Introducing  the  Fourier  integrals in (24) we get 

/_mm d t  & j rn  -m e"V+( r>  + F-(r)l d j  

. L Jm eia(z-f)210(uda2 - ~ 2 ) K , ( a d a 2  - p2) da 
27r -m 

Using  again Fourier's  integral  theorem  in  the  op- 
posite  direction the  integrations  in t and in y give us 
back [F+(a) + F-(a)] and  our  integral  equation  attains 
the final form 

m / eiaZi210(uda2 - p 2 > K o ( a m >  
27r -a 

* [F+(cY) + F-(a)] - G+(a) - G - ( a ) }  d a  = 0. (41) 

Following the Hopf-Wiener  method, we write 

210(ada2 - /3"Ko(ada2 - 02) = - (42) 
a2(4 l 

where 
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Here 6 is a positive  number so small that 6 < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 ,  i.e., 
both  the  integration  paths  in (43), (44) go  between 
P = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb1 - j c  and -/3 = -Dl + j e .  Then pl(a) is regular 
and  different  from zero  in the whole upper complex 
a-semi-plane, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy2(a) in the lower  semi-plane,  and  both 
these regions can  be  extended  somewhat to  the  other 
side of the real  axis  provided that  the  border line remains 
within  the  strip & 6. We  even find 

Y l ( - a ) Y z ( a )  = 1. (45) 

Eq. (41) now takes  the form 

Here cpl(a)/(a2 - P 2 ) ,  (a2 - B2)/cpda), (a2 - f12)/cp1(a), 

E ( Q )  and G+(a) all  remain  analytical  within  the  strip 
A6.  If we anticipate,  as is natural,  that when 0 is 
slightly complex (8 = O1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT j c ) ,  i ( z )  decreases a t  least 
as e-"(z > 0), and g(z)  a t  least  as e'(z < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0), then 
even zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF+(a) and G-(a) will remain  analytic  within  the 
strip.  The  integration  path in (46) thus can  be arbitrary 
if i t  remains  within  the  strip.  The necessary  condition 
for  this is that  the  bracket expression vanishes  and 
therefore  with  respect  to (39), (40) 

The left  side is analytic in the lower  semi-plane, the 
right  side in the  upper  semi-plane;  within  the  strip 
both  sides are  equal.  Consequently  they  represent  the 
same  analytic  function. As F+ and G- are  bounded, 
P ( a )  must  be  a  polynomial of no higher than  the second 
degree,  and  as F+ and G- vanish a t  infinity it  cannot 
even  be of more  than  the  first  degree. \$'e may thus  put 

P(a) = c1 + C d a  - 81, 

Putting Q = /3 we get, from the left  side of (47), 

where C1 and CZ are  two  constants. 

If we divide (47) by (a - 0) and  let cy go towards 
- j w  , we get  with  respect  to (38), 

and  thus according to (25), (33): 
c, = 0.  

Hence P is a constant: 

We determine  even VI by using the  right  side in (47) 
where  we put a = -8, which  gives 

Yl(--P) 2 0  

2p 4TV1 P = j - - ,  

or with the  help  of (45) and (481, 

(49) 

We  can even introduce  the ettd  admittance of the  rejected 
wave (when the incoming wave comes  from  infinity) : 

I 4 P  y, = - - -  
1'1 zo 

- YZ2(8). 

(See Fig. 1 for numerical  values.) 

is now known, for  from (47),  (48) we get 
The Fourier  transform of the unknown  function i ( z )  

F+(a) + F-(a) = j _ _ I  ~ 

26 Y Z ( 4  . (51) 
YZ(8) a2 - B' 

From (37) we  now find the solution of the  problem. 
The reflected current  wave  is 

or, with  respect to (42), 

The  factor before the  integral in (52a) can also  be 
written 171 j4By2(fl)/Z0 . The properties of cp2(a), i ( z )  
and g(z)  will  be studied  in  the following. 

We state  that all the  equations (37)-(40), (45)-(52a) 
are  exactly  the  same  as  when  the  equation  was linearized. 
Reference 3, eqs. (35.52)-(35.57). Thus (52a) and (52b) 
even  represent  the reflected current  wave, as derived 
from the linearized equation,  but  with cpl and ( 0 2  defined 
as in (43), (44) with the difference that  the  bracket 
[2I0Ko] is replaced by a logarithmic  expression, which is 
the limit  value of the Bessel function  expression if 
powers of up are suppressed. Thus  there is  exactly 
the  same  relation between our solution to  the reflected 
wave  integral  equation (24) and  the  corresponding  one 
of the linearized equation as there is between the  two 
exact  solutions (9) and (10) of the  exact  integral  equa- 
tion (4) and  the linearized  one (6) for the outgoing 
wave. I t  is however our task  to  carry  out  the  comparison 
completely  numerically  and find out how thick  the 
antenna  may  be if the linearization  shall  still  be  per- 
mitted. 

I t  is easy to check  the  result  (52a). For z < 0 we can 
add  an  infinitely big circle  in the lower complex  a-semi- 
plane  to  the  integration  path. As cp2(a) is  regular in the 
lower half-plane, the  integrand  has  no  other  singularity 
within the  contour  than  the pole a = /3 = 01 - j e  
and we get for negative z the  value 
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Fig. 1-Real and  imaginary  part of end  admittance of tube- 
shaped  antenna. Solid black line indicates  exact  value: (67) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(.72), Lighter  line  indicates  linearized  value: (68) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(69). Broken 

h e  ~ndicates  approximate  series (71). 

in agreement  with (25), (33).  This  is  the fictive current 
which we have  introduced  to  compensate  the fictive 
continuation of the incoming current  wave: 

i ( z )  + I ( z )  = 0,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 < 0. 

For z > 0 we introduce  (52b) in the  left side of (24) 
and find this  side of (24) to  be7  with  respect  to (14), 

(53) 

and (for positive z)  we close the  integration  path  in  the 
upper  semi-plane,  where (pl(a) is regular. The  only 
singularity  within  the  contour now is the pole a = 

-j3 = -PI + j e  and  (53),  on  account of (43 ,  (49), 
becomes 

in accordance  with  the  right side of (24), which equation 
thus is fulfilled. 

For  negative  values of z the expression (53) represents 
the  hitherto  unknown  function g(z )  of (24). 

The reflected current  wave (52), with z > 0, consists 
[as  was the  case  with  the  outgoing  current (9)] of two 
parts:  an  outer  antenna wave zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAie and  an  inner  wave 
guide  wave ii , below cutoff frequency, which penetrates 
into  the  tube  from  the  end  but which  decreases  ex- 
ponentially.  For  thick  antennas  the  latter is not  quite 
unessential as it represents a current which branches 

off from’ the main antenna  current wave. I t  is  mainly 
a charge  current,  and if the  antenna  has, for instance, 
flat  ends  instead of tube-shaped  ones, i t  corresponds 
to  the small  current which charges  and  discharges  the 
end  surface.  We  can  easily  split  (52b) into  these two 
currents. We observe that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 

I o ( a d a z  - , 9 2 ) K o ( a d ~  

and  get 

where 
i ( z )  = i , (z)  + i i ( Z ) ,  

z > 0 (55) 
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where the E m  are  the zeros of the Bessel function J o ( t ) .  
(56b)  is a series  of  waveguide  waves (below cutoff 
frequency) to which we will return  later. For a corre- 
sponding  series expression fpr  the  wave  guide  waves 
of the outgoing  antenna see  (reference  3,  eq. 35.25). 
The linearized equation  does  not give  these  waves  (56b). 

THE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAELECTROMAGNETIC FIELD AROUND THE 

ANTENNA END 
We  are now in the position that  we can  give a n  exact 

description in every  detail of the field around  the 
antenna  end (if this  is  tube-shaped).  The  way which is 
physically most  straight  forward would be to use the 
true  currents,  the incoming current (33) and  the reflected 
current (52), for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> 0 and  express  the  vector  potential 
from  them in the form of an  integral  extending  from 
z = 0 to 2; = m [cf. (23)]. But  i t  is  easier,  and  equally 
correct,  to  extend  both  currents  to z = - m, with the 
provision (25) that  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi ( z )  + l ( z )  = 0 for z < 0. The 
field from the (extended)  incoming  current I ( z )  we 
have  already in (34a), (34b),  (35a),  (35b),  (36a),  (36b). 
The  vector  potential  from  the  (extended) reflected 
current (52a)  is at an  arbitrary  point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp,  0, z :  

is  negative, is that we can deform the  path of integration 
in the upper  half-plane in the first  case, and  in  the lower 
one  in  the second. I t  can  be  shown [cf. (64), (65a)l from 
the integrals in (55) and (57a) that  they represent,  for 
z > 0, waves  traveling  in the direction of positive z 
(i.e., have a periodic factor e-ibr), whereas (52a) for 
z < 0 represents  waves  traveling in the  negative direc- 
tion  (periodic  factor ejb"). 

From  the  vector  potential we get  the  magnetic field 
B, = - aA,/ap and  thus, using (%a,) (58b) the t o t a l  
magnetic field outside the  antenna  end ( z  < 0) becomes 

K o ( a d a z  - 82)11(pda2 - 6') da,  p < a. (59b) 

These expressions  for the  total magnetic field are  still 
valid  even  for z > 0, but  in this case i t  is  better  to 
write  them [using (42)] as: 

where r = [ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(z - {) + p2 + a2 - Z a p  cos p]1/2. Using 
(14), (42) this  gives 

P > a (57a) 

d a ,  
po jb  Sm _e??l(d ~ , ( P d a z  - 6 2 )  

4*'cpz(~) --4, a2 - 8' 1 , ( ~ d ~ 2  - 0 2 )  

~- 
A ,  = I - -  

P < a. (57b) 
For z > 0 this  represents  the reflected vector  potential 
wave,  whereas the incoming vector  potential wave is 
given by  (34a),  (34b).  For z < 0, i.e., outside  the  antenna 
end, we can  no  longer  distinguish  between  incoming  and 
reflected waves but we get  the total vector  potential 
wave by  adding (34a), (34b). In  this region ( z  < 0) 
i t  is better to go back  to  the function p 2  instead of cpl . 
We  thus  get  the total vector  potential  outside  the  antenna 
end : 

- K o ( a d a 2  - 8 ' ) I , ( p 4 a 2  - 8') d a ,  p < a. (58b) 

The expressions ( S a )  and (58b) arc in themselves  valid 
even  for z > 0, although we prefer to use p1 instead of 
pz when z > 0. The reason why we always  make  this 
distinction, using p1 when z is  positive but cpz when i t  

p < a. (59d) 

In  the  term  outside  the  integral we recognize the field 
of the incoming  wave (36). If we put p = a, we find 
from (59d) the limit  value of -2ru/p,  B,(a) to be 
equal  to  the inner  current  (56a),  and  from (59c) the 
outer  limit  value of + 27ra/p. B,(a) to  be  equal to 
the sum of the incoming current (33) and  the reflected 
outer  current (55). Our  interpretation of the physical 
significance of the  two  terms (55) and (56a) of the 
reflected current  is  thus justified. 

I t  is easy to verify that  outside  the  antenna end the 
magnetic field is continuous a t  p = a. If we subtract 
(59b)  from  (59a) and  put p = a we find  from  (reference 
11, p. 80, eq. 20) the  result zero.  However, i t  is  a  lack of 
elegance not  to have  a  common  formula  for p < a as 
well as for p > a outside  the  antenna  end, because the 
limit p = a between the two regions has no  physical 
significance. We find a common  formula by deforming 
the integration  path in (59a) and (59b) into a double 
line in the lower complex  a-semi-plane  from a = 8 
to a = 0 - j m .  If we further  substitute d a 2  - p2 = 
-jbu we get, for z < 0, the common  formula: 

poja 1 - e ~ z d ~ p 2 ( - j b  d/u2 - 1) 
B,= - I -  

2*cPz(b) o zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd- 
Jo(aBu) JI( pBu) du, (59e) 

valid  for  all p but  only for  negative z. The  integration 
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path should  avoid the singular  point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1 in the  upper 
complex  semi-plane. 

We finally  give  even the  components of the electric 
field which are  equally  easy  to  deduce.  The total electric 
field is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

p > a (60a) 

p < a (60b) 

p > a. (61a) 

p < a .  (61b) 

The first  term of (61a) is the incoming wave (which 
has no z-component).  The  equations  (60)-(61)  are 
valid  both for positive  and  negative  values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz,  but for 
negative z i t  is better  to  write  the common formulas 
for the  total field outside  the  antenna  end: 

- pz(-jPdu2 - 1)Jo(abu)Jl(ppu) du, ( 6 1 ~ )  

where the  integration  path  avoids  the  point u = 1 in 
the  upper complex  u-semi-plane. The  formulas  (~OC), 
(61c) are valid  for  all p but only for negative z. 

Eqs.  (52)-(61)  give  a  complete mathematical solu- 
tion to  the problem under  investigation. 

INVESTIGATION zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOF THE ANTENNA  CURRENT 

The inner  current  (56b) is aperiodic  and  decreases 
exponentially. Its initial  value at  the  antenna end  has 
most  interest 

to which  we  will return  later. I t  constitutes  a branch-off 
mainly  capacitive  current at the  end.  With  the  help 
of (49) we may define an inner  end admittance 

The  outer reflected current zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 5 5 )  is periodic and  repre- 
sents  a  wave:  By  changing  the  integration  path  through 

the  upper complex  a-semi-plane we can  write i t  in the 
form 

where 

#m (62) = - - t P ~ Z ( B )  

ir," (a2 - 
ei(a+B)zcpl(a) d a  

p " K o ( & ~ / a z - 8 2 > K o ( a ~  z j q  
(654 

(here l / a 2  - P2 is positive  along the  integration  path). 
By a suitable  change of variable  this  also becomes 

where u shall  avoid the  point u = 1 in the  upper com- 
plex u-serni-plane.  According to (65a) the  amplitude 
function #-p (Pz) is an aperiodic  function of Pz. The 
index -p is used in order  to remind us of the  fact  that  our 
reflected wave  arises  from an incoming  current  wave 
which has come  from  infinity. If i t  comes  from a finite 
distance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI the problem can  also  be  solved but gives a 
more  complicated  formula. A finite I ,  however,  influences 
the reflected wave  rather  slightly. I t  should  be  noted 
that  (65a), (65b)  differ only  by  the  two  factors pz(/3) 

and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(01 from the corresponding  formulas  for the  outgoing 
wave  (reference 3, pages 411-412). 

The  exact  numerical  evaluation of #= (Pz )  from  (65a) 
or (65b)  for  all values of z is unhappily  very  complicated. 
One can fall back  on series  expansions  (see  further  below) 
which are especially good when z is not  too close to 0. 
For z = 0 we have however the  value of the reflected 
current  according to (49) : 

and  according to (50) the  total  end  admittance  for  the 
reflected wave 

where (o~(8) is simpler to determine  numerically. That 
has been done in this  investigation for a series of values 
of U P ,  which give the exact values of the end admittance 
of the straight cylindrical  tube-shaped  antenna, shown 
as a diagram  in Fig. 1 and Fig. 2. Instead of up we have 
plotted  the  ratio Ala between  wavelength in free  space 
and  radius of cross  section.  We  have the simple  relation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A/. = 27r/@. Even Y; has  been  numerically  computed 
for a few values  and as soon as sufficient computing  aid 
is available  to me  I will publish a complete diagram. 
Thus, Y, , Ye and Yi are all known. For detaib 6f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtW 
numerical  determination of cp2 see below. 

Before we proceed further we will even  mention  the 
corresponding  result as derived  from  the linearized 
integral  equation.  In that case  there  is  no  inner  current 
ii. In  fact, all the  equations  (56b), (62), (63) above 
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shaped  antenna,  exact  value. Dots indicate  inner  end  admittance 
Fig. 2-Real and  imaginary  part zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof end  admittance of tube- 

(63). 

contain  the  small  factor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUP,  which  is  supposedly negli- 
gible at   the linearization. Thus  with  linearization we 
have (reference 3, eq. 35.57): zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

$00 (0)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcpz'(P) 

and 

Y ,  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI', = - cpz2(p) (linearized equation), (68) ST 

Z O  

where in this  case 

(linearized equation). (69) 

The function (68) has  formerly been computed (reference 
3, page 432, Fig. 412) and  it is introduced in our  Fig. 1 
here  also  for  comparison with  the  exact  value  for  the 
tube-shaped  antenna. 

For  arbitrary  values of z the  amplitude  function 
$ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAoo (Pz),  as i t  follows from the linearized  formula  corre- 
sponding to (65b) or (65a) [or (64) and (Sj)], can be 
expanded  into a rapidly  decreasing  series: 

where Q z  = - 2  log ab' - 2y - j r  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI,(ZPz) + 1(2&) 
and  the  different  functions I are  the  amplitude  functions 
of the  iterated sine and cosine integrals of different 
orders  as defined in (Hallen,I4  page 4; reference 9, 
pages 1-5; reference 3 ,  page 435; reference 10, pages 
4-6). They  are  tabulated in (reference 10, Tables I17-VI) .  
The  parameter Q, increases  with  increasing z and  the 
expressions  within the  brackets in (70) decrease,  with the 
exception of the  constant,  essentially  as I /& Thus  the 
accuracy of (70) increases with z, and  it is a very good 
expression. An exception is the  very neighborhood of 
the  starting  point  (antenna  end) z = 0, where the series 
gives 

$/= (0 )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQo-l + - Q,-3 + 4S39,-' + ' . . (71) 
7r2 

6 
00 

where S ,  = 2 l:'n3 = 1,2020565 and Q o  = - 2 logaa - 

27 - j r .  Even  this  approximate  value  (the  end  ad- 
mittance  derived  from i t) is entered in Fig. 1 for com- 
parison. I point  out  that generally (70) is much  more 
exact  than ( i l ) .  The  antenna  current  amplitude  changes 
more rapidly in the  beginning  and  there  the series is 
least  favorable.  Observe  also that in (70) and (71) the 
second negative power of 8, , resp no is lacking so that 

Imt .  Tech., Stockholm, no. 12 ,  pp. 1-6; 1947. 

1 

11 E. HallCn, "Iterated  sine  and cosine integrals." Trans. Ror 
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the following terms  are  very  small  compared  to  the  first 
one.  Series  corresponding to (70) for the  outgoing  wave 
and  for reflected  waves  when the  finite  length of the 
antenna is taken  into  consideration  have  also  earlier 
been  derived  (reference 8, page 1141 and  page 1145 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA; 
reference 9. eq. 55; reference 3, page  436). 

The series (70) is  much  more  easily  derived  directly 
from the linearized integral  equation  than  by series 
expansion of an  exact  solution (reference 3,  pages 433- 
436). The  only  attempt so far  to  evaluate  for all  z-values 
the  exact expression  (65b)  for the  wave  amplitude of the 
reflected wave on a tube-shaped antenna  has been  series 
expansion, but  as it involves the neglect of powers 
of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAab, this  only  leads  to  the  already known approximate 
expression  (70). 

I t  is,  however, fortunate  that  at  least  the end  value 
for z = 0 is exactly  numerically  known  (the  end  ad- 
mittance) because  when summing  up  the series of 
traveling  waves on a  finite antenna,  the end  admittances 
play an essential  role  and the  total  current  is  numerically 
sensitive j us t  to  this  end  value. So, even if at   the moment 
the numerical  evaluation of the  exact reflected current 
wave  along the whole antenna (from  65b) yet remains, 
the  fact  that we know Grn (0) exactly is an essential  result. 
Combined  with ( T O )  for  those parts of the  antenna which 
are  not  quite close to  the  end  it gives  a  very  exact 
knowledge of the  antenna  current  everywhere. 

For  the  numerical  evaluation of the  exact expression 
for the  antenna end  admittance (SO), (44) one  has  to 
transform  the  integral (44). This can  be  done in several 
ways. If we  follow the  same  method  as in (reference 3, 
page 431) for the linearized  expression,  we  meet  only  two 
differences. They  are 1) the poles of the  transformed 
integral now form an infinite  divergent series, and 2),  
the  infinite  integral, before  compensation,  diverges. 
Both difficulties  can  easily  be  overcome, and  as  this  way 
of proceeding  leads  mainly to Bessel functions J ,  , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Y o  , of which very  dense  tables  are  available, we  use this 
method.  Otherwise, i t  is easy  enough to avoid  the series, 
but  then  the expression will retain  functions I ,  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAKO 
which are  not so densely  tabulated. 

I find (cf. reference zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3, page  431)  from  (44) : 

1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy - - + log zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA"I}. (72) 
l r  

P 2 ab 
Except for the  compensating  last  bracket  term  in  the 
last  infinite  integral  and  the  last  terms  outside  the 
integrals, which all contain  the  factor ab, one recognizes 
in  this expression the corresponding  linearized  one 
(reference 3,  eq.  35.58~) if as usual the  Hankel  functions 
are  substituted  by  their  first  logarithmical  part  with 
suppressing of powers of ab. The  integrals in (72) are 
easily converted  into  others  with  finite  integrands  and 
finite limits (cf. reference 3,  eq.  35.58d). The  exact 
value of the  end  admittance of the  tube  shaped  antenna 
(50) as it follows from (72) is  shown  in  Fig. 1, together 
with  the  corresponding linearized (68),  (69)  and  the series 
value as derived  from  (71).  Fig. 2 gives a part of the 
exact  curve in another  scale. 

For  the  numerical  evaluation of the  end  impedance 
of the  inner  current (63) we proceed  in the  same  way, 
although  the fo.rmula now differs  because of the imagi- 
nary  value of LY in. y1 in (63).  For  summation of the series 
we  need an  asymptotic  formula  for 

Pl ( ; dEn2 - 0182)  

for  higher  values of m. This  asymptotic  value  is  found 
to be 

where 

-:\ 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu d u  

P 0 (1 + dl - U2)Ho(l)(apU)Ho(2)(apu) ->* 

E,,, is defined by Jo(Em) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. 
The  curves, shown  in  Fig.  1 and Fig. 2, speak for 

themselves. When  the  ratio of wave  length to radius of 
cross  .section  is  more than 80-100 there  is no visible 
difference whatsoever  whether we use my old integral 
equation for thin  antennas  (the linearized equation)  or 
the  exact  equation  for  tube-shaped  antenna. 


