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An exact two-component �X2C� relativistic theory for nuclear magnetic resonance parameters is

obtained by first a single block-diagonalization of the matrix representation of the Dirac operator in

a magnetic-field-dependent basis and then a magnetic perturbation expansion of the resultant

two-component Hamiltonian and transformation matrices. Such a matrix formulation is not only

simple but also general in the sense that the various ways of incorporating the field dependence can

be treated in a unified manner. The X2C dia- and paramagnetic terms agree individually with the

corresponding four-component ones up to machine accuracy for any basis. © 2009 American

Institute of Physics. �DOI: 10.1063/1.3216471�

I. INTRODUCTION

What is really measured in nuclear magnetic resonance

�NMR� spectroscopy is the local effective magnetic field at

the position of a resonant nucleus, which is intimately related

to the electronic structure in the vicinity of the nucleus. As

such, NMR parameters such as nuclear magnetic shielding

�NMS� and indirect spin-spin coupling �SSC� tensors are in-

trinsically all-electron relativistic properties. Various

quasirelativistic methods have been developed in the past,

including first order perturbation approaches,
1,2

zeroth

order regular approximation,
3–5

Douglas–Kroll–Hess type

approximation,
6–12

and second order regular

approximation
13–15

to the normalized elimination of the

small component �NESC�.16
While such approximate meth-

ods are very useful for elucidating the various physical con-

tributions and meanwhile work well for chemical shifts, they

cannot provide accurate absolute NMS and SSC scales for

heavy elements, as the inherent approximations therein arise

solely from the atomic cores, precisely the regions sampled

by the parameters. An exact treatment of the relativistic ef-

fects demands in principle a four-component theory based on

the Dirac operator. Satisfactory formulations
17–22

of such a

theory appear only rather recently, which demonstrate that

the diamagnetism that is “missed” in the traditional formula-

tion can be captured in a natural way. A direct consequence is

that the contributions of “nightmare” negative energy states

are reduced to order c−2 such that standard energy-optimized

basis sets are already sufficient for reliable absolute NMS

scales.
19

The power of such new formulations will soon be

witnessed. On the other hand, an exact two-component

�X2C� treatment of the relativistic effects should also be pos-

sible. The first attempt along this direction was made by

Ootani et al.
23

who extended the infinite order two-

component scheme of Barysz and Sadlej
24

to the calculation

of NMS. Such an operator formulation invokes four steps.

That is, the vector-potential-independent part of the Dirac

operator is first decoupled exactly in two steps.
24

The two

unitary transformations are directly used to transform the

vector potential part of the Dirac operator, and the result is

then decoupled to first order with respect to the vector po-

tential via an additional exponential-type unitary operator.

The final step is the magnetic perturbation expansion of the

so-obtained two-component �analytical� Hamiltonian. As the

electronic energy is correct to third order in the magnetic

perturbation, the formalism is exact for NMS. However, the

formalism has several drawbacks. �1� While a diamagnetic

term is obtained naturally, its evaluation involves both the

positive and negative energy states of the unperturbed

Hamiltonian, which leaves the formalism essentially out of

the realm of two-component theories. �2� The magnetic de-

coupling involves also the vector potential due to the nuclear

magnetic point dipole moment so as to result in severe sin-

gularities or numerical instabilities.
18 �3� The particular

transformations render the corrections for two-electron pic-

ture change errors very difficult. Here we show that all such

problems can be avoided by going to a matrix formulation.

That is, the matrix representation of the full Dirac operator in

a magnetic-field-dependent basis can be block-diagonalized

in a single step, just like the previous matrix formulation of

the X2C �algebraic� Hamiltonians in the absence of magnetic

fields.
25–29

The resulting X2C Hamiltonian and transforma-

tion matrices can then be expanded to obtain the expressions

for NMS, SSC, and magnetizabilities.
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II. THEORY

A. General formulation of two-component theory
for second order magnetic properties

All equations are written in the System International

based a.u. ��=m=e=1, c�137�. The occupied, unoccu-

pied, and arbitrary orbitals will be denoted as i , j , . . ., a ,b , . . .,

and p ,q , . . ., respectively. Plain and boldface capital letters

refer respectively to operators and matrices. The Einstein

summation convention over repeated indices is always em-

ployed. The Dirac equation for an electron reads

D�p = �p�p, D = c�� · �� + �� − 1�c2 + V , �1�

�� = p� + A� 10 + A� 01, A� 10 =
1

2
B� � r�, A� 01 =

1

c2

�� � r�

r3
, �2�

where V is the nuclear Coulomb potential and A� 10 and A� 10

are the vector potentials due respectively to a uniform exter-

nal magnetic field B� and a nuclear magnetic point dipole

moment �� . According to the generic ansatz of orbital

decomposition,
20,30

the bispinors �i can be expanded as
18

�p = �
�

Z�
g�A�p

1

2c
	� · p�g�B�p�, Z = 	Z11 Z12

Z21 Z22


 . �3�

The Z operator, for which various strictly equivalent

choices
18,19

are possible, extends the 	� · p�-basis to a field-

dependent basis for the small component. Such an ansatz is

equivalent to representing the effective Hamiltonian H and

the nonunit metric S in the original 	� · p�-basis, viz.,

H = Z†DZ, S = Z†Z , �4�

	H11 H12

H21 H22


	A

B

 = 	S11 S12

S21 S22


	A

B

� , �5�

where

�H11��
 = �g��Z11
† VZ11 + Z11

† c	� · �� Z21 + Z21
† c	� · �� Z11

+ Z21
† �V − 2c2�Z21�g
 , �6�

�H12��
 =
1

2c
�g��Z11

† VZ12 + Z11
† c	� · �� Z22 + Z21

† c	� · �� Z12

+ Z21
† �V − 2c2�Z22�	� · p�g


= �H21�
�
� , �7�

�H22��
 =
1

4c2
�	� · p�g��Z12

† VZ12 + Z12
† c	� · �� Z22

+ Z22
† c	� · �� Z12 + Z22

† �V − 2c2�Z22�	� · p�g
 , �8�

�S11��
 = �g��Z11
† Z11 + Z21

† Z21�g
 , �9�

�S12��
 =
1

2c
�g��Z11

† Z12 + Z21
† Z22�	� · p�g
 = �S21�
�

� , �10�

�S22��
 =
1

4c2
�	� · p�g��Z12

† Z12 + Z22
† Z22�	� · p�g
 . �11�

Equation �5� is the basis for the various four-component

methods for NMS.
18,19

The aim here is to develop its two-

component counterpart. By defining the following relation-

ship between the small and large component expansion co-

efficients:

B = XA , �12�

and invoking the same procedure as used for deriving the

X2C Hamiltonians in the absence of magnetic fields,
25

we

obtain

FA = S̃A�, A†S̃A = I , �13�

F = L + X†L, L = H11 + H12X, L = H21 + H22X ,

�14�

S̃ = M + X†M, M = S11 + S12X, M = S21 + S22X .

�15�

The exact decoupling of Eq. �5� is only achieved if X satis-

fies the following implicity equation:

M−1L = M−1L or X = H22
−1

MM−1L − H22
−1

H21. �16�

Equation �13� is the extension of the original NESC
16,25,26

to

the case of magnetic fields. Other forms of F such as sym-

metrized elimination of the small component
28

are also pos-

sible but which will not be considered here. By setting Z00

=14, the zeroth order equations �original NESC� of Eqs. �13�
and �16� are readily obtained as

F00A00 = S̃00A00�00, �17�

X00 = I +
1

4c2
T−1WX00 −

1

2c2
X00S−1L00, �18�

where

F00 = V + TX00 + X00†T − X00†TX00 +
1

4c2
X00†WX00,

�19�

S̃00 = S +
1

2c2
X00†TX00, �20�

L00 = V + TX00. �21�

Here, V is the matrix of V, T is of the nonrelativistic kinetic

operator T, and W of 	� · p�V	� · p� in the large component basis

and S is the nonrelativistic metric. Equations �17� and �18�
can be solved either iteratively or noniteratively.

25–28

Without loss of generality, we can use the zeroth order

spinors as the basis, in terms of which we have

081101-2 Sun et al. J. Chem. Phys. 131, 081101 �2009�



A00 = I, S̃00 = I, F00 = �00, L00 = S�00,

L00 = M00�00, M00 = S22
00

X00, S22
00 =

1

2c2
T, �22�

L00 = T + H22
00

X00, H22
00 =

1

4c2
W − T

Expanding Eqs. �13�–�16� to first and mixed second orders

leads to

F10 + �00A10 = S̃10�00 + A10�00 + �10, �23�

F10 = H11
10 + H12

10
X00 + X00†�H21

10 + H22
10

X00� + �X10†L00 + c.c.�

�24�

S̃10 = S11
10 + S12

10
X00 + X00†�S21

10 + S22
10

X00� + �X10†M00 + c.c.�

�25�

P00X10 =
1

2c2
X10�00 + Q10,

P00 =
1

4c2
T−1W − I −

1

2c2
X00S−1T ,

Q10 =
1

2c2
X00S−1�H11

10 + H12
10

X00 − �S11
10 + S12

10
X00��00�

− T−1�H21
10 + H22

10
X00 − �S21

10 + S22
10

X00��00� , �26�

F11 + F10A01 + F01A10 + �00A11

= S̃10A01�00 + S̃01A10�00 + S̃11�00 + A11�00 + S̃01�10

+ A01�10 + S̃10�01 + A10�01 + �11, �27�

F11 = H11
11 + H12

11
X00 + X00†H21

11 + X00†H22
11

X00

+ ��H12
01 + X00†H22

01�X10 + c.c.� + �X01†L10 + c.c.�

+ �X11†L00 + c.c.� �28�

S̃11 = S11
11 + S12

11
X00 + X00†S21

11 + X00†S22
11

X00

+ ��S12
01 + X00†S22

01�X10 + c.c.� + �X01†M10 + c.c.�

+ �X11†M00 + c.c.� �29�

L10 = H21
10 + H22

10
X00 + H22

00
X10, �30�

M10 = S21
10 + S22

10
X00 + S22

00
X10. �31�

Replacing the superscripts “10” with “01” in Eqs. �23�–�26�
leads to the corresponding expressions for �01, F01, S̃01, and

X01, respectively. After some straightforward algebra, we fi-

nally obtain the mixed second order energy as

E11 = ED + EP0 + EP1 + EP2, �32�

where

ED = �H11
11 + H12

11
X00 + X00†H21

11 + X00†H22
11

X00�ii

− �S11
11 + S12

11
X00 + X00†S21

11 + X00†S22
11

X00�ii�i
00, �33�

EP0 = − �H11
01 + H12

01
X00 + X00†H21

01 + X00†H22
01

X00�ijS̃ ji
10

+ �S11
01 + S12

01
X00 + X00†S21

01 + X00†S22
01

X00�ijS̃ ji
10�i

00,

�34�

EP1 = ��H11
01 + H12

01
X00 + X00†H21

01 + X00†H22
01

X00�iaAai
10

+ c.c.� − ��S11
01 + S12

01
X00 + X00†S21

01

+ X00†S22
01

X00�iaAai
10�i

00 + c.c.� , �35�

EP2 = ���H12
01 + X00†H22

01�X10�ii + c.c.� − ���S12
01

+ X00†S22
01�X10�ii�i

00 + c.c.� − �S11
01 + S12

01
X00

+ X00†S21
01 + X00†S22

01
X00�ii�i

10, �i
10 = Fii

10 − S̃ii
10�i

00.

�36�

It is seen that quantities such as A01 and X01 are not needed

for the mixed second order energy, in line with the Dalgarno

interchange theorem for double perturbations. The corre-

spondence between the two- and four-component dia- and

paramagnetic terms will be analyzed elsewhere. Although we

have mainly NMS in mind, the above formulation can also

be used to derive expressions specific to SSC or magnetiz-

ability.

B. Two–component external field-dependent unitary
transformation „2c-EFUT… for NMS

As an application of the previous general formulation,

we now consider the EFUT ansatz for NMS. Other schemes

such as the orbital decomposition approach and restricted

magnetic balance
18,19

will be presented elsewhere. Specifi-

cally,

Z00 = 14, Z01 = 04, Z10 =� 0 −
1

2c
	� · A� 10

1

2c
	� · A� 10 0 � ,

�37�

where the second equality implies that the �singular� vector

potential A� 01 is not transformed. Otherwise, special care must

be taken of the numerical instabilities.
18

Equation �37� leads

to the following structure for the four-component matrices:

S10 = S01 = S11 = 04, H10 = 	H11
10 0

0 H22
10
,

�38�

H01 = 	 0 H12
01

H21
01 0


, H11 = 	H11
11 0

0 H22
11
 ,

where

081101-3 X2C for NMR parameters J. Chem. Phys. 131, 081101 �2009�



�H11
10��
 =

1

2 �g��	� · p�	� · A� 10 + 	� · A� 10	� · p� �g
 , �39�

�H22
10��
 = −

1

8c2 �	� · p�g��	� · p�	� · A� 10

+ 	� · A� 10	� · p� �	� · p�g
 , �40�

�H12
01��
 =

1

2 �g��	� · A� 01	� · p� �g
 , �41�

�H21
01��
 =

1

2 �g��	� · p�	� · A� 01�g
 , �42�

�H11
11��
 = �g��A� 01 · A� 10�g
 , �43�

�H22
11��
 = −

1

4c2
�	� · p�g��A� 01 · A� 10�	� · p�g
 . �44�

The general equations �24�–�26� in Sec. II A are then simpli-

fied to

F10 = H11
10 + X00†H22

10
X00 + �X10†L00 + c.c.� , �45�

S̃10 =
1

2c2
X10†TX00 + c.c., �46�

P00X10 =
1

2c2
X10�00 + Q10,

P00 =
1

4c2
T−1W − I −

1

2c2
X00S−1T , �47�

Q10 =
1

2c2
X00S−1H11

10 − T−1H22
10

X00.

Equation �47� suggests an iterative scheme starting from ze-

roing the first term on the right hand side. Typically it takes

only two or three iterations to achieve convergence. A non-

iterative scheme is obtained by rewriting Eq. �47� in a basis

that diagonalizes the matrix P00, viz.,

P00z = z�, ��z−1X10� =
1

2c2
�z−1X10��00 + z−1Q10,

�48�

Xpq
10 = �

r

zpr	�r −
1

2c2
�q

00
−1

�z−1Q10�rq.

The �Aai
10� can then be obtained from Eqs. �23�, �45�, and

�46�. The terms in Eq. �32� now read

ED = �H11
11 + X00†H22

11
X00�ii, �49�

EP0 = − �H12
01

X00 + X00†H21
01�ijS̃ ji

10, �50�

EP1 = �H12
01

X00 + X00†H21
01�iaAai

10 + c.c., �51�

EP2 = �H12
01

X10 + X10†H21
01�ii. �52�

The above 2c-EFUT is completely equivalent to the four–

component counterpart, 4c-EFUT
18,19

for any finite basis.

When the basis is complete, the results will be the same as

those by the exact analytical expression
19

. Such an equiva-

lence is confirmed also by �uncoupled� calculations on neu-

tral rare-gas atoms.

III. CONCLUSIONS

It has been demonstrated that the matrix formulation of

two-component theory for NMR parameters is not only exact

but also simple. The generalization to many-electron sys-

tems, including the proper treatment of distributed gauges, is

straightforward. The efficiency and the corrections for two-

electron picture change errors will be attained via the idea of

“from atoms to molecule.”
27,28

In view of the ease, the

previous quasirelativistic theories have become essentially

obsolete.
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