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Exact Vibration Solutions for Nonuniform
Timoshenko Beams with Attachments
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The exact solution for the free vibration of a symmetric nonuniform Timoshenko beam with tip mass at one
end and elastically restrained at the other end of the beam is derived. The two coupled governing characteristic
differential equations are reduced into one complete fourth-order ordinary differential equation with variable
coefficients in the angle of rotation due to bending. The frequency equation is derived in terms of the four
normalized fundamental solutions of the differential equation. It can be shown that, if the coefficients of the
reduced differential equation can be expressed in polynomial form, the exact fundamental solutions can be
found by the method of Frobenius. Finally, several limiting cases are studied and the results are compared with
those in the existing literature.
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Nomenclature
cross-sectional area of the beam
Young's modulus of beam material
shear modulus of beam material
area moment inertia of the beam
mass moment of inertia of the beam per unit length
rotatory inertia attached at the right end of the
beam
translational and rotational spring constants at the
left end of the beam, respectively
length of the beam
concentrated mass attached at the right end of the
beam
total mass of the beam
mass of the beam per unit length
beam shear rigidity, KG(x)A(x)
dimensionless shear rigidity, Q (£)/(? (0)
beam bending rigidity, E(x)I(x)
dimensionless bending rigidity, R(%)/R(Q)
dimensionless mass, m(^)/m(Q)
dimensionless mass moment inertia, J(%)/J(Q)
length variable of the beam
beam lateral displacement
dimensionless lateral displacement, Y/L
dimensionless rotatory inertia of the attached mass,
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dimensionless translational and rotational spring
constants, respectively, KTL3/R(Q), KoL/R(Q)
dimensionless concentrated mass, M/[m(0)L]
dimensionless ratio of bending rigidity to shear
rigidity at x = 0, R(0)/[Q(Q)L2]
dimensionless ratio of mass moment inertia to mass
at * = 0, J(Q)/[m(0)L2]
shear correction factor of the beam
taper ratio of the beam
dimensionless ratio of attached mass to total mass
of the beam, M/Mb
dimensionless distance to the left end of the beam,
x/L
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= angular frequency of beam vibration
= angle of rotation due to bending
= dimensionless frequency, m (0)w2L 4/R (0)

Introduction

N ONUNIFORM beams are widely used in many structural
applications in order to optimize the distribution of

weight and strength and sometimes to satisfy special architec-
tural and functional requirements. Therefore, the analysis of
nonuniform beams is of interest to many mechanical, aero-
nautical, and civil engineers.

It is a standard engineering practice to analyze beams of
uniform or variable properties on the basis of Bernoulli-Euler
beam theory. However, if the effect of shear distortion and
rotatory inertia is considered, then a higher-order beam theory
(Timoshenko beam theory) is required. Based on Bernoulli-
Euler beam theory, the analysis of nonuniform beams has
been studied by many authors via many different methods. A
brief review of the work can be found in the work recently
done by Lee and Kuo.1'2 They made the static and dynamic
analysis of a general elastically restrained nonuniform Bernoulli-
Euler beam. The exact solution for the problem governed by a
general self-adjoint fourth-order ordinary differential equa-
tion with arbitrarily polynomial varying coefficients were
derived in Green's function form and concisely expressed in
terms of the four normalized fundamental solutions of the
system. Exact stiffness matrices for the analysis of non-
uniform Bernoulli-Euler beams were developed by Karabalis
and Beskos.3

For Timoshenko beams the governing characteristic dif-
ferential equations are two coupled differential equations
expressed in terms of two dependent variables: the flexural
displacement and the angle of rotation due to bending. It is
well known that, if a beam is uniform, then the two coupled
differential equations can be uncoupled into two complete
fourth-order ordinary differential equations in the flexural
displacement and the angle of rotation due to bending.4'5
However, this is not the case for nonuniform beams. Conse-
quently, exact solutions for the problems were never given,
and the problems were mainly studied by approximate methods
such as the finite element method,6 the optimized Rayleigh-
Ritz method,7 and the transfer matrix method.8

In this paper the exact solution for the free vibration of a
symmetric nonuniform Timoshenko beam with tip mass at
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