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Exact Treatment of the Dispersion and Beam
Interaction Impedance of a Thin Tape Helix

Surrounded by a Radially Stratified Dielectric
David Chernin, Thomas M. Antonsen, Jr.,Member, IEEE,and Baruch Levush,Senior Member, IEEE

Abstract—An exact dispersion relation is obtained for elec-
tromagnetic waves propagating on a thin metallic tape helix
of arbitrary width, supported by a radially stratified dielectric
layer and enclosed by a metallic shell. By expanding the surface
currents on the tape in a series of Chebyshev polynomials, the
unquantifiable assumptions made in all previously published
analyzes of the tape helix regarding the forms of the surface
current on the tape, or the electric fields at the radius of the
tape, are avoided. The power flow and interaction impedance
are exactly computed. The dispersion relation is solved nu-
merically for slow waves and the resulting phase velocity and
interaction impedance are compared to those computed using
the frequently made assumptions of constant current along the
tape and zero current across the tape. It is found that for wide
tapes significant errors are made in both the phase velocity and
interaction impedance when neglecting the transverse variation
of the longitudinal current and neglecting the transverse current.
For narrow tapes, the two approaches agree to good accuracy.
Plots of the surface currents for wide and narrow tapes are
presented. The longitudinal current shows a significant variation
across the tape. An example is given showing the existence of an
optimum tape width, at which the on-axis interaction impedance
is maximized. It is separately shown how an approximate, but
useful model of metallic vanes may be incorporated in the
analysis by the modification of certain boundary conditions. In
all cases, computations of phase velocity and impedance across
a wide frequency band take well under a minute on a modern
workstation.

Index Terms—Dielectric loaded waveguides, dispersion, im-
pedance, slow wave structures, tape helix, traveling wave tubes.

I. INTRODUCTION

T HE characterization of the electromagnetic waves sup-
ported by a metallic helix has been the subject of exten-

sive investigations, beginning, apparently, with an approximate
treatment by Pocklington [1], who analyzed waves supported
by a thin wire helix. It was not until the invention of the
helix traveling wave tube by Kompfner [2], however, and its
subsequent analysis by Pierce [3], that interest in the details
of the slow wave electromagnetic modes of a helix greatly
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increased. The first comprehensive analytical treatment of the
problem was presented by Sensiper in his doctoral thesis [4],
some of which was abstracted in a later review article [5],
where many references up to 1955 may be found. Sensiper
discussed both the so-called sheath model of the helix, in
which currents are constrained to flow in helical paths on
a cylindrical wall, as well as a finite width tape model,
which contains the effects of spatial harmonics absent from
the sheath model. In both cases, Sensiper’s analysis applied
to an unsupported helix in free space. Stark [15] considered
the effects of a cylindrical enclosing conductor, as did Uhm
and Choe [16]. The effects of a supporting dielectric layer
were investigated by Tien [6] and by McMurtry [7], who also
considered the effect of a surrounding metal tube. A good
summary appears in Watkins [8]. More recently, Freund,et
al. [9] computed the dispersive properties of a tape helix
surrounded by a cylindrical metal waveguide in connection
with their analysis of the linearized beam-circuit interaction in
a traveling wave tube (TWT). Ghoshet al. [10] presented an
analysis of the tape helix surrounded by a stratified, multi-layer
dielectric support.

All previous work on the tape helix of which the present
authors are aware have included some simplifying assumptions
about the surface current density distribution on the tape
and/or have enforced the boundary conditions on the electric
field at the tape in an approximate way. The “narrow tape”
assumptions seem to be the most common. These are as
follows:

1) the current flows only along, not across, the tape;
2) the current density along the tape is constant across the

width of the tape;
3) along the tape centerline.

Sometimes assumption (3) is replaced by the condition that
the average of across the tape vanishes, though this
gives results very similar to (3), for narrow tapes. Sensiper,
apparently uniquely, separately treated the wide tape (narrow
gap) case, by assuming that vanished everywhere at the
radius of the tape, the electric field in the gap was constant,
and the transverse current at the center of the gap vanished,
though, again, his analysis applied only to an unsupported
helix in free space.

Freundet al. and Ghoshet al. in particular applied (1)–(3).
These approximations are expected to be good for narrow
tapes. However, they are not essential, nor are they necessarily
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Fig. 1. Right-handed tape helix surrounded by a single dielectric layer enclosed in a cylindrical metal waveguide. The helix radius isa; its width is
w; and its pitch isp: The waveguide radius isb: The developed helix (cut alongz and unrolled) is shown in (b). The tape cuts a plane of constant
z in a width w= sin as shown in (b), wherecot � 2�a=p:

physically reasonable. In particular, assumption (2) omits the
expected square root singularity of the parallel current density
at the tape edges, present even for narrow tapes. In the present
report it is shown how these common assumptions may be
eliminated and a formally exact dispersion relation obtained
for the (infinitely radially thin) metal tape helix supported by a
radially stratified dielectric layer, surrounded by a cylindrical
metal waveguide. An exact expression for the power flow,
from which the interaction impedance may be obtained, is
also given.

The assumption of an infinitely thin tape presents a question
of how the predictions of the theory presented here could
be compared with experimental measurements on real, finite
thickness tapes. In the usual case, in which the skin depth is
small compared to the actual tape thickness, slightly different
currents flow on the inner and outer surfaces of the tape. This
could be taken approximately into account, for example, by
treating two helical surface currents separated by a vacuum
gap representing the tape thickness, but no attempt to do this
is made in the present paper. Here we present the first exact
treatment of a single thin tape. Generalizations of the analysis
used here to treat multiple tapes, even counter-wound tapes,
are straightforward.

The tape helix model presented here has been incorporated
in the large signal TWT simulation code CHRISTINE [17].

This paper is organized as follows. Section II presents the
derivation of the dispersion relation and power flow for the
case of a single dielectric layer between the helix and the outer
wall. The formulation is such that it is easily generalized to the

case of an arbitrary number of dielectric layers; this is done in
Section III, where a simple matrix approach is used to propa-
gate the fields across the multiple layers. Section IV presents
some numerical examples, demonstrating the breakdown of the
narrow tape assumptions. It is also shown that there is a maxi-
mum in the interaction impedance as a function of tape width,
the maximum occurring at a value at which neither the narrow
tape nor narrow gap assumptions is expected to be valid.

II. SINGLE DIELECTRIC SUPPORTINGLAYER

We begin by considering electromagnetic waves supported
by a tape helix centered inside a perfectly conducting circular
cylinder with a single azimuthally uniform dielectric lining, as
shown in Fig. 1. The radius of the helix is its width is
and its period or pitch in the axial direction is The tape
is taken to be infinitely thin in the radial direction. The radius
of the enclosing cylinder is The pitch angle of the helix,
is defined by Cylindrical coordinates
are used, as shown in the figure.

The interior of the helix region 1) is taken to
be vacuum. The region between the helix and the outer wall

region 2) is filled uniformly with a single layer of
dielectric material of permittivity where is the
permittivity of free space. Superscripts (1) and (2) are used
here and below to denote regions 1 and 2. The general case in
which the dielectric region between the helix and outer wall is
radially stratified into multiple layers with different dielectric
constants is treated in the next section.
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To begin, we need only Faraday’s and Ampere’s laws
which, in units, are

(1)

(2)

where and a time dependence
has been assumed. The currentis confined to the (infinitely
thin) tape and to the wall of the enclosing cylinder. For
we write

(3)

where is the surface current density at and
is the Dirac delta function.

We take all field and current components to be of the
(“Floquet”) form

(4)

where The helix period is positive for a right-
handed helix and negative for a left-handed helix. is the
phase shift per period. The propagation factoris an as yet
unknown function of frequency and the other parameters of
the problem.

Now, it follows from (1) and (2) that and
separately satisfy

(5)

in each region where denotes either or
,

(6)

is the square of the radial propagation factor in regionand

(7)

is the axial propagation factor in all regions.
Equations (1) and (2) may also be used to express the-

and -components of the fields in terms of the-components
and their radial derivatives as follows:

(8a)

(8b)

(8c)

(8d)

where, again, these equations hold separately in regions 1 and
2.

The goal of the calculation that follows is to express the
components of parallel to the helix in terms of the helix
surface currents. Requiring those components ofto vanish
on the (perfectly conducting) helix surface will then give
a homogeneous equation for the components of the surface
currents. The condition for existence of a nontrivial solution

of that equation gives the dispersion relation, relating the
propagation constant to (and to the other parameters of the
problem). The resulting currents can then be used to compute
all field components.

Equations (2) and (3) give the jump conditions on at
the helix

(9a)

(9b)

Evaluating (8b, d) at defining the dimensionless
logarithmic derivatives

(10a)

(10b)

and solving for and in terms of and gives

(11)

where admittance matrices have been defined as

(12)

where is the impedance of free space.
The logarithmic derivatives defined in (10a) and (10b) and

appearing in (12) are given by the solutions of (5). The interior
of the helix (Region 1) is assumed to be vacuum. It follows
that

(13)

where is the modified Bessel function of the first kind,
is the helix radius, and a prime mark denotes

differentiation with respect to the argument of the modified
Bessel function. Similarly, applying (5) in Region 2 and
enforcing the appropriate boundary conditions at the outer
wall gives

(14a)

(14b)

where is the wall radius, and
is the modified Bessel function of the second kind.

Defining now the jump in the magnetic field
at the helix radius, (9a,b) and (11) give

(15)
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where the superscripts on and have been dropped,
since these fields are continuous at Solving for
and in terms of the surface currents on the helix gives
the basic result

(16)

where the impedance matrix has been defined as

(17)

The total field at the tape radius is then

(18)

In order to apply the boundary conditions on
the tape itself, it is convenient to define surface coordinates
on the cylinder as

(19a)

(19b)

where the helix pitch angle is defined by

(20)

The limiting cases
and correspond to a
strip along and a very tightly wound helix, respectively. In
the general case, the-direction is measured along the tape

and the direction is measured across the
tape where is the tape width. For any vector

the transformation to coordinates is given by
a rotation

(21)

which defines the rotation matrix Performing this change
of variables in (18) yields

(22)

where

(23)

The boundary condition at the tape is for
for and In order

to apply this boundary condition, it is convenient to take a
Fourier transform in Writing

(24)

for any where is the wave number in the-direction,
(22) becomes

(25)

Noting that

(26a)

(26b)

it follows that (25) has the form of (4) if we identify

(27)

as the wavenumber along the tape. It remains then only to
satisfy the condition

(28)

Using (25), this condition is written

(29)

in where

(30)

(31)

is the dimensionless tape width is the
phase shift per period, and we have changed variables from

to

(32)

so that the range of is across the tape. Note that
is the downstream edge of the tape, that is, a point

moving with the phase velocity of the wave passes
first, then The subscript has been dropped in (29),
and in the following.

Equation (29) is a homogeneous integral equation for the
functions and The condition for the existence
of a nontrivial solution of (29) is the dispersion relation we
seek. One approach to obtaining this dispersion relation is to
expand and in a complete set of functions on
the interval and to project out the coefficients of each
element of the set from (29), setting each to zero. The result
is a homogeneous matrix equation. Setting the determinant
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of the coefficient matrix to zero gives the dispersion relation.
Following this approach, we write

(33a)

(33b)

where and are the Chebyshev polynomials of the
first and second kinds [11] and the expansions have been
chosen so that the currents have the expected behavior at the
edges of the tape, Useful integrals involving the
Chebyshev polynomials are

(34a)

(34b)

(34c)

(34d)

where, in (34c) and (34d), is the Bessel function of the
first kind.

Substituting (33a) and (33b) in (29) and operating by the
matrix operator

(35)

gives

(36)

where a sum from on is understood and the doubly
infinite set of matrices, is
given by

(37)

If we expand (36)

(38)

The complete dispersion relation is then

(39)

where is the infinite matrix in (38).

Equation (39) is formally exact. Its solution includes all
waves (both fast and slow) that can be supported by the
helix. The only implicit assumption is that the currents possess
convergent expansions of the form (33a) and (33b).

Note that the elements of defined in (37), depend on
those of the admittance matrices in region (1)—the interior of
the helix—and region (2)—the dielectric layer adjacent to the
exterior of the helix. See (12), (17), and (23).

As a practical matter, the determinant in (39) must be
truncated. The hope is that convergence is fast and that only
a few terms are needed for good accuracy; this hope is
realized in Section IV, where approximate roots of (39) are
found numerically. Even the lowest order expansion (using a
single Chebyshev polynomial in the expansions) can give good
results; in this case the dispersion relation becomes

(40)

where

(41)

In this case, the roots of a determinant must be found.
To compare this result with previous work, consider the

commonly made assumptions

(42a)

(42b)

In this case, it is straightforward to show, from (29) that

(43)

where is the (1,1) element of A further approxima-
tion is commonly made in one of two ways. Either

(44a)

or

(44b)

In these cases, using (43), the dispersion relation becomes

(45)

where for (44a), for (44b). Generally the
choice of (44a) or (44b) makes very little difference to the
computed values of phase velocity. Numerical solutions to
(39), and comparisons with the solutions of (45) are given
in Section IV. First the corresponding expression for the
interaction impedance is derived.
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Fig. 2. Tape helix supported by a stratified dielectric.

Once (approximate) roots of (39) are found, these are used
in (38) to find the current Once and are determined,
the electric and magnetic fields follow from (29) and (11),
after using (21) (inverted) to change back to coordinates,
from Finally, once the fields are known, the interaction
impedance for the th spatial harmonic at radius may be
computed from its definition

K (46)

where is the power flowing along the helix. is given
by the real part of

(47)

where the surface integral has been evaluated over a plane
normal to the -axis and we have used (8a-d) to express all
transverse field components in terms of axial components.

The integrals in (47) may all be carried out explicitly by
using the indefinite integral

(48)

where is any linear combination of the modified Bessel
functions and The result for the power flowing
in the th spatial harmonic, in region is

Fig. 3. Use of multiple symmetric layers to represent arbitrary rod shape
is reasonably accurate when the value of the smoothed dielectric constant is
assigned according to (51).

where

(49)

where and all fields in (49) are
obtained from the current eigenvector as described above.

The total power flowing is then just

(50)

When metallic vanes are present, an approximate model may
be simply implemented, as shown in the Appendix.
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Fig. 4. N region problem. Region 1 is the interior of the helix. Regions 2, 3,� � �N are dielectric supporting layers. The outer boundary of region(i)
is at r = a

(i)
:

III. STRATIFIED DIELECTRIC SUPPORTINGLAYER

When the dielectric layer supporting the helix is stratified,
as shown in Fig. 2, the analysis following (15), up to and
including the dispersion relation, (39), continues to hold if the
admittance matrix of (12) is redefined, as shown below.

The stratified case is important because it facilitates the
analysis of arbitrarily shaped rods, as illustrated in Fig. 3. It
has been shown by Kory [12] and by Jain and Basu [13] that
multiple azimuthally symmetric layers will represent different
rod shapes to good accuracy if the values of the smoothed
dielectric constants are assigned using area weighting, i.e.

(51)

in the case of Fig. 3, where and are the relative permit-
tivity and cross-sectional area of the rods respectively within
the indicated annular layer, and is the cross-
sectional area of the smoothed layer in this case. See Fig. 3.

We proceed to consider the case of radial regions, as
shown in Fig. 4. Region 1 is, as before, the interior of the
helix, assumed to be vacuum. Region 2 is the first dielectric
layer outside the helix. Region is the outermost dielectric
layer, adjacent to the metal wall. The relative permittivity of
region is denoted is the helix radius,

is the outer boundary of region and
is the radius of the outer wall.

The analysis begins by noting that application of the con-
tinuity conditions on the parallel components of and
at the interface between two dielectric layers will generally
couple the parallel and fields. We therefore anticipate in

particular the existence of relations of the form

(52a)

(52b)

at for regions 1 and 2 ( adjacent to
the helix), where the coefficients and
are to be determined from the field equations and boundary
conditions at the outer metallic wall. Equations (52a) and (52b)
are generalizations of (10a) and (10b). Substituting (52a) and
(52b) in (8b) and (8d) and solving for and in terms
of and again gives a relation of the form (11) above,
where the admittance matrix is now given by (53), shown at
the bottom of the page.

It remains only to specify values for and
in regions 1 and 2, for use in (53). In region 1 there

is no coupling between the and fields; the coefficients
therefore are the same as for the single layer case, i.e.

(54a)

(54b)

(54c)

where and are given in (13).
To calculate the coefficients etc. in region 2, the basic

idea is to use the field equations to “propagate” theand
fields from the helix surface, through the dielectric layers,

to the outer wall where the boundary conditions are applied.

(53)

(55)
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Fig. 5. Radial regions(i) and (i + 1) and their common boundary at
r = a

(i)
:

Using solutions of (5), it is straightforward to show that
within a layer (region say), the field at is related to
the field at by (55), shown at the bottom of the previous
page, where and where we have
defined the propagation matrix for region The
determinant of is .

Since satisfies the same equation [(5)] as its
propagation matrix in region is also Defining
then the 4-component vector

(56)

we therefore have

(57)

where is the matrix

(58)

Next we evaluate the jump conditions across a boundary
separating two regions, say regionsand (see Fig. 5).

Denote by the location adjacent to just inside region

Similarly, denote by the location adjacent to just
inside region Then using (8b) and (8d) and enforcing
continuity of and it follows that

(59)

where

(60)

(61)

We now have all the ingredients needed to propagate the
vector from the helix at to the outer wall,

at

(62)

which defines the matrix that propagates the vector
from the helix to the outer wall. It is clear that

may be simply constructed numerically in any specific case
by performing the matrix multiplications indicated in (62).

The boundary conditions at are

(63a)

(63b)

which means that the first and fourth elements of in
(62) vanish. Writing out the first and fourth rows of (62) yields

(64a)

(64b)

Solving these equations for and
in terms of and then gives relations of precisely the
form (52a) and (52b) where

(65a)

(65b)

(65c)

(65d)

and Use of these values in the
admittance matrix of (53) will lead to the correct dispersion
relation for a helix supported by the stratified dielectric layer
of Fig. 4.

The interaction impedance for the multi-layer case may be
computed from the power flow, as defined in (46). The power
flowing in region in spatial harmonic is still given by
(49). The total power is given by (50), where the sum on
regions is now extended from 1 to

IV. NUMERICAL RESULTS AND DISCUSSION

A FORTRAN function has been written to evaluate
det in (39) for specified values of and other parame-
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TABLE I
TAPE HELIX PARAMETERS USED IN EXAMPLES

(a)

(b)

Fig. 6. (a) Phase velocity and (b) on-axis interaction impedance versus
frequency for a narrow tape helix with the parameters of Table I and
w=p cos = 0:2 as computed using (1) the Chebyshev expansion with
(lmax = 4; nmax = 24) [solid line], and (2) the assumptions that the
longitudinal current on the tape is constant, the transverse current is zero,
and the parallel electric field along the helix centerline vanishes [(45),
M = 1;nmax = 24] [dashed line].

ters. The matrix is truncated at a user-specified value of the
maximum order of Chebyshev polynomial to be used
in the expansions of the currents, (33a) and (33b). Each matrix
element is evaluated by including terms up to a user-specified

Fig. 7. Longitudinal and transverse currents versuss for a narrow tape helix
with the parameters of Table I andw=p cos = 0:2 as computed using the
Chebyshev expansion with(lmax = 4; nmax = 24): The units have been
fixed by settingJ�o = 1 in (33a).

maximum spatial harmonic number1 in (37).
also evaluates, for special values of one of its arguments, the
approximate dispersion function on the left hand side of (45),
if needed for comparison purposes; this feature has been used
in preparing the comparison plots.

A FORTRAN subroutine has also been written to
compute the interaction impedance (46), using the approach
described in Section II.

Finally, a FORTRAN program, has been written
to find a root of using Newton’s method, and to call

2.
As an example, we consider a tape helix supported by a

single dielectric layer with parameters shown in Table I.
Two different tape widths, one narrow and

one wide are used to make the phase velocity
and impedance versus frequency plots shown below. Two
different approximations are used to produce the results shown
in each plot. These are (I) truncated Chebyshev expansion
of the currents, with and and (II)
constant longitudinal helix current, zero transverse current,
and longitudinal on tape centerline [Re: (45), with

and [The use of (45) with
produced plots in all cases indistinguishable from those using

In all cases, 24 spatial harmonics are retained in
the sums; though this may seem excessive, we find this to
be required to obtain reasonably good representations of the
tape currents (see Figs. 7 and 9). Use of and

gives results for phase velocity and impedance
(but not currents!) that agree to three or four digits with those
obtained using the higher order expansions. With and

1Care must be taken to choose a sufficiently large cutoff to ensure
convergence of the sum in (37). Generally, the maximum value ofn should
satisfy �n � (max(l; l0))2=2; so the Bessel functions in (37) are of
orderO(n�1=2): Referring to the definition of�n [(30)], this means that
narrow tapes (smallw) require the retention of more spatial harmonics than
wide tapes(w near 1). For sufficiently large values ofn; it may be shown
that all elements in the summand of (37) are of orderO(n�2):

2Electronic copies of ; ; and are available from one of
the authors, subject to approval by NRL. Contact: chernin@apo.saic.com.
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(a)

(b)

Fig. 8. (a) Phase velocity and (b) on-axis interaction impedance versus
frequency for a wide tape helix with the parameters of Table I and
w=p cos = 0:8 as computed using (1) the Chebyshev expansion with
(lmax = 4; nmax = 24) [solid line], and (2) the assumptions that the
longitudinal current on the tape is constant, the transverse current is zero,
and the parallel electric field along the helix centerline vanishes [(45),
M = 1;nmax = 24] [dashed line].

the computation of phase velocity and impedance
at 51 equally spaced frequencies takes about 24 s on an HP-
9000/780 workstation; all computations are done in double
precision.

Fig. 6(a) and (b) show, respectively, the phase velocity and
(on-axis) interaction impedance as functions of frequency for a
narrow tape, with normalized tape width

The plots show that, as expected for a narrow tape, there
is a very small error made using Approximation (II).

Fig. 7 shows the longitudinal and transverse
surface currents on the tape for this case. The

transverse current is extremely small, as expected, and the
longitudinal current is quite flat across the tape, except very
near the edge singularities.

In Fig. 8(a) and (b), the phase velocity and impedance plots
are shown for a wide tape, with a normalized tape width of

Fig. 9. Longitudinal and transverse currents versuss for a wide tape helix
with the parameters of Table I andw=p cos = 0:8 as computed using the
Chebyshev expansion with(lmax = 4; nmax = 24): The units have been
fixed by settingJ�0 = 1 in (33a). Note the�10 scale on the right, compared
to Fig. 7.

Fig. 10. On-axis interaction impedance versus normalized tape width for
f = 2:44; 4:06, and5:86 GHz, for a helix with the parameters of Table I.

Fig. 11. Schematic of helix TWT cross-section, showing locations of metal-
lic vanes.

0.8. Here we see that the use of the Chebyshev expansion
makes a significant difference, both to the phase velocity and
to the interaction impedance, when compared to the values
obtained using the assumptions of a constant longitudinal
current and zero transverse current on the tape. Fig. 9 shows
the helix surface currents in this case. Note that while the
transverse current is still small, it is much larger (relative to
the longitudinal current) than that in Fig. 7. The longitudinal
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(a)

(b)

Fig. 12. (a) Phase velocity and (b) on-axis interaction impedance versus
frequency for a helix TWT circuit using the tape helix with the parameters of
Table I andw=p cos = 0:8 as computed using the Chebyshev expansion
with (lmax = 4; nmax = 24): with and without vanes. When vanes are
present,rv = 0:2019 cm.

current shows a large variation across the tape in this case,
and is highly asymmetric about the tape centerline.

If the interaction impedance (computed using the truncated
Chebyshev expansion) is plotted versus normalized tape width,

for various frequencies, it is found that an optimum width
exists, at which the impedance is maximized. An example
is shown in Fig. 10. Note that the maxima occur in this case
near values of normalized tape width where neither the narrow
tape nor narrow gap approximations would be expected to be
accurate. The width at which the maximum impedance occurs
increases as frequency decreases; the maxima are found to
occur at a width that minimizes the phase velocity.

APPENDIX

INCORPORATION OF ASIMPLE MODEL OF VANES

Thin metal strips or wedges called vanes are sometimes
used in helix TWT’s to reduce circuit dispersion. The vanes
are located adjacent to the dielectric support rods as shown
in Fig. 11.

Vanes tend to short out the field while having little effect
on or A simple model of the vanes has been published
by Freundet al. [14]. It effectively assumes that an infinite
number of infinitely thin radial vanes are present. This model
may be implemented by setting

(A-1)

where is the radius of the vane tips, and

(A-2)

as before. These boundary conditions are easily incorporated
into the calculation of the main text, by replacing in (14a)
by and by the appropriate changes in the upper limit
of integration in (47). Note that this is only anapproximate
model of the vanes. The dispersion and impedance calculations
presented in the text, however, areexactwhen no vanes are
present.

An example of the effects of vanes is illustrated in Fig. 12(a)
and (b) where the phase velocity and interaction impedance,
respectively, are plotted versus frequency for a case with and
without vanes. Note the large reduction of dispersion comes
with a cost in interaction impedance, due to the reduced value
of
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