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Exact Treatment of the Dispersion and Beam
Interaction Impedance of a Thin Tape Helix
Surrounded by a Radially Stratified Dielectric

David Chernin, Thomas M. Antonsen, J¥ember, IEEEand Baruch LevushSenior Member, IEEE

Abstract—An exact dispersion relation is obtained for elec- increased. The first comprehensive analytical treatment of the
tromagnetic waves propagating on a thin metallic tape helix proplem was presented by Sensiper in his doctoral thesis [4],
of arbitrary width, supported by a radially stratlflgd dielectric some of which was abstracted in a later review article [5],
layer and enclosed by a metallic shell. By expanding the surface .
currents on the tape in a series of Chebyshev polynomials, the Whereé many references up to 1955 may be found. Sensiper
unquantifiable assumptions made in all previously published discussed both the so-called sheath model of the helix, in
analyzes of the tape helix regarding the forms of the surface which currents are constrained to flow in helical paths on
current on the tape, or the electric fields at the radius of the 4 cylindrical wall, as well as a finite width tape model,

tape, are avoided. The power flow and interaction impedance - : . .
are exactly computed. The dispersion relation is solved nu- which contains the effects of spatial harmonics absent from

merically for slow waves and the resulting phase velocity and the sheath model. In t_’Otlh cases, Sensiper's analysis ?Pp"ed
interaction impedance are compared to those computed using to an unsupported helix in free space. Stark [15] considered

the frequently made assumptions of constant current along the the effects of a cylindrical enclosing conductor, as did Uhm
tape and zero current across the tape. It is found that for wide and Choe [16]. The effects of a supporting dielectric layer

tapes significant errors are made in both the phase velocity and - - .
interaction impedance when neglecting the transverse variation were investigated by Tien [6] and by McMurtry [7], who also

of the longitudinal current and neglecting the transverse current. considered the effect of a surrounding metal tube. A good
For narrow tapes, the two approaches agree to good accuracy. summary appears in Watkins [8]. More recently, Freued,
Plots c;f Jh‘%hsulrfac‘?t ?jgrrelnts fortdee and _na(fr_ow ;[ape_s t?“e al. [9] computed the dispersive properties of a tape helix

resented. The longitudinal current shows a significant variation A P .
gcross the tape. Ar?example is given showinggthe existence of anSWOU”F’ed by "f‘ cyllndrlpal metal Waveglljlde. |.n conngctlgn
optimum tape width, at which the on-axis interaction impedance With their analysis of the linearized beam-circuit interaction in
is maximized. It is separately shown how an approximate, but a traveling wave tube (TWT). Ghogsdt al. [10] presented an
useful model of metallic vanes may be incorporated in the analysis of the tape helix surrounded by a stratified, multi-layer
analysis by the modification of certain boundary conditions. In dielectric support.

all cases, computations of phase velocity and impedance across . . .
a wide frequency band take well under a minute on a modern All previous work on _the tape helix O_f Wh'c_h the preserﬂ
workstation. authors are aware have included some simplifying assumptions
) . . . .. about the surface current density distribution on the tape
Index Terms—Dielectric loaded waveguides, dispersion, im- o .
pedance, slow wave structures, tape helix, traveling wave tubes. @nd/or have enforced the boundary conditions on the electric
field at the tape in an approximate way. The “narrow tape”

assumptions seem to be the most common. These are as
I. INTRODUCTION follows:

HE characterization of the electromagnetic waves sup-1) the current flows only along, not across, the tape;
ported by a metallic helix has been the subject of exten-2) the current density along the tape is constant across the
sive investigations, beginning, apparently, with an approximate  width of the tape;
treatment by Pocklington [1], who analyzed waves supportedg) Ej = 0 along the tape centerline.

by a thin wire helix. It was not until the invention of thegymatimes assumption (3) is replaced by the condition that

helix traveling wave tube by Kompfner [2], however, and itf‘ne average ofEj across the tape vanishes, though this
subsequent analysis by Pierce [3], that interest in the det ‘

X X Ves results very similar to (3), for narrow tapes. Sensiper,
of the slow wave electromagnetic modes of a helix great

pparently uniquely, separately treated the wide tape (narrow
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Fig. 1. Right-handed tape helix surrounded by a single dielectric layer enclosed in a cylindrical metal waveguide. The helix raditgswadth is
w, and its pitch isp. The waveguide radius i6. The developed helix (cut along and unrolled) is shown in (b). The tape cuts a plane of constant
z in a width w/sin+ as shown in (b), whereotvy = 2wa/p.

physically reasonable. In particular, assumption (2) omits tlesase of an arbitrary number of dielectric layers; this is done in
expected square root singularity of the parallel current densBgction 1ll, where a simple matrix approach is used to propa-
at the tape edges, present even for narrow tapes. In the pregete the fields across the multiple layers. Section IV presents
report it is shown how these common assumptions may beme numerical examples, demonstrating the breakdown of the
eliminated and a formally exact dispersion relation obtaingdrrow tape assumptions. It is also shown that there is a maxi-
for the (infinitely radially thin) metal tape helix supported by anum in the interaction impedance as a function of tape width,
radially stratified dielectric layer, surrounded by a cylindricdhe maximum occurring at a value at which neither the narrow
metal waveguide. An exact expression for the power flowgpe nor narrow gap assumptions is expected to be valid.
from which the interaction impedance may be obtained, is
also given.
The assumption of an infinitely thin tape presents a question Il. SINGLE DIELECTRIC SUPPORTING LAYER
of how the predictions of the theory presented here couldWe begin by considering electromagnetic waves supported
be compared with experimental measurements on real, firtif¢ a tape helix centered inside a perfectly conducting circular
thickness tapes. In the usual case, in which the skin depthciginder with a single azimuthally uniform dielectric lining, as
small compared to the actual tape thickness, slightly differestiown in Fig. 1. The radius of the helix is its width is w,
currents flow on the inner and outer surfaces of the tape. Thisd its period or pitch in the axiék) direction isp. The tape
could be taken approximately into account, for example, Iy taken to be infinitely thin in the radial direction. The radius
treating two helical surface currents separated by a vacuafithe enclosing cylinder i8. The pitch angle of the helix},
gap representing the tape thickness, but no attempt to do tliglefined bycot 1y = 2wa/p. Cylindrical coordinategr, 8, 2)
is made in the present paper. Here we present the first exait used, as shown in the figure.
treatment of a single thin tape. Generalizations of the analysisThe interior of the helix(0 < » < a; region 1) is taken to
used here to treat multiple tapes, even counter-wound tapes,vacuum. The region between the helix and the outer wall
are straightforward. (a < r < b; region 2) is filled uniformly with a single layer of
The tape helix model presented here has been incorporatiéelectric material of permittivity(2) = ePe, wheree, is the
in the large signal TWT simulation code CHRISTINE [17]. permittivity of free space. Superscripts (1) and (2) are used
This paper is organized as follows. Section Il presents there and below to denote regions 1 and 2. The general case in
derivation of the dispersion relation and power flow for thevhich the dielectric region between the helix and outer wall is
case of a single dielectric layer between the helix and the outadially stratified into multiple layers with different dielectric
wall. The formulation is such that it is easily generalized to theonstants is treated in the next section.
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To begin, we need only Faraday’'s and Ampere’s lana that equation gives the dispersion relation, relating the

which, in mks units, are

1)
)
whereB = i, H; D = ¢E and a time dependeneeexp(jwt)
has been assumed. The currdnis confined to the (infinitely

thin) tape and to the wall of the enclosing cylinder. Fot b,
we write

J(r,0,2) = 6(r — a)[T(0,2)0 + T.(6,2)8]  (3)

where 7 (6, z) is the surface current density at= a, and
6(r — a) is the Dirac delta function.

We take all field and current components to be of the

(“Floquet”) form

oo

— e—j,ﬁz Z Fn(T)ejn(&—kHz)

n=—0oo

F(r,6,z) 4

whereky = 27 /p. The helix periodp is positive for a right-
handed helix and negative for a left-handed hefix.is the
phase shift per period. The propagation fagtois an as yet

propagation constarit to w (and to the other parameters of the
problem). The resulting currents can then be used to compute
all field components.

Equations (2) and (3) give the jump conditions Eﬁ at
the helix (» = a)

HP(a)— HY(a) = — Ton (92)
HYP(a) — HyY (a) = T (9b)

Evaluating (8b, d) atr = «, defining the dimensionless
logarithmic derivatives

(9

(z) 1 OE

Uy gD ar | . (10a)
(@)

(z) — 1 aHzn

i = O ar |, (10b)

and solving forHe(;) and H%) in terms ofEff,Z andEL}] gives

(2) ()
Hy)\ v (B
) = el

(11)

unknown function of frequency and the other parameters ofwhere2 x 2 admittance matrices,’ have been defined as

the problem.
Now, it follows from (1) and (2) thatE., and H.,

separately satisfy
10 0
2.2 (@2 4 (i) —
{7 87787 <,y" 72 )}F =0

in each region(i = 1,2), where £ denotes eithe!Y) or
HS),

(5)

2

. N W
W= - (6)
is the square of the radial propagation factor in redidnand
Bn =03+ nky (7)

is the axial propagation factor in all regions.

Equations (1) and (2) may also be used to express-the

and 6-components of the fields in terms of thecomponents
and their radial derivatives as follows:

(Z)QE(Z) _Jﬁ E(Z) H(Z) (8a)

ety -0 i B4~ o, aa HY)  (eb)
T
AD2HE = )y, E(”)—i— 9B H(”) (8c)
A2 H) :je%g B - Lﬂgzz (80)
T T

where, again, these equations hold separately in regions 1 and

2.

v —IPnc
n CO’Y(Z)Z(Z)
712/371, (z)w @ (i) 4(3)
2, T2 B = inlen
w2 " 12)
Ina
B !

where(, = uo.c = 377 € is the impedance of free space.

The logarithmic derivatives defined in (10a) and (10b) and
appearing in (12) are given by the solutions of (5). The interior
of the helix (Region 1) is assumed to be vacuum. It follows
that

I (25
L(z$V)

where I,, is the modified Bessel function of the first kind,
2 = fy,(f)a, a is the helix radius, and a prime mark denotes
differentiation with respect to the argument of the modified
Bessel function. Similarly, applying (5) in Region 2 and
enforcing the appropriate boundary conditions at the outer
wall gives

=1 =

(13)

@ LK) = L) K ()

o = D (@ @D e @) (4
In(xn )Kn(yﬂ )_In(yﬂ )Kn(xﬂ )
LN gt N g (N g o (2)
Lo(an YK (yn ') = 1 (un ) Ko (o

2 2 _

wherez'? = Vi Gy Y = Vo )b b is the wall radius, andf,,

The goal of the calculation that follows is to express thg the modified Bessel function of the second kind.

components ofE parallel to the helix in terms of the helix

surface currents. Requiring those componentEdb vanish

Defining now the jump in the magnetic fieldhH
H®(a) — H®(a) at the helix radius, (9a,b) and (11) give

on the (perfectly conducting) helix surface will then give

a homogeneous equation for the components of the surface
currents. The condition for existence of a nontrivial solution

zZn zZn

AHy, _ (2) _ (D) Eg,, _ Tem
(3k2) =0 () = () oo
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where the superscripts aby,, and E.,, have been dropped, for any F, where x is the wave number in thé-direction,
since these fields are continuousrat a. Solving for Fy, (22) becomes
and E.,, in terms of the surface currents on the helix gives

E 4 i 1 i 11 )
the basic result e IRE [ Er ) — pminlEtncoty) _ © —gnn/a sint
< m) © 2ra sin Z ©
E@n jzn w
<Ezn> =y <_s70n> (16) . / dn/@jn'[n/(a sin)+k cot ]
where the2 x 2 impedance matrixZ,, has been defined as <@K> (25)
2 1)y—1 Tnw
Z, = (¥,P -y (17)
Noting that
The total £ field at the tape radiu§ = a) is then .
£+ cottp =— (26a)
E, 1 27 , (ot sin ¢
<EZ>(9’Z):§Z Zn/o de’ ¢ N PR (26b)
n a siny
. <_‘?a ) ¢, 2). (18) it follows that (25) has the form of (4) if we identify
k=0 siny (27)

In order to apply the boundary conditiot = E. = 0 on
the tape itself, it is convenient to define surface coordinatgs the wavenumber along the tape. It remains then only to

on the cylinderr = o as satisfy the condition
£ at ey 2 ase) (B)=vmo<n<u. @9
n= —af siny + z cosy (19b) Ep '

where the helix pitch angle is defined by Using (25), this condition is written

— Ef(s) _ w/2 —jap(s—s
coty = kya. (20) <E?7(5)> CT—— Z / ds' e (5—5")
The limiting casesky — 0,9 — 7/2, &€ — z,n — —ab) = ([ Te(s)
and (kg — oo, — 0, £ — af, n — z) correspond to a I <~7n(3/)> =0 (29)
strip alongz and a very tightly wound helix, respectively. In
the general case, thedirection is measured along the tapén —1 < s < 1 where
(—oo < € < o0) and then—direction is measured across the w n
tape (0 < n < w) wherew is the tape width. For any vector an =3 [ - + /3 cos z/):|
. L a siny
(Ve, V), the transformation td¢,n) coordinates is given by
a rotation :E(mr + g cos? z/}>7 (30)
Vel [ cosy siny Vo _ Ve ——
(1) = (e Y () =a(%) =y cos) @

is the dimensionless tape width < w < 1), ¢ = Bp, is the

which defines the rotation matrik. Performing this change phase shift per period, and we have changed variables from

of variables in (18) yields

n to s
E 1 7 g emintnn)asing =9
= n asm :2——1 32
<En>(§’n) 27a siny zn: Zn /0 dif’ ¢ y w (32)
Te Ny so that the range of is [—1,1] across the tape. Note that
' <jn>(£ +cotyp(n —11),1) (22) ¢ — 41 is the downstream edge of the tape, that is, a point
moving with the phase velocity of the wave passes —1
where first, thens = +1. The subscript has been dropped in (29),
~ 0 and in the following
Zn = RZn< 1 0) R (23) Equation (29) is a homogeneous integral equation for the
functions 7t (s) and J,(s). The condition for the existence
The boundary condition at the tape is fd#(¢,7) = of a nontrivial solution of (29) is the dispersion relation we

E,(&m) = 0for —0o < £ < oo and0 < 7 < w. In order seek. One approach to obtaining this dispersion relation is to
to apply this boundary condition, it is convenient to take @PandJ:(s) and J,(s) in a complete set of functions on
Fourier transform in¢. Writing the interval(—1, 1) and to project out the coefficients of each

' element of the set from (29), setting each to zero. The result
F(,n) = e—J”fFK,(n) (24) is a homogeneous matrix equation. Setting the determinant
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of the coefficient matrix to zero gives the dispersion relation. Equation (39) is formally exact. Its solution includes all

Following this approach, we write

Te(s) :ﬁ > Tedli(s) (33a)
=0

To(s) =(1—s)1/2 i Tulli(s) (33b)
=0

waves (both fast and slow) that can be supported by the
helix. The only implicit assumption is that the currents possess
convergent expansions of the form (33a) and (33b).

Note that the elements o#1, defined in (37), depend on
those of the admittance matrices in region (1)—the interior of
the helix—and region (2)—the dielectric layer adjacent to the
exterior of the helix. See (12), (17), and (23).

whereTj(s) and[/;(s) are the Chebyshev polynomials of the AS @ practical matter, the determinant in (39) must be
first and second kinds [11] and the expansions have bd&#ncated. The hope is that convergence is fast and that only
chosen so that the currents have the expected behavior at2heW terms are needed for good accuracy; this hope is

edges of the tapes = +1. Useful integrals involving the realized in Section IV, where approximate roots of (39) are

Chebyshev polynomials are

. 0 l#m
/1 dsw: 7r I=m=0 (34a)
-1 (1—s%)1/2 7/2 l=m#0

-1
s(1— $2)Y2U(s s)= 0 L#m b
[ asa-speueu.e={0, 1Zn @)

L jas Ti(s .
/71 ds e’ # :7T7l]l(a) (34C)
1

/1 ds (1 — sH)207(s) :W‘jll—i_Tl Jiri(e)  (34d)

where, in (34c) and (34d)/; is the Bessel function of the

first kind.

found numerically. Even the lowest order expansion (using a
single Chebyshev polynomial in the expansions) can give good
results; in this case the dispersion relation becomes

det Moo =0 (40)
where
_ - Ji (O‘n) 0
Moo = n;m < ’ 0 Jl(an)/an>
ad ']O(Qn) 0
. Zn< 0 Ti(an) fan ) (41)

In this case, the roots of Zxx 2 determinant must be found.

Substituting (33a) and (33b) in (29) and operating by the To compare this result with previous work, consider the

matrix operator

1

1
1
0 / ds(1 — s)Y2U(s)
~1

Jev \
My <k7nl’ ) =0

. (35)

gives

(36)

commonly made assumptions

Je(s) = constant (independent of s) (42a)
Tn(s) =0. (42Db)

In this case, it is straightforward to show, from (29) that

b o (/2T

" 7a siny

ST eminer Bln Zan - g3)

«

where a sum fron — oo on !’ is understood and the doublywhere Z{!"" is the (1,1) element of,,. A further approxima-

infinite set of2 x 2 matrices, My, (I,I'’ =0,1,2,---c0) is

given by
Lo+t — Jion) 0
My =(-1)'y [+1
w =(=1)" n;m 0 - Jig1 (o)
fad Jlf(Oén) 0
.Zn< 0 %Jl’+l(an)>' (37)
If we expand (36)
Moo Mor M2 ‘?E
MlO Mll Ml? s — —
u7 = Mg7 = 0. 38
Moo My Moy T (38)
nl
The complete dispersion relation is then
det M =0 (39)

where M is the infinite matrix in (38).

tion is commonly made in one of two ways. Either
E¢(s = 0) = 0 (E¢ vanishes on tape centerline)  (44a)

or
1
[
In these cases, using (43), the dispersion relation becomes

. M
Z S (Y, Z(l’l) -0
o "

n

ds E¢(s) = 0(Average value of E, vanishes). (44b)

(45)

where M = 1 for (44a), M = 2 for (44b). Generally the
choice of (44a) or (44b) makes very little difference to the
computed values of phase velocity. Numerical solutions to
(39), and comparisons with the solutions of (45) are given
in Section IV. First the corresponding expression for the
interaction impedance is derived.



CHERNIN et al: THIN TAPE HELIX 1477

k_»’\/[ etal wall

Fig. 2. Tape helix supported by a stratified dielectric.

Once (approximate) roots of (39) are found, these are used
in (38) to find the curreny/. OnceJ; and.7, are determined,
the electric and magnetic fields follow from (29) and (11),
after using (21) (inverted) to change back fo~) coordinates,
from (7, z). Finally, once the fields are known, the interaction
impedance for the:ith spatial harmonic at radius may be
computed from its definition

|ES) ()2

Kalr) = =555,

(46)

where P, is the power flowing along the helix?. is given Fig. 3. Use of multiple symmetric layers to represent arbitrary rod shape
by the real part of is reasonably accurate when the value of the smoothed dielectric constant is
assigned according to (51).

P:% / E x H*da 4 4
Re[P{ (@) — P (ali=1)] where
=7 Z / r dr(EpmHj, — EgnHY))

= TTwe, Z /3n/ rdr ’yn Yr 8’
— 0 :
n=—oo 1 @ i 1 o i
T, = S22 e BG4 S| o B
. {Cr ‘EEZ,,, + T—2|Ezn|2
* a i % g
o - @lrme L a - Lo P
+C§ 5 H., +77|Hzn|2] 2
L2 9 g
+ C 0 (EZ,H.n) +§ or
J o a/f zZn /3
NONLE E(z)* HE — 2nE pli) i
w

(49)
where the surface integral has been evaluated over a plane

normal to thez-axis and we have used (8a-d) to express aljhereo(® = 0,a!) = a,a® = b and all fields in (49) are
transverse field components in terms of axial components. gptained from the current eigenvectdr, as described above.

The integrals in (47) may all be carried out explicitly by The total power flowing is then just
using the indefinite integral

x 2 oo
| st de = 4?3k - 232 @8) =Y 3 PO (50)
1=1 n=—o0
whereS;, («) is any linear combination of the modified Bessel
functions,,(x) and K,,(x). The result for the power flowing  When metallic vanes are present, an approximate model may
in the nth spatial harmonic, in regiof¥),i = 1,2, is P = bpe simply implemented, as shown in the Appendix.
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origin helix wall
| ) | 2 | 3 | I | | | Ny |

0 a®=a a® a? wa® a® aM=b

Fig. 4. N region problem. Region 1 is the interior of the helix. Regions 2;-3,N are dielectric supporting layers. The outer boundary of region
is atr = a®.

[Il. STRATIFIED DIELECTRIC SUPPORTING LAYER particular the existence of relations of the form
When the dielectric layer supporting the helix is stratified, o . o ‘ 4 4
. . . . i) _ @)@ Z G @
as shown in Fig. 2, the analysis following (15), up to and ar ES) —’Yr(L)UEEnEérz +ColEHnJH§n)] (52a)
including the dispersion relation, (39), continues to hold if the Ny ()1 o—1500) @ LD )
admittance matrix of (12) is redefined, as shown below. g, Ha =16 ligpn E2n + Ly Hegl - (520)

The stratified case is important because it facilitates the
analysis of arbitrarily shaped rods, as illustrated in Fig. 3. & » = a{Y) = a for regions 1 and 2i(= 1,2, adjacent to
has been shown by Kory [12] and by Jain and Basu [13] thtite helix), where the coeﬁicient‘%}:n, lg}{n, lg?En, andlfr})Hn
multiple azimuthally symmetric layers will represent differenare to be determined from the field equations and boundary
rod shapes to good accuracy if the values of the smoothegnhditions at the outer metallic wall. Equations (52a) and (52b)
dielectric constants are assigned using area weighting, i.e.are generalizations of (10a) and (10b). Substituting (52a) and

A (52b) in (8b) and (8d) and solving fdty,, and H.,, in terms
_— (51) of Ey, andE.,, again gives a relation of the form (11) above,
A+ A . A :

) _ ) ~ where the admittance matrix is now given by (53), shown at
in _the case of Fig. 3_, wherg. and A are the relatlvg permit- the pottom of the page.

t|V|ty ar_ld cross-sectional area of the rods @s_pecnvely within |t remains only to specify values fdiégn,l%},n, lg;)En and

the indicated annular layer, ai3dA + A’) = A is the cross- HO)

. . i . ' N regions 1 and 2, for use in (53). In region 1 there
sectional area of the smoothed layer in thls.case. 'See F|g.i “no coupling between th& and H fields; the coefficients
We proceed to consider the case Mf radial regions, as

shown in Fig. 4. Region 1 is, as before, the interior of thtgerefore are the same as for the single layer case, i..

g =14+(e—1)

helix, assumed to be vacuum. Region 2 is the first dielectric JASO e (54a)
layer outside the helix. RegiotY is the outermost dielectric 1) 1)

layer, adjacent to the metal wall. The relative permittivity of lemn =g, =0 (54D)
region (i) is denotede”; r = o = q; is the helix radius, S (54c)
r = a'? is the outer boundary of regid), andr = a™) = b o o

is the radius of the outer wall. wherel},, andl;; are given in (13).

The analysis begins by noting that application of the con- To calculate the coefficienié?,)%, etc. in region 2, the basic
tinuity conditions on the parallel components &f and H idea is to use the field equations to “propagate” fiieand
at the interface between two dielectric layers will generallfd. fields from the helix surface, through the dielectric layers,
couple the paralleﬁ and H fields. We therefore anticipate into the outer wall where the boundary conditions are applied.

v — —JPnc
T mwaly,
@), (D) ON0) (@) 2
wer 4 () B wer 4 () Wyn’a (i) () W~ A 6) G)
n+ e Tghn ’Yr(Li)Qa <n+ X lEHn> <n+ e lHEn> — & ?ﬁ—anHnlEEn 3
) L, wma )
[371 ﬁnc HEn
(@) i i i i i i i i
(‘)JEzg (7«?)) ) <—In(x%%)K;L(x%%) + I;L(x%%)Kn(x%%) In(x%%)Kn(x%%) - In(x%%)Kn(x%%) )
W 5B () NG (@) K (1) + (20 ) K (202) - L (200) K (201) — In(20,1) K, (%5,2)
EEQ(M)
o9 La,
n E En (71)
oo o (55
= To|T =1 .
R P B ED (1))
"
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| region (i) region (i+1) | We now have all the ingredients needed to propagate the
! j\ ! vector V,, from the helix atr = a = aif) to the outer wall,
i— i i i i atr = b= o™
a(z 1) ail) a(t) ait) a(l+1) _
Fig. 5. Radial regiong¢) and (i + 1) and their common boundary at V,ﬁN)(b) :Wn(b|a9r—1)) -Tn(anv_l)la(_N_l))
r=al, T (6P |aP)Wo (a?]a) VP (a)
=5(bla)V,?(a) (62)

Using solutions of (5), it is straightforward to show that

within a layer (regior(7), say), theE field atr is related t0 \yhich defines the x 4 matrix S(bja) that propagates the vector
the . field at(7f)1 by ((5)5)’ sh(q;/vn at(f[)he bottom of the previous;; from the helix to the outer wall. It is clear that(bla)
page, wherer,,; = L T E(Z;Vn 72, and whgre we have may pe simply constructed numerically in any specific case
defined the propagation matri,’(r2|r1) for region(i). The by performing the matrix multiplications indicated in (62).

determinant ofU,(f)(rg|r1) is r1/rs. ‘ The boundary conditions at= b are
SinceHﬁQ(r) satisfies the same equation [(5)] 89 its
propagation matrix in regiofi) is alsoU (r,|r). Defining E..(b) =0 (63a)
then the 4-component vector 8
S Hon(b) =0 (63b)
. T
ED(r)
" fy,(f)_lg ES(r) which means that the first and fourth elements/f” (b) in
Vi (r) = iji)(7,) (56) (62) vanish. Writing out the first and fourth rows of (62) yields
O OP
W Ja- Han(r) 1 9 .
or S11E@) + 8157 EE%) + S1siH
we therefore have 1
8@ T HE =0 (642)
-
ViO(ry) = W (ra|r )V (r1) (57) -1 0
SuFQ + 5012 TG 1 515 HE)
OV i L
where Wy, (r2|r1) is the 4 x 4 matrix b S JagHgL) _o (64b)
.
) (N
Wi (ralr,) = <U" alr) ) (58) - : o) 2
0 Un”(r2]71) Solving these equations f§8/dr) E.y and(8/dr) H.y

. . in terms ofEﬁ) andH. Z(fl) then gives relations of precisely the
Next we evaluate the jump conditions across a bound Mm (52a) and (52b) where

separating two regions, say regidi$and(i+1) (see Fig. 5).
Denote bya@ the location adjacent to® just inside region

4 4 @ _1 _
(i). Similarly, denote by:{” the location adjacent ta"), just Uik = D(S44511 S14541) (652)
inside region(: + 1). Then using (8b) and (8d) and enforcing @ 1
continuity of E,,, and H,,,, it follows that i = CO—D(S‘*‘*SB — S14543) (65b)
; i Dy G Ny G 2) —C—O -
VD) = TPV @) (659) i = (=SS ¥ Sedu) (659
1
where lﬁ}{n = 5(—542513 + S512543) (65d)
Tn(a$)|a@) and D = 51454 — S12544. Use of these values in the
1 0 0 0 admittance matrix of (53) will lead to the correct dispersion
BO) ry,(j“) ) relation for a helix supported by the stratified dielectric layer
0 LD G I 0 of Fig. 4.
= 0 T o 1 0 The interaction impedance for the multi-layer case may be
G41) o(0) )2 AL computed from the power flow, as defined in (46). The power
e I 0 0 (@) flowing in region(¢) in spatial harmonie: is still given by
" (60) (49). The total power is given by (50), where the sum on
regions(¢) is now extended from 1 tdv.
G G+ IV. NUMERICAL RESULTS AND DISCUSSION
FW =¢, Wi ! S — (61) A FORTRAN functiondtape has been written to evaluate

a@Wc 1,02 (D det M in (39) for specified values ab, 3, and other parame-
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TABLE | 5 0
TAPE HELIX PARAMETERS USED IN EXAMPLES
Parameter Value 4l -0.001
Tape radius (@) 0.1245 cm
Pitch (p) 0.0801 cm 3| -0.002
= r S
Helix pitch angle (y) 5.85°
Wall radius (b) 0.2794 cm 2 .0.003
Dielectric constant of 1.25 I
supporting layer (852) )
1 : -0.004
013 ———— — —— —— — —r— r 3 : : 1
. ! | g ! ! ] ol v v v i b v e T goes
[ ; : ; g : ] 1 0.5 0 05 1
0125 I oo o @2a) | s
‘ : : i| — — Eq.45)

3 Fig. 7. Longitudinal and transverse currents versiisr a narrow tape helix
with the parameters of Table | and/pcosy = 0.2 as computed using the
Chebyshev expansion witflimax = 4; nmax = 24). The units have been
fixed by setting7;, = 1 in (33a).

maximum spatial harmonic numBefEn,,.) in (37). dtape

; 3 ! : ; also evaluates, for special values of one of its arguments, the
0.1 § : SRS e ] approximate dispersion function on the left hand side of (45),

r | : f : i ] if needed for comparison purposes; this feature has been used

Phase Velocity/c
o

0.105 |

0095 S - o L 7 in preparing the comparison plots.
009 o il e L] A FORTRAN subroutinektape has also been written to
0 2 4 6 8 10 12 compute the interaction impedance (46), using the approach
Frequency (GHz) described in Section Il.
(@) Finally, a FORTRAN programdroot, has been written
to find a root ofdtape using Newton’s method, and to call
800 T A A ktapez.
r : : : : ‘ ] As an example, we consider a tape helix supported by a
T 250 e N P oo -___g:_z(i)s) - single dielectric layer with parameters shown in Table I.
o) i ‘ ; 1 Two different tape widths, one narro@s = 0.2) and
§ 200 | one wide (w = 0.8), are used to make the phase velocity
§ and impedance versus frequency plots shown below. Two
& 50 L different approximations are used to produce the results shown
E in each plot. These are (I) truncated Chebyshev expansion
% 100 of the currents, withl,,,, = 4 and ny., = 24, and (Il)
g ! constant longitudinal helix current, zero transverse current,
i< and longitudinal & = 0 on tape centerline [Re: (45), with
50 | M = 1 and ny,x = 24]. [The use of (45) withAf = 2
produced plots in all cases indistinguishable from those using
0 P - M = 1] In all cases, 24 spatial harmonics are retained in
0 2 4 6 8 10 12 the sums; though this may seem excessive, we find this to
Frequency (GHz) be required to obtain reasonably good representations of the
(b) tape currents (see Figs. 7 and 9). Uselgf, = 4 and

Fig. 6. (a) Phase velocity and (b) on-axis interaction impedance verdimax = 12 gves results for phase VeIOC|ty and 'mPEdance

frequency for a narrow tape helix with the parameters of Table I ar{@ut not currents!) that agree to three or four digits with those

w/pcosy = 0.2 as computed using (1) the Chebyshev expansion wi§ptained using the higher order expansions. With. = 4 and

(Imax = 4; nmax = 24) [solid line], and (2) the assumptions that the

longitudinal current on the tape is constant, the transverse current is zero,care must be taken to choose a sufficiently large cutoff to ensure

and the parallel electric field _along the helix centerline vanishes [(4%onvergence of the sum in (37). Generally, the maximum value should

M = 1;nmax = 24] [dashed line]. satisfy ay,,., > (max(l,I'))2/2, so the Bessel functions in (37) are of
order O(n—1/2). Referring to the definition ofy,, [(30)], this means that

ters. The matrixM is truncated at a user-specified value of thearrow tapes (smaliv) require the retention of more spatial harmonics than
ide tapes(w near 1). For sufficiently large values of it may be shown

maximum order(/,,,) of Chebyshev polynomial to be used}’rv]_at all elements in the summand of (37) are of orekén—2).

in the expansmns of the (.:urren'ts, (338.) and (33b)' Each m‘ta-.tr'XEIectronic copies ofitape, ktape, anddroot are available from one of
element is evaluated by including terms up to a user-specifigd authors, subject to approval by NRL. Contact: chernin@apo.saic.com.
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0.13 0
0.125 |
. -0.01
012
L [ : : : : : : : :
RTINS R N N e e o ﬁ : S -0.02
8 r : ' : : : ] : : : 1 =
E [
> 011 I
g g | : | : | 003
£ 0105 [ e PN R o e =
R e e 1 ? e
0.095 |- ]
r -0.05
0.09 —r
0
Frequency (GHz . N . .
9 v ( ) Fig. 9. Longitudinal and transverse currents versdsr a wide tape helix
(a) with the parameters of Table | and/p cosy = 0.8 as computed using the
Chebyshev expansion Witflimax = 4; nmax = 24). The units have been
300 T fixed by setting7;o = 1 in (33a). Note thex10 scale on the right, compared
[ : : : : : ] to Fig. 7.
w250 . 250 — ——— ——
£ - : :
Q 1 - ]
g 200 1 ® a0 | —%—2.44 GHz | -}
3 £ —X— 4.06GHz | 1
] 1 o i --%--586 GHz
£ 150 n g ]
1 150 — X — X e—
5 ‘ ‘ ‘ . : & - e T T TT e .
= : : : : : i o H X = x 1
Q S L i
g 19070 | NN s : 8 x” ]
2 : 1 £ I
< : : : 1 = 100 [ ]
: : : ! : B c i
L freeeneeeeees femeee e NN Foeeneneees fomeemeaee n 2 .
: : : : : ] 8 I X * ]
© I T il TR :
] L 50 cem xS e ]
0 k= L * ]
0 2 4 6 8 10 12 ]
Frequency (GHz) o b
(b) 0 0.2 0.4 0.6 0.8 1
Fig. 8. (a) Phase velocity and (b) on-axis interaction impedance versus Normalized Tape Width

frequency for a wide tape helix with the parameters of Table | and L o . .
w/pcost = 0.8 as computed using (1) the Chebyshev expansion withig- 10. On-axis interaction impedance versus normalized tape width for
(Imax = 4 nmax = 24) [solid line], and (2) the assumptions that thef = 2.44, 4.06, and5.86 GHz, for a helix with the parameters of Table I.

longitudinal current on the tape is constant, the transverse current is zero,

and the parallel electric field along the helix centerline vanishes [(45), Outer g
M = 1;nmax = 24] [dashed line]. Metallic
Wall ™ \

i ; ; - Tape Heli
nmax = 24, the computation of phase velocity and impedance | ape T

at 51 equally spaced frequencies takes about 24 s on an HP-
9000/780 workstation; all computations are done in double
precision.

Fig. 6(a) and (b) show, respectively, the phase velocity and

1

|

---Vane

~ Dielectric

Support Rod
(on-axis) interaction impedance as functions of frequency for a o
narrow tape, with normalized tape width= w/(p cost) = Fig. 11. Schematic of helix TWT cross-section, showing locations of metal-
lic vanes.
0.2. The plots show that, as expected for a narrow tape, there
is a very small error made using Approximation (l1). 0.8. Here we see that the use of the Chebyshev expansion

Fig. 7 shows the longitudinal(7:(s)) and transverse makes a significant difference, both to the phase velocity and
(J,(s)) surface currents on the tape for this case. The the interaction impedance, when compared to the values
transverse current is extremely small, as expected, and tiained using the assumptions of a constant longitudinal
longitudinal current is quite flat across the tape, except veeyrrent and zero transverse current on the tape. Fig. 9 shows
near the edge singularities. the helix surface currents in this case. Note that while the

In Fig. 8(a) and (b), the phase velocity and impedance pldtansverse current is still small, it is much larger (relative to
are shown for a wide tape, with a normalized tape width dfie longitudinal current) than that in Fig. 7. The longitudinal
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018 ] Vanes tend to short out th. field while having little effect
: ‘ | i : ; i onFEyor H.. Asimple model of the vanes has been published
0125 g novanes | | by Freundet al. [14]. It effectively assumes that an infinite
o 012 ] _vanes 14 number of infinitely thin radial vanes are present. This model
2 g ; | ; } : ] may be implemented by setting
8 0115 N o S =
S g ; f 1 : 5 ] E.(r,)=0 (A-1)
@ 011 e pre N P .
] [ : : b L . .
£ o105 SR S— N I A — 1 wherer, is the radius of the vane tips, and
0.1 — rrrrrrrr - ‘ : rrrrrrrrrrrr rrrrrrrrrrrrrr S ; Ey(b) =0 (A-2)
0095 [ rrrrrrrrr rrrrrrrrrrrrrr S B — 1  as before. These boundary conditions are easily incorporated
: : ‘ ‘ ‘ 1 into the calculation of the main text, by replacipﬁ) in (14a)
0.09 1 ! ] ] I (2) X X L
o 5 4 6 8 10 by Ty gnd _by the appropriate qhgnges in the upper limit
Frequency (GHz) of integration in (47). Not.e that_ this is .only approximate _
model of the vanes. The dispersion and impedance calculations
@ presented in the text, however, aractwhen no vanes are
300 ———T——T——T T present.
| An example of the effects of vanes is illustrated in Fig. 12(a)
250 [ N RS —— ' no vanes |- and (b) where the phase velocity and interaction impedance,

— — vanes ] respectively, are plotted versus frequency for a case with and

| without vanes. Note the large reduction of dispersion comes
with a cost in interaction impedance, due to the reduced value
of E..

200 |
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