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We show that the average optimal cost for the traveling salesman problem in two dimensions, which is the
archetypal problem in combinatorial optimization, in the bipartite case, is simply related to the average optimal
cost of the assignment problem with the same Euclidean, increasing, convex weights. In this way we extend
a result already known in one dimension where exact solutions are available. The recently determined average
optimal cost for the assignment when the cost function is the square of the distance between the points provides
therefore an exact prediction EN = 1

π
log N for large number of points 2N . As a by-product of our analysis,

also the loop covering problem has the same optimal average cost. We also explain why this result cannot be
extended to higher dimensions. We numerically check the exact predictions.
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I. INTRODUCTION

The traveling salesman problem (TSP) [1,2] can be for-
mulated in a few words: What is the shortest tour which
goes through N given points? But this is well known to be a
computationally intractable problem. The number of possible
solutions increases exponentially with the number of points
and there is not a known algorithm able to find the solution in
a time that increases less than exponentially with N .

When the emphasis is shifted from the research of the solu-
tion (in the worst case) to the typical properties of the solution
in a class of possible instances, the statistical properties of
the optimal solutions can be described by a zero-temperature
statistical model. This approach has been tremendously fruit-
ful [3–8]. The random model in which the distances between
the cities are independent and equally distributed random
variables has been deeply studied [9–12]. Much less is known
for the Euclidean version of the random problem, where
the positions of the points are chosen at random in a finite
domain of Rd , so that the distances of the points are now
correlated [13–15]. Of course, for large d, the effects of these
correlations are smaller and smaller and the methods used
to deal with the problem in absence of correlations becomes
more and more effective.

In the Euclidean version of the problem, we associate the
step in the tour from the ith point with coordinate xi to the j th
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point with coordinate xj a cost

cp(xi, xj ) = cp(xi − xj ) := ‖xi − xj‖p , (1)

with p ∈ R and ‖xi − xj‖ the Euclidean distance between
the two points. In the bipartite version of the problem the
set of 2N points is partitioned into two subsets each with N

points and steps are allowed only from points in one subset
to points in the other subset; in the monopartite version all
the points can be reached from any other point. Interestingly
enough in d = 1, when p > 1, that is, when the cost function
is convex and increasing, the search for the optimal tour can
be exactly solved both in the bipartite [16], as well as in the
monopartite [17], version of the problem.

There have been, recently, what we consider three relevant
advancements in the field:

(i) For other optimization problems similar to the TSP,
the monopartite and bipartite versions have different optimal
cost properties. For example, for the matching one-factor and
two-factor (or loop-covering) problems, the optimal cost is
expected to be a self-averaging quantity whose average scales
according to

E
(p,d )
N ∼ N1−(p/d ) (2)

(see [13] for a proof in the case p = 1). On the other hand, in
the bipartite version [18–20] it is expected that

E
(p,d )
N ∼

⎧⎨
⎩

N1−(p/2) for d = 1
N1−(p/2)(log N )p/2 for d = 2
N1−(p/d ) for d > 2,

(3)

which is a larger average cost with respect to the monopartite
case when d � 2. Moreover, in the bipartite case the optimal
cost is expected to be not self-averaging.
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(ii) In the bipartite case it is always true [21] that the total
optimal cost of the TSP E∗

H is larger than the total optimal
cost of the two-factor problem E∗

M2
, which is larger than twice

the total optimal cost of the corresponding matching problem
(assignment) E∗

M1
:

E∗
H � E∗

M2
� 2E∗

M1
. (4)

In [16] it has been shown that in d = 1, in the asymptotic
limit of an infinitely large number of points, this bound is
saturated; that is, the total optimal cost of the TSP, rescaled
with N1−(p/2), is exactly twice the total rescaled optimal cost
of the assignment problem, and therefore all three quantities
coincide.

(iii) Through connection with the continuum version of
the problem, that is, the well-known transport problem, it has
been possible to compute, exactly, the total optimal cost of the
assignment problem for d = 2 and p = 2, in the asymptotic
limit of an infinitely large number of points [19,22–24]:

E
(2,2)
N = 1

2π
log N. (5)

We considered, therefore, the possibility that also in d = 2,
and p > 1, exactly, thanks to the logarithmic violation present
in the bipartite case, the asymptotic total cost of the TSP can
be exactly twice that of the assignment, which for p = 2 is
also exactly known. Indeed, this is the case.

This Rapid Communication is organized as follows. In
Sec. II we present the model. In Sec. III we present an ar-
gument to justify our strategy. In Sec. IV we provide evidence
by numerical simulations of how our result is established for
large numbers of points. We also examined the case p = 1,
which is the most largely considered in the literature.

II. THE MODEL

Consider a generic graph G = (V,E) where V is its set of
vertices and E ⊂ V 2 its set of edges. Let we > 0 be a weight
associated to the edge e ∈ E. We shall consider the complete
(monopartite) graph KN , whose vertex set has cardinality N

and E = V 2 and the complete bipartite graph KN,N , whose
vertex set is V = V1 ∪ V2 with V1 and V2 disjoint sets of
cardinality N , and E = V1 × V2.

Let μ = (V,E′) be a spanning subgraph of G, that is,
E′ ⊂ E. We can define a total cost associated to μ according
to

E[μ] =
∑
e∈μ

we. (6)

We shall consider three different classes of spanning sub-
graphs M. The set M1 of one-factor (matching), where each
vertex belongs to one and only one edge, the set M2 of two-
factor (two-matching or loop covering), where each vertex
belongs to two edges, and the set H of Hamiltonian cycles,
that is, two-factor formed by only one cycle (see Fig. 1). The
assignment, respectively two-factor, TSP, problems amounts
to the search of the subgraph μ∗ in M1, respectively M2, H,
which is optimal, in the sense of minimal total cost

E∗
M = EM[μ∗] = min

μ∈M
E[μ] (7)

FIG. 1. On the same instance with N = 16 blue (squared) and
red (disk) points (top left panel), we draw an arbitrarily-chosen
example of each class of spanning subgraph we are considering:
a one-factor (top right), an Hamiltonian cycle (bottom left) and a
two-factor (bottom right).

with M, respectively M1,M2,H. In the Euclidean version
of our bipartite optimization problems, we consider the im-
mersion of KN,N in an open subset � ⊂ Rd . V1, respectively
V2, will be identified by the set of N points with coordinates
ri , that we shall call the red points (respectively, by the set
of N points with coordinates bj , that we shall call the blue
points). Let (i, j ) be the edge connecting the ith red vertex
with the j th blue vertex. We give a weight wij = cp(ri − bj ),
with p � 1 as in Eq. (1).

Of course, in the monopartite Euclidean version there is
only one set of points.

In the random Euclidean version of the problem, each pos-
sible instance is obtained by choosing at random, with a given
law, the position of the points in �. For example, we shall
consider � = [0, 1]d and the flat distribution. We denote by
E∗ the average, over all instances, of the optimal total cost E∗.

III. SCALING ARGUMENT

In this section we will provide a scaling argument to
support our claim; that is, also in two dimensions, for any
given choice of the positions of the points, in the asymptotic
limit of large N , the cost of the bipartite TSP converges to
twice the cost of the assignment.

Given an instance, let us consider the optimal assignment
μ∗ on them. Let us now consider N points which are taken
between the red and blue points of each edge in μ∗ and call
T ∗ the optimal monopartite TSP solution on these points. For
simplicity, as these N points we take the blue points.

We shall use T ∗ to provide an ordering among the red and
blue points. Given two consecutive points in T ∗, for example,
b1 and b2, let us denote by (r1, b1) and (r2, b2) the two edges
in μ∗ involving the blue points b1 and b2 and let us consider
also the new edge (r1, b2). We know that, in the asymptotic
limit of large N , the typical distance between two matched
points in μ∗ scales as (log N/N )1/2 while the typical distance
between two points matched in the monopartite case scales
only as 1/N1/2, that is (for all points but a fraction which goes
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r1 r2

r3r4

b1 b2

b3b4

FIG. 2. The optimal assignment μ∗ is given by the orange
edges {(r1, b1), (r2, b2), (r3, b3), (r4, b4)}. The monopartite TSP
(gray dashed edges) among the blue points provides the necessary
ordering. In order to obtain the TSP b1, r1, b2, r2, b3, r3, b4, r4, b1

in the bipartite graph we have to add the green edges
{((r1, b2), (r2, b3), (r3, b4), (r4, b1)}.

to zero with N ),

w(b1,r1 ) =
(

α11
log N

N

)p/2

,

w(b2,r1 ) =
[
β22

1

N
+ α11

log N

N
− γ

√
log N

N

]p/2

, (8)

where (α11 log N/N )1/2 is the length of the edge (r1, b1) of
μ∗, (β22/N )1/2 is the length of the edge (b1, b2) of T ∗, and
γ = 2

√
α11β22 cos θ , where θ is the angle between the edges

(r1, b1) of μ∗ and (b1, b2) of T ∗.
This means that, typically, the difference in cost

�E = w(b2,r1 ) − w(b1,r1 ) ∼ (log N )(p−1)/2

Np/2
(9)

is small as compared to the typical cost (log N/N )p/2

of one edge in the bipartite case. To obtain a valid
TSP solution, which we call hA, we add to the edges
μ∗ = {(r1, b1), . . . , (rN , bN )} the edges {(r1, b2), . . . ,
(rN−1, bN ), (rN , b1)} (see Fig. 2).

Of course hA is not, in general, the optimal solution of the
TSP. However, because of Eq. (4), we have that

EH[hA] � E∗
H � E∗

M2
� 2 E∗

M1
, (10)

and we have shown that, for large N, EH[hA] goes to 2E∗
M1

and therefore also E∗
H must behave in the same way. As a

by-product of our analysis, also E∗
M1

for the loop covering
problem has the same optimal average cost. Note also that our
argument is purely local and therefore it does not depend in
any way on the type of boundary conditions adopted. Since
in the case of periodic boundary conditions, as shown in [23],
it holds (5), we get that the average optimal cost of both the
TSP and two-factor goes for large N to two times the optimal
assignment.

Notice that an analogous construction can be used in any
number of dimensions. However, the success of the procedure
lies in the fact that the typical distance between two points in
μ∗ goes to zero slower than the typical distance between two
consecutive points in the monopartite TSP. This is true only
in one and two dimensions, and it is related to the importance

of fluctuations in the number of points of different kinds in a
small volume.

This approach allowed us to find also an approximated
solution of the TSP which improves as N → ∞. However,
this approximation requires the solution of a monopartite TSP
on N/2 points, corroborating the fact that the bipartite TSP is
a hard problem (from the point of view of complexity theory).

A similar construction can be used to achieve an approxi-
mated solution also for the two-factor problem. In this case,
instead of solving the monopartite TSP on a point chosen
within each edge of μ∗, one should solve the monopartite
matching problem on this set of points, obtaining a matching
M∗. Once more let us denote by (r1, b1) and (r2, b2) the
two edges in μ∗ which give rise to two matched points in
M∗, and collect them together with the edges (r1, b2) and
(r2, b1). Repeating the above procedure for each couple of
points matched in M∗, the union of the edges obtained gives
a valid two-factor whose cost tends, in the limit of large N ,
to twice the cost of the optimal assignment in one and two
dimensions. Notice that, in this case, the procedure is much
more efficient because the solution of the matching problem
is polynomial in time.

IV. NUMERICAL RESULTS

We have confirmed our theoretical predictions by per-
forming numerical simulations on all three models previously
presented: assignment, bipartite two-factor, and bipartite TSP.
We have considered the case of open boundary conditions.

For what concerns the assignment problem, many
polynomial-time algorithms are available in the literature,
such as the famous Hungarian algorithm [25]. We have imple-
mented an in-house assignment solver based on the LEMON
optimization library [26], which is based on Edmonds’ blos-
som algorithm [27]. In the case of the two-factor and TSP, the
most efficient way to numerically tackle those problems is to
exploit their linear or integer programming formulation.

To validate our argument, we solved for both the as-
signment and the two-factor problem (with p = 1, 2), 105

independent instances for 2 � N � 125, 104 independent in-
stances for 150 � N � 500, and 103 independent instances
for 600 � N � 1000. In the TSP case, the computational cost
is dramatically larger; for this reason the maximum number of
points we were able to achieve with good numerical precision
using integer programming was N = 300, also reducing the
total number of instances.

An estimate of the asymptotic average optimal cost and
finite-size corrections has been obtained using the fitting
function for p = 1

f (p=1)(N ) =
√

N log N

(
a1 + a2

log N
+ a3

log2 N

)
, (11)

while, for p = 2

f (p=2)(N ) = log N

(
a1 + a2

log N
+ a3

log2 N

)
. (12)

These are the first three terms of the asymptotic behavior of
the cost of the assignment problem [18,19]. Parameters a2 and
a3 for p = 2 were obtained fixing a1 to 1/π . In Fig. 3 we plot
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FIG. 3. Numerical results for p = 1 (left panel) and p = 2 (right panel) for the TSP (red points, top), the two-factor [green points (middle)],
and two times the assignment problem [blue points (bottom)] in the open boundary condition case. Continuous lines are numerically fit to the
data.

the data and fit in the case of open boundary conditions. The
results are reported in Table I.

To better confirm the behavior of the average optimal
cost of the TSP, we also performed some numerical simu-
lations using a much more efficient solver, that is, the Con-
corde TSP solver [28], which is based on an implementation
of the branch-and-cut algorithm proposed by Padberg and
Rinaldi [29]. The results for the leading term of the asymptotic
average optimal cost are confirmed while a small system-
atic error due to the integer implementation of the solver is
observed in the finite-size corrections.

V. CONCLUSIONS

In this work we have considered three combinatorial op-
timization problems: the matching problem, two-factor prob-
lem, and TSP, where the cost is a convex increasing function
of the point distances. Previous investigations have been
performed in the one-dimensional case, by means of exact
solutions [16]. Here we analyzed the bipartite version of
these problems in two dimensions, showing that, as already
obtained in one dimension,

lim
N→∞

E∗
H

E∗
M1

= lim
N→∞

E∗
M2

E∗
M1

= 2. (13)

This implies, for the special case p = 2, by using (5), our
main exact result is limN→∞(E∗

H/ log N ) = 1/π . In general,
the evaluation of E∗

H and E∗
M2

for large N is reduced to
the solution of the matching problem which requires only
polynomial time. This seems to be a peculiar feature of the
bipartite problem: the monopartite TSP cannot be approached
in a similar way. As a by-product of our analysis, we provided
in Sec. III two approximate algorithms, for the bipartite TSP
and the bipartite two-factor: both are guaranteed to give a
solution with optimal cost for large N . The first algorithm
allows one to solve the bipartite TSP on N points solving the
monopartite TSP with N points (notice that, in principle, the
bipartite version consists of 2N points). The second allows
one to exploit the fast Hungarian algorithm to obtain an
approximate solution of the two-factor problem.
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TABLE I. Comparison between fit factors in assignment and TSP, for p = 1, 2. We have doubled the factors for the assignment to verify
our hypothesis. For p = 2, we have reported the theoretical value of a1, which is 1/π .

p = 1 a1 a2 a3 p = 2 a1 a2 a3

TSP 0.717(2) 1.32(1) −0.513(1) TSP 0.321(5) 1.603(2) −0.428(6)
Two-factor 0.714(2) 1.31(1) −0.58(2) Two-factor 0.319(4) 1.577(2) −0.547(7)
Assignment 0.714(2) 1.17(2) −0.77(2) Assignment 0.31831 1.502(2) −1.05(1)
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[26] B. Dezső, A. Jüttner, and P. Kovács, LEMON—An open source
C++ graph template library, Electron. Notes Theor. Comput.
Sci. 264, 23 (2011).

[27] J. Edmonds, Paths, trees, and flowers, Can. J. Math. 17, 449
(1965).

[28] D. Applegate, R. Bixby, V. Chvatal, and W. Cook, Con-
corde TSP solver, (2006), http://www.math.uwaterloo.ca/tsp/
index.html.

[29] M. Padberg and G. Rinaldi, A branch-and-cut algorithm for the
resolution of large-scale symmetric traveling salesman prob-
lems, SIAM Rev. 33, 60 (1991).

030101-5

https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1051/jphyslet:0198400450240114500
https://doi.org/10.1051/jphyslet:0198400450240114500
https://doi.org/10.1051/jphyslet:0198400450240114500
https://doi.org/10.1051/jphyslet:0198400450240114500
https://doi.org/10.1088/0305-4470/19/9/033
https://doi.org/10.1088/0305-4470/19/9/033
https://doi.org/10.1088/0305-4470/19/9/033
https://doi.org/10.1088/0305-4470/19/9/033
https://doi.org/10.1209/0295-5075/2/12/006
https://doi.org/10.1209/0295-5075/2/12/006
https://doi.org/10.1209/0295-5075/2/12/006
https://doi.org/10.1209/0295-5075/2/12/006
https://doi.org/10.1051/jphyslet:019850046017076300
https://doi.org/10.1051/jphyslet:019850046017076300
https://doi.org/10.1051/jphyslet:019850046017076300
https://doi.org/10.1051/jphyslet:019850046017076300
https://doi.org/10.1209/0295-5075/2/12/005
https://doi.org/10.1209/0295-5075/2/12/005
https://doi.org/10.1209/0295-5075/2/12/005
https://doi.org/10.1209/0295-5075/2/12/005
https://doi.org/10.1051/jphys:019860047080128500
https://doi.org/10.1051/jphys:019860047080128500
https://doi.org/10.1051/jphys:019860047080128500
https://doi.org/10.1051/jphys:019860047080128500
https://doi.org/10.1209/0295-5075/8/3/002
https://doi.org/10.1209/0295-5075/8/3/002
https://doi.org/10.1209/0295-5075/8/3/002
https://doi.org/10.1209/0295-5075/8/3/002
https://doi.org/10.1017/S0305004100034095
https://doi.org/10.1017/S0305004100034095
https://doi.org/10.1017/S0305004100034095
https://doi.org/10.1017/S0305004100034095
https://doi.org/10.1103/PhysRevLett.76.1188
https://doi.org/10.1103/PhysRevLett.76.1188
https://doi.org/10.1103/PhysRevLett.76.1188
https://doi.org/10.1103/PhysRevLett.76.1188
https://doi.org/10.1051/jp1:1997129
https://doi.org/10.1051/jp1:1997129
https://doi.org/10.1051/jp1:1997129
https://doi.org/10.1051/jp1:1997129
https://doi.org/10.1103/PhysRevE.97.052109
https://doi.org/10.1103/PhysRevE.97.052109
https://doi.org/10.1103/PhysRevE.97.052109
https://doi.org/10.1103/PhysRevE.97.052109
https://doi.org/10.1007/BF02579135
https://doi.org/10.1007/BF02579135
https://doi.org/10.1007/BF02579135
https://doi.org/10.1007/BF02579135
https://doi.org/10.1103/PhysRevE.90.012118
https://doi.org/10.1103/PhysRevE.90.012118
https://doi.org/10.1103/PhysRevE.90.012118
https://doi.org/10.1103/PhysRevE.90.012118
https://doi.org/10.1088/1742-5468/2014/11/P11023
https://doi.org/10.1088/1742-5468/2014/11/P11023
https://doi.org/10.1088/1742-5468/2014/11/P11023
https://doi.org/10.1088/1742-5468/aad3f7
https://doi.org/10.1088/1742-5468/aad3f7
https://doi.org/10.1088/1742-5468/aad3f7
https://doi.org/10.1103/PhysRevE.91.062125
https://doi.org/10.1103/PhysRevE.91.062125
https://doi.org/10.1103/PhysRevE.91.062125
https://doi.org/10.1103/PhysRevE.91.062125
https://doi.org/10.1103/PhysRevLett.115.230601
https://doi.org/10.1103/PhysRevLett.115.230601
https://doi.org/10.1103/PhysRevLett.115.230601
https://doi.org/10.1103/PhysRevLett.115.230601
https://doi.org/10.1007/s00440-018-0837-x
https://doi.org/10.1007/s00440-018-0837-x
https://doi.org/10.1007/s00440-018-0837-x
https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1016/j.entcs.2011.06.003
https://doi.org/10.1016/j.entcs.2011.06.003
https://doi.org/10.1016/j.entcs.2011.06.003
https://doi.org/10.1016/j.entcs.2011.06.003
https://doi.org/10.4153/CJM-1965-045-4
https://doi.org/10.4153/CJM-1965-045-4
https://doi.org/10.4153/CJM-1965-045-4
https://doi.org/10.4153/CJM-1965-045-4
http://www.math.uwaterloo.ca/tsp/index.html
https://doi.org/10.1137/1033004
https://doi.org/10.1137/1033004
https://doi.org/10.1137/1033004
https://doi.org/10.1137/1033004

